Normalization of the generalized K Mittag-Leffler function and ratio to its sequence of partial sums

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Normalization of the generalized K Mittag-Leffler function and ratio to its sequence of partial sums"

Transcript

1 Normalization of the generalized K Mittag-Leffler function ratio to its sequence of partial sums H. Rehman, M. Darus J. Salah Abstract. In this article we introduce an operator L k,α (β, δ)(f)(z) associated with generalized K Mittag-Leffler function in the unit disk U= z : z < 1}. Further the ratio of normalized K Mittag-Leffer function Q (z) to its sequence of partial sums Q( ) m(z) are calculated. M.S.C. 2010: 30C45. Key words: Mittag-Leffler function; analytic functions; fractional calculus; Hadamard product; sequence of partial sums. 1 Introduction The (M-L) function was introduced by the Swedish Mathematician Mittag-Leffler [13, 14]. This function may be a classical function dealing with problems in Complex Analysis so it is important for obtaining solutions of fractional differential integral equations which are associated e.g., with the kinetic equation, rom walks, Levy flights super diffusive transport problems. Moreover, from its exponential behavior, the deviations of physical phenomena could also be described by physical laws through Mittag-Leffler functions. Many authors have studied on (M-L) functions for its properties, generalization, applications extension, such as [12], [11], [15]. 2 Preliminaries definitions The one-parameter (M-L) function E α (z) : (z) C see [13] [14], (2.1) E α (z) := z n Γ(α + 1) =: E α,1(z), its two-parameters extension E α,β (z) was studied by Wiman [10], (2.2) E α,β (z) := z n Γ(αn + β) BSG Proceedings, vol. 25, 2018, pp c Balkan Society of Geometers, Geometry Balkan Press (α 0),

2 80 H. Rehman, M. Darus J. Salah where α, β C, R(α) > 0 R(β) > 0. E γ α,β Further, in 1971, Prabhakar [8] proposed another general form of (M-L) function (z) as: (2.3) E γ α,β (z) := (γ) n Γ(αn + β)n! zn, for which α, β, γ C, R(α) > 0, R(β) > 0 R(γ) > 0. where (γ) n is the Pochhammar symbol: Γ(γ + n) 1, n = 0 (γ) n = = Γ(γ) γ(γ + 1)...(γ + n 1) Note that (t) n = t(t + 1) n 1, (t) n t n, n N n N Srivastava Tomovski [5] proved that the function E γ α,β (z) defined by 2.3 is an entire function in the complex z-plane. Another useful generalization of the Mittag-Leffler function called as K Mittag- Leffler function E γ k,α,β (z), introduced in [3] as: (2.4) E γ k,α,β (z) := (γ) n,k Γk(αn + β)n! zn, where (γ) n,k is the k Pochhammer symbol defined as: (2.5) (γ) n,k = γ(γ + k)(γ + 2k)...(γ + (n 1)k) (γ C, k R, n N). The following extension is due to A. K. Shukla J. C. Prajapati [17], (2.6) E α,β (z) := (γ) nq Γk(αn + β)n! zn, Remark 2.1. In case q N then (γ) nq = q qn q r=1 Further extension of K Mittag-Leffler function GE studied by K. S Gehlot [2] as for q (0, 1) N, ( ) γ + r 1 q k,α,β (2.7) GE k,α,β (z) := (γ) nq,k Γk(αn + β)n! zn, n (z) took place which was where (γ) nq,k is defined as (2.5) the generalized pochhammer symbol is defined in [1] under condition if q N. (2.8) (γ) nq = Γ(γ + nq), Γ(γ)

3 The generalized K M L function ratio to its sequence of partial sums 81 Due to the high interest of researchers in (M-L) functions another parameter δ C was inserted by Salim [18] which has the generalized form of: E k,α (β, δ)(z): (2.9) E (z) = (γ) nq,k z n, Γk(αn + β)(δ) n the imposition on parameters are α, β, γ C, R(α) > 0, R(β) > 0, k R, δ is non-negative real number nq is a positive integer. Let M represents the class of the normalized functions of the form: (2.10) f(z) = z + which are analytic in the open unit disk a n z n U = z C : z < 1}. Since the Mittag-Leffler function in (2.1) does not belong to the class M therefore, for (M-L) functions to be the member of class M, Srivastava his co-authors [16] have considered some normalization on the E α,β as: (2.11) E α,β (z) = Γ(β)zE α,β (z) Γ(β) = z + Γ(αn + β) zn+1, the above equality can also be written as where E α,β (z) = z + Γ(β) Γ(α(n 1) + β) zn, (z, α, β C; R(α) > 0) (β 0, 1, 2,...). The normalized Mittag-Leffler function E α,β contains some well-known functions for particular values belonging to real numbers of α, β z U. E 2,1 = zcosh( z), E 2,2 = zsinh( z), E 2,3 = 2[cosh( z) 1], E 2,4 = 6[sinh( z) z] z. Definition 2.2. For a function f M given by (2.1) g M given by g(z) = z + b n z n, we define the Hadamard product (or convolution) of f g by (2.12) (f g)(z) = z + a n b n z n, (a n 0, z U).

4 82 H. Rehman, M. Darus J. Salah Salah Darus [15] generalization of Mittag-Leffler functions defined by Srivastava Tomovski [5] is given by, (2.13) mf α,δ (z) = m i=1 (γ i ) q n i (δ i ) αi n n! zn, Remark 2.3. Note that if m = 1 then m F α,δ (z) = Γ(β)E α,δ (z) Definition 2.4. (Taylor Series). The Taylor series of a function f(z) about z = a is (2.14) f(z) = f(a) + f (a)(z a) +... = f n (a) (z a) n, n! Remark 2.5. The equality between f(z) its Taylor series is only valid if the series converges. Remark 2.6. We choose a geometric series f(z) = 1 1 z = 1 + z2 + z = z n, which is Taylor series about z = 0. Note that the function f(z) = 1 exists is 1 z infinitely differentiable everywhere except at z = 1 while the series exists in the unit disc z < 1 hence analytic. Now we introduce a function φ(z) = the form (2.15) φ(z) = z + z 1 z = z + z2 + z = which is analytic in the open unit disk U = z C : z < 1}. z n z n+1 M of Definition 2.7. The generalized Libera integral operator J c for a function f(z) belonging to the class A, we define the generalized Libera integral operator J c [20] by (2.16) J c (f) = c + 1 z c z 0 t c 1 f(t)dt = z k=n+1 ( ) c + 1 a k z k, (c 0) n + 1 (2.17) J 1 (f) = 2 z z 0 f(t)dt = z k=n+1 ( ) 2 a k z k. n + 1 The operator J c, when c = 1, 2, 3,...} was introduced by Bernardi [19]. In particular, the operator J 1, was studied earlier by Libera [20] Livingston [21]. Subsequent to our studies of [4] [16] we impose some normalization over the most generalized Mittag-Leffler function E (z) which is defined in 2.9.

5 The generalized K M L function ratio to its sequence of partial sums 83 3 Main Results Theorem 3.1. If f(z) belongs to M such that z U then M class of function f(z) convolution of the generalized K Mittag-Leffler function GE (z) is (3.1) L (f)(z) = z + (γ) nq,k Γk(α + β)γ(δ + 1) (γ) q,k Γk(αn + β)γ(δ + n) a nz n, if the following conditions hold 1. α, β, γ C, R(α) > 0, R(β) > 0 R(γ) > 0, k R q (0, 1) N. 2. f(z) is analytic in the open unit disk, U= z : z < 1}. 3. R(α i ), R(β i ), R(γ i ), R(δ i ) > max0, R(q i ) 1} q (0, 1) N, R(q i ) > 0, γ (γ) nq,k is generalized pochhammer symbol as defined in (2.5). Proof. The Generalized Mittag-Leffler function [18] E (z) = (γ) nq,k z n, Γk(αn + β)(δ) n where α, β, γ C, R(α) > 0, R(β) > 0, k R, δ is non-negative real number, nq is a positive integer q (0, 1) N. (3.2) E Γ(γ + k) (z) = Γ(γ)Γk(β) + The above equation can also be written as (3.3) ( Γk(α + β)γ(δ) (E (γ) ) (γ) ) k q,k Γk(β) (γ) q,k Γk(α + β)γ(δ) z + = z + (γ) nq,k Γk(αn + β)(δ) n z n. (γ) nq,k Γk(α + β)γ(δ + 1) (γ) q,k Γk(αn + β)γ(δ + n) zn. Now we define the function Q (z) by ( (3.4) Q Γk(α + β)γ(δ) (z) = (E (γ) ) (γ) ) k. q,k Γk(β) Then equation (3.4) implies (3.5) Q (z) = z + (γ) nq,k Γk(β)Γ(δ + 1) (γ) q,k Γk(αn + β)γ(δ + n) zn+1. (3.6) Q (z) = z + (γ) (n 1)q,k Γk(α + β)γ(δ + 1) (γ) q,k Γk(α(n 1) + β)γ(δ + n 1) zn.

6 84 H. Rehman, M. Darus J. Salah Let f(z) M. Denote L k,αβ,δ (f)(z) : M M the operator is defined by (3.7) L (f)(z) = Q (z) f(z), where the symbol (*) sts for Hadamard product (or convolution). Now applying Hadamard product using the equations (2.10), (3.6) (3.7) we obtain the desired result. Corollary 3.2. If we put γ = q = k = β = δ = 1 α = 0 in equation (3.1). Let the condition of Theorem (3.1) be satisfied, then we get the following results, L 1,1 1,0,1,1 (f)(z) = z + a n z n = f(z) Corollary 3.3. If we set γ = 2, q = k = β = δ = 1 α = 0 in equation (3.1). Let the condition of Theorem (3.1) be satisfied, then the reduced form is, L 2,1 1,0,1,1 (f)(z) = z + ( n ) a n z n = 1 2 f(z) + zf (z)} Corollary 3.4. If we set out the values of γ = q = k = β = 1, δ = α = 0 in equation (3.1). Let the condition of Theorem (3.1) be satisfied, then the reduced form is, L 1,1 1,0,1,0 (f)(z) = z + na n z n = zf (z) Corollary 3.5. If we keep γ = q = k = β = 1, δ = 2 α = 0 in equation (3.1). Let the condition of Theorem (3.1) be satisfied, then the reduced form is, L 1,1 1,0,1,2 (f)(z) = z + 2 ( n + 1 )a nz n = 2 z z 0 f(t)dt. Corollary 3.6. Note that corollary (3.5) is Bernardi type of integral [19]. Particularly, the operator J 1 defined in (2.7), was studied earlier by Libera [20] Livingston [21]. Theorem 3.7. If f(z) belongs to M such that z U then M class of function φ(z) convolution of the generalized K Mittag-Leffler function GE (z) is (3.8) L (f)(z) = z + (γ) nq,k Γk(α + β)γ(δ + 1) (γ) q,k Γk(αn + β)γ(δ + n) zn, if the following conditions hold 1. α, β, γ C, R(α) > 0, R(β) > 0 R(γ) > 0, k R q (0, 1) N. 2. f(z) is analytic in the open unit disk, U= z : z < 1}. 3. R(α i ), R(β i ), R(γ i ), R(δ i ) > max0, R(q i ) 1} q (0, 1) N, R(q i ) > 0, γ 0.

7 The generalized K M L function ratio to its sequence of partial sums (γ) nq,k is generalized pochhammer symbol as defined in (2.5). Proof. The generalized Mittag-Leffler function [18] E (z) = (γ) nq,k z n, Γk(αn + β)(δ) n where α, β, γ C, R(α) > 0, R(β) > 0, k R, δ is non-negative real number, nq is a positive integer q (0, 1) N. (3.9) E (z) = (γ) k Γk(β) + (γ) q,k Γk(α + β)(δ) z + (γ) nq,k Γk(αn + β)(δ) n z n, The above equation can also be written as ( Γk(α + β)(δ) (3.10) (E (γ) ) (γ) ) k (γ) nq,k Γk(α + β)γ(δ + 1) = z + q,k Γk(β) (γ) q,k Γk(αn + β)γ(δ + n) zn. Now we define the function Q,δ k,α,β (z) by (3.11) Q Γk(α + β)(δ) (z) = (γ) q,k Then equation (3.11) implies ( (E ) (γ) ) k. Γk(β) (3.12) Q,δ k,α,β (z) = z + (γ) nq,k Γk(α + β)γ(δ + 1) (γ) q,k Γk(αn + β)γ(δ + n) zn. z Let φ(z) = ( ) M. Denote L k,αβ,δ (φ)(z) : M M the operator is defined 1 z by (3.13) L (φ)(z) = Q,δ k,α,β (z) φ(z), where the symbol (*) sts for Hadamard product (or convolution). Now applying Hadamard product using the equations (2.10), (3.12) (3.13) we obtained the desired result. Remark 3.1. Note that, Q,δ Γk(β) k,α,β (z) = ze (γ) (z), k (z U). Corollary 3.8. If we set the values of γ = q = k = β = δ = 1 α = 1 in equation (3.8). Let the condition of Theorem (3.7) be satisfied, then the reduced form is, L 1,1 1,1,1,1 (φ)(z) = z + 1 n! zn = e z 1 Corollary 3.9. If we keep γ = q = k = β = 1, δ = 2 α = 0 in equation (3.8). Let the condition of Theorem (3.7) be satisfied, then the reduced form is, L 1,1 1,0,1,2 (φ)(z) = z + 2 2log(1 z) ( n + 1 )zn = 2 z

8 86 H. Rehman, M. Darus J. Salah Corollary If we put γ = k = β = 1 q = 0, δ = α = 0 in equation (3.8). Let the condition of Theorem (3.7) be satisfied, then the reduced form is, L 1,0 1,0,1,0 (φ)(z) = z + 1 Γ(n) zn = ze z Corollary If we put γ = k = q = β = 1, δ = α = 0 in equation (3.8). Let the condition of Theorem (3.7) be satisfied, then the reduced form is, L 1,1 1,0,1,0 (φ)(z) = z + nz n (z 2) = z (z 1) 2 z2 Motivated by the work of Bansal Prajapat [7] also following the results of Raducanu [6], we investigate the ratio of K Mittaq-Leffler function Q (z) defined by (3.5) to its sequence of partial sums (Q ) 0(z) = z (Q ) m(z) = z + z n+1, m N, where = (γ) nq,kγk(β)γ(δ + 1), (α, β, δ > 0). (γ) q,k Γk(αn + β)γ(δ + n) The lower bounds we obtained on ratio like Q R (z) } (Q (Q )m(z), R )m(z) } Q (z), R Q γ,q (z) } (Q (Q, R ) m(z) ) m(z) (Q γ,q )m(z) }. 4 Ratio of normalized K Mittag-Leffler function In order to verify our results we require the following Lemma. Lemma 4.1. Let α 1, γ 1, δ 1. Then the function Q the two inequalities enlisted below; (4.1) (4.2) Q (z) β 2 δ + β 2 + 2βδ βγ + β + δ + 1 β 2 δ + β 2, z U + βδ βγ Q (z) (β 2 δ + β 2 βγ + 4βδ + 3β γ + 3δ + 2) β 2 δ + β 2, z U + βδ βγ (z) satisfies Proof. By using hypothesis that, Γ(αn + β) Γk(αn + β) so we can write, (4.3) (γ) nq,k Γk(β)Γ(δ + 1) (γ) q,k Γk(αn + β)γ(δ + n) (γ) nq,kγk(β)γ(δ + 1) (γ) q,k Γk(n + β)γ(δ + n) = (γ) n(δ) (γ)(β) n (δ) n, n N,

9 The generalized K M L function ratio to its sequence of partial sums 87 therefore, for z U picking equation (3.5) using (4.3) a note followed by equation (2.3) we have, (4.4) Q (z) = z + (γ) nq,k Γk(β)Γ(δ + 1) (γ) q,k Γk(αn + β)γ(δ + n) zn+1 (γ) nq,k Γk(β)Γ(δ + 1) 1 + (γ) q,k Γk(αn + β)γ(δ + n) 1 + (γ) n (δ) (γ)(β) n (δ) n 1 + δ (γ) n γ (β) n (δ) n = (γ + 1) n 1 β (β + 1) n 1 (δ + 1) n (γ + 1) n 1 β (β + 1) n 1 (δ + 1) n 1 = } n (γ + 1), for (γ + 1) β (β + 1)(δ + 1) (β + 1)(δ + 1) < ( ) (β + 1)(δ + 1) β βδ + β + δ γ + 2 β2 δ + β 2 + 2βδ βγ + β + δ + 1 β 2 δ + β 2 + βδ βγ hence the inequality in (4.1) is proved. Using the derivative of equation (3.5) once more the triangle inequality, for z U, we obtain Q (z) = 1 + (n + 1)(γ) nq,k Γk(β)Γ(δ + 1) (γ) q,k Γk(αn + β)γ(δ + n) zn n(γ) nq,k Γk(β)Γ(γ + 1) (4.5) 1 + (γ) q,k Γk(αn + β)γ(δ + n) + (γ) nq,k Γk(β)Γ(γ + 1) (γ) q,k Γk(αn + β)γ(δ + n). For β 1, δ 1 γ 1 we obtain (4.6) n(γ) n Γ(β)(δ) = n(γ) n(δ) (γ)γ(n + β)(δ) n γ(β) n (δ) n n(γ + 1) n 1 = β(β + 1) n 1 (δ + 1) n 1 n(γ + 1) n 2 (γ + n 1) = β(β + 1) n 2 (β + n 1)(δ + 1) n 2 (δ + n 1) (γ + 1) n 2. β(β + 1) n 2 (δ + 1) n 2 Taking into account, inequalities (4.6), (4.7) a note followed by equation (2.3) we

10 88 H. Rehman, M. Darus J. Salah have, (4.7) Q (z) = n(γ) n Γ(β)Γ(δ + 1) (γ)γ(n + β)γ(δ + n) + (γ) n Γ(β)Γ(δ + 1) (γ)γ(n + β)γ(δ + n) (γ) n (δ) γ(β) n (δ) n n(γ) n (δ) γ(β) n (δ) n β + 1 (γ + 1) n (γ + 1) n 1 β (β + 1) n 2 (δ + 1) n 2 β (β + 1) n 1 (δ + 1) n β + 1 ( ) n (γ + 1) + 1 ( ) n (γ + 1) β (β + 1)(δ + 1) β (β + 1)(δ + 1) β + 2 ( ) (β + 1)(δ + 1) β δβ + β + δ + γ + 2 (β2 δ + β 2 βγ + 4βδ + 3β γ + 3δ + 2) β 2 δ + β 2 + βδ βγ hence the inequality in (4.2) is proved. ( ) 1 + u(z) In the sequel we involve a well-known result R > 0, z U if only 1 u(z) if u(z) < 1 u(z) be analytic function in U. We noted in the paper of Silverman [9, page 223, theorem.1] to set so that, u(z) = (A(z) B(z)) (2 + A(z) + B(z)). (1 + A(z)) (1 + u(z)) = (1 + B(z)) (1 u(z)), Theorem 4.2. Let α, q, k, δ} 1 β (γ + 1) + ( γ 1) 2 + 4(δ + 1) 2. Then 2(δ + 1) Q (4.8) R (z) } (Q ) β2 δ + β 2 βγ β δ 1 m(z) β 2 δ + β 2 + βδ βγ (Q (4.9) R ) } m(z) β 2 δ + β 2 βγ + βδ Q (z) β 2 δ + β 2 βγ + 2βδ + β + δ + 1 Proof. Using equation (4.1) of Lemma (4.1) we can write where 1 + β2 δ + β 2 + 2βδ βγ + β + δ + 1 β 2 δ + β 2, + βδ βγ = (γ) nq,kγk(β)γ(δ + 1), (α, β, δ > 0). (γ) q,k Γk(αn + β)γ(δ + n)

11 The generalized K M L function ratio to its sequence of partial sums 89 The above inequality is equivalent to β 2 δ + β 2 + βδ βγ βδ + β + δ In order to prove our result inequality (4.8), we consider u(z) defined by β 2 δ + β 2 + βδ βγ (Q )(z) } βδ + β + δ + 1 (Q ) β2 δ + β 2 βγ β δ 1 (1 + u(z)) = m(z) βδ + β + δ + 1 (1 u(z)) For the sake of simplicity let ψ(β, δ, γ) = β2 δ + β 2 + βδ βγ βδ + β + δ + 1 (4.10) ξ(β, δ, γ) = β2 δ + β 2 βγ β δ 1 βδ + β + δ + 1 (1 + u(z)) (1 u(z)) = 1 + z n + ψ(β, δ, γ) 1 + z n, z n where the value of, ψ(β, δ, γ) u(z) = z n + ψ(β, δ, γ) ψ(β, δ, γ) u(z) < 2 2 ψ(β, δ, γ) z n. The inequality u(z) < 1 holds if only if 2ψ(β, δ, γ) 2 2, which is equivalent to (4.11) + ψ(β, δ, γ) 1.

12 90 H. Rehman, M. Darus J. Salah To verify (4.11) it is sufficient to show that its left-h side is bounded above by which is equivalent to ψ(β, δ, γ) ξ(β, δ, γ) 0. The last inequality holds true for β (γ + 1) + ( γ 1) 2 + 4(δ + 1) 2 ; δ 1. 2(δ + 1) In a similar method we prove the second inequality (4.9) of our theorem. Consider the function u(z) given by β 2 δ + β 2 + 2βδ βγ + β + δ + 1 (Q ) } m(z) βδ + β + δ + 1 (Q )(z) β2 δ + β 2 βγ + βδ βδ + β + δ + 1 Again for the sake of simplicity we put, = (1 + u(z)) (1 u(z)) Θ(β, δ, γ) = β2 δ + β 2 + 2βδ βγ + β + δ + 1, βδ + β + δ + 1 (β, δ, γ) = β2 δ + β 2 βγ + βδ βδ + β + δ + 1 (4.12) where the value of, (1 + u(z)) (1 u(z)) = u(z) = z n + Θ(β, δ, γ) 1 + Θ(β, δ, γ) z n, z n Θ(β, δ, γ) z n z n Θ(β, δ, γ) u(z) < 2 2 Θ(β, δ, γ).

13 The generalized K M L function ratio to its sequence of partial sums 91 The inequality u(z) < 1 holds if only if (4.13) + Θ(β, δ, γ) Since the left-h side of (4.13) is bounded above by, which is equivalent to Θ(β, δ, γ) (4.14) (β, δ, γ), 0. 1 And hence the inequality (4.9) holds true for β (γ + 1) + ( γ 1) 2 + 4(δ + 1) 2 ; 2(δ + 1) if α, q, k, δ} 1. Corollary 4.3. If we put γ 1, δ 1 β 1 + 5, then the inequalities in 2 (4.8) (4.9) holds true which is in fact the result given by Raducanu [6, page 3, theorem.2.1]. Theorem 4.4. Let α 1, q 1, k 1, β H(γ, δ) where H(γ, δ) = (γ + 2δ + 3) + ( (γ + 2δ + 3)) 2 4(δ + 1)(γ 3δ 2) ; δ 1, 2δ + 2 Then (4.15) R Q, (z) } (Q β2 δ + β 2 βγ 2βδ 3β + γ 3δ 2 ) m(z) β 2 δ + β 2 + βδ βγ } (Q (4.16) R ) m(z) β 2 δ + β 2 βγ + βδ Q, (z) β 2 δ + β 2 βγ + 4βδ + 3β γ + 3δ + 2 Proof. From (4.2) making the use of (4.5) we can write where 1 + (β2 δ + β 2 βγ + 4βδ + 3β γ + 3δ + 2) β 2 δ + β 2, + βδ βγ = (γ) nq,kγk(β)γ(δ + 1), (α, β, δ > 0). (γ) q,k Γk(αn + β)γ(δ + n) The above inequality is equivalent to β 2 δ + β 2 + βδ βγ 3βδ + 3β + 3δ γ + 2 1

14 92 H. Rehman, M. Darus J. Salah In order to prove our result inequality (4.15), define a function u(z) by β 2 δ + β 2 + βδ βγ 3βδ + 3β + 3δ γ + 2 For the sake of convenience suppose which produces (Q )(z) } (Q ) β2 δ + β 2 βγ 2βδ 3β + γ 3δ 2 m(z) 3βδ + 3β + 3δ γ + 2 Λ(β, δ, γ) = = (1 + u(z)) (1 u(z)) β2 δ + β 2 + βδ βγ 3βδ + 3β + 3δ γ + 2 Υ(β, δ, γ) = β2 δ + β 2 βγ 2βδ 3β + γ 3δ 2 3βδ + 3β + 3δ γ + 2 (4.17) (1 + u(z)) (1 u(z)) = 1 + z n + Λ(β, δ, γ) 1 + z n, z n where the value of, Λ(β, δ, γ) u(z) = z n + Λ(β, δ, γ) Λ(β, δ, γ) u(z) = 2 2 z n Λ(β, δ, γ) the provision u(z) < 1 is valid if only if z n z n (4.18) (n + 1) + Λ(α, β) (n + 1) 1. The left-h side of the (4.18) is bounded above by Λ(β, δ, γ) (n + 1),

15 The generalized K M L function ratio to its sequence of partial sums 93 if which holds true for Υ(β, δ, γ) (n + 1) 0 β (γ + 2δ + 3) + ( (γ + 2δ + 3)) 2 4(δ + 1)(γ 3δ 2) ; δ 1. 2δ + 2 The proof of (4.16) follows the same pattern. For this purpose consider the function u(z) given by where, where the value of, Ω(β, δ, γ) Q, (z) } (1 + u(z)) (Q Φ(β, δ, γ) = ) m(z) (1 u(z)) Ω(β, δγ) = β2 δ + β 2 βγ + 4βδ + 3β γ + 3δ + 2 3βδ + 3β γ 3δ + 2 u(z) = u(z) < Φ(β, δ, γ) = β2 δ + β 2 βγ + βδ 3βδ + 3β γ 3δ + 2 Ω(β, δ, γ) z n Ω(β, δ, γ) 2 2 Ω(β, δ, γ) Ω(β, δ, γ) The inequality u(z) < 1 holds if only if z n. (4.19) + Ω(β, δ, γ) 1. Since the left-h side of (4.19) is bounded above by, Ω(β, δ, γ), which is equivalent to Φ(β, δ, γ) 0,

16 94 H. Rehman, M. Darus J. Salah hence the inequality (4.16) holds true for β (γ + 2δ + 3) + ( (γ + 2δ + 3)) 2 4(δ + 1)(γ 3δ 2) ; 2δ δ + 2 so, the last condition completes the proof. Corollary 4.5. If we put γ 1, δ 1 β , then the inequalities in 2 (4.15) (4.16) holds true which is in fact the result given by Raducanu [6, page 5, theorem.2.2]. Acknowledgements. The present work was supported by UKM grant: GUP Conflict of interest: The authors declare that there is no conflict of interests. All the authors agreed with the contents of the manuscript. References [1] E. D. Rainville, Special Functions, The MacMillan Compaany, New York, 1, [2] K. S. Gehlot, The generalized k-mittag-leffler function, Int. J. Contemp. Math. Sciences, 7(45), (2012), [3] G. A. Dorrego R. A. Cerutti, The k-mittag-leffler function, Int. J. Contemp. Math. Sci. 7(1), (2012), [4] P. C. Goyal, A. S. Shekhawat, Hadamard Product (Convolution) of Generalized k-mittag-leffler function a class of function, Global Journal of Pure Applied Mathematics, 13(5), (2017), [5] H. M. Srivastava Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag Leffler function in the kernel, Applied Mathematics Computation, 211(1), (2009), [6] D. Raducanu, On partial sums of normalized Mittag-Leffler functions, arxiv preprint arxiv: , (2016). [7] D. Bansal J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Variables Elliptic Equations 61.3, (2016), [8] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama J. Math. 19(1), (1971), [9] H. Silverman, Partial sums of starlike convex functions, Journal of Mathematical Analysis Applications, 209(1), (1997), [10] A. Wiman, Über den Fundamentalsatz in der Teorie der FunktionenE a (x), Acta Mathematica, 29(1), (1905), [11] A. A. Attiya, Some applications of mittag-leffler function in the unit disk, Filomat, 30(7), (2016), [12] K.S. Nisar, S.D. Purohit, M.S. Abouzaid, M. Qurashi, D. Baleanu, Generalized k-mittag-leffler function its composition with pathway integral operators, J. Nonlinear Sci. Appl. 9(6), (2016), [13] G. Mittag-Leffler, Sur la nouvelle fonction E α (x), CR Acad. Sci. Paris, 137(2), (1903),

17 The generalized K M L function ratio to its sequence of partial sums 95 [14] G. Mittag-Leffler, Sur la representation analytique dune branche uniforme dune fonction monogene, Acta mathematica, 29(1), (1905), [15] J. Salah M. Darus, A note on Generalized Mittag-Leffler function Application, Far East Journal of Mathematical Sciences(FJMS), 48(1), (2011), [16] H. M. Srivastava, B. A. Frasin V. Pescar, Univalence of Integral Operators Involving Mittag-Leffler functions, Appl. Math. Inf. Sci. 11(3), (2017), [17] A. K. Shukla J. C. Prajapti, On a generalization of Mittag-Leffler function its properties, Journal of Mathematical Analysis Applications, 336(2), (2007), [18] T. O. Salim Some properties relating to the generalized Mittag-Leffler function, Adv. Appl. Math. Anal. 4(1), (2009), [19] S. D. Bernardi. Convex starlike univalent functions, Transactions of the American Mathematical Society, 135, (1969), [20] R. J. Libera. Some classes of regular univalent functions, Proceedings of the American Mathematical Society, 16(4), (1965), [21] A. E. Livingston. On the radius of univalence of certain analytic functions, Proceedings of the American Mathematical Society, 17(2), (1966), Authors addresses: Hameed Ur Rehman School of Mathematical Sciences, Faculty of Science Technology, Universiti Kebangsaan Malaysia, Bangi Selangor Darul Ehsan, Malaysia. hameedktk09@gmail.com Maslina Darus (Corresponding Author) School of Mathematical Sciences, Faculty of Science Technology, Universiti Kebangsaan Malaysia, Bangi Selangor Darul Ehsan, Malaysia. maslina@ukm.edu.my Jamal Salah College of Applied Health Sciences, A Sharqiyah University, Post Box 42, Postal Code 400 Ibra, Sultanate of Oman. drjamals@asu.edu.om

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

On a Subclass of k-uniformly Convex Functions with Negative Coefficients International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Meromorphically Starlike Functions at Infinity

Meromorphically Starlike Functions at Infinity Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 48(2)(2016) pp. 11-18 Meromorphically Starlike Functions at Infinity Imran Faisal Department of Mathematics, University of Education, Lahore,

Διαβάστε περισσότερα

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR Journal of Quality Measureent and Analysis Jurnal Penguuran Kualiti dan Analisis JQMA 8(2) 202, 37-44 CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR (Sifat Tertentu

Διαβάστε περισσότερα

Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator

Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 4, No. 2, 2, 62-73 ISSN 37-5543 www.ejpam.com Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard

Διαβάστε περισσότερα

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points Global Journal of Pure Applied Mathematics. ISSN 0973-768 Volume, Number 3 06, pp. 849 865 Research India Publications http://www.ripublication.com/gjpam.htm On New Subclasses of Analytic Functions with

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Pure Mathematical Sciences, Vol. 1, 01, no. 4, 187-196 The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Goh Jiun Shyan School of Science and Technology Universiti Malaysia Sabah Jalan

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

The k-bessel Function of the First Kind

The k-bessel Function of the First Kind International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

Reccurence Relation of Generalized Mittag Lefer Function

Reccurence Relation of Generalized Mittag Lefer Function Palestine Journal of Mathematics Vol. 6(2)(217), 562 568 Palestine Polytechnic University-PPU 217 Reccurence Relation of Generalized Mittag Lefer Function Vana Agarwal Monika Malhotra Communicated by Ayman

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Some Properties of a Subclass of Harmonic Univalent Functions Defined By Salagean Operator

Some Properties of a Subclass of Harmonic Univalent Functions Defined By Salagean Operator Int. J. Open Problems Complex Analysis, Vol. 8, No. 2, July 2016 ISSN 2074-2827; Copyright c ICSRS Publication, 2016 www.i-csrs.org Some Properties of a Subclass of Harmonic Univalent Functions Defined

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

On Classes Of Analytic Functions Involving A Linear Fractional Differential Operator

On Classes Of Analytic Functions Involving A Linear Fractional Differential Operator International Journal of Pure and Applied Mathematical Sciences. ISSN 972-9828 Volume 9, Number 1 (216), pp. 27-37 Research India Publications http://www.ripublication.com/ijpams.htm On Classes Of Analytic

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Entisar El-Yagubi & Maslina Darus

Entisar El-Yagubi & Maslina Darus Journal of Quality Measurement Analysis Jurnal Pengukuran Kualiti dan Analisis JQMA 0() 04 7-6 ON FEKETE-SZEGÖ PROBLEMS FOR A SUBCLASS OF ANALYTIC FUNCTIONS (Berkenaan Permasalahan Fekete-Szegö bagi Subkelas

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Neighborhood and partial sums results on the class of starlike functions involving Dziok-Srivastava operator

Neighborhood and partial sums results on the class of starlike functions involving Dziok-Srivastava operator Stud. Univ. Babeş-Bolyai Math. 58(23), No. 2, 7 8 Neighborhood and partial sums results on the class of starlike functions involving Dziok-Srivastava operator K. Vijaya and K. Deepa Abstract. In this paper,

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS. f(z) = 1 z + a k z k,

SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS. f(z) = 1 z + a k z k, Acta Math. Univ. Comenianae Vol. LXXVIII, 2(2009), pp. 245 254 245 SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS C. SELVARAJ

Διαβάστε περισσότερα

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 1017-060X Print ISSN: 1735-8515 Online Bulletin of the Iranian Mathematical Society Vol 41 2015, No 3, pp 739 748 Title: A certain convolution approach for subclasses of univalent harmonic functions

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS MATEMATIQKI VESNIK 65, 1 (2013), 14 28 March 2013 originalni nauqni rad research paper CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS M.K.

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

On class of functions related to conic regions and symmetric points

On class of functions related to conic regions and symmetric points Palestine Journal of Mathematics Vol. 4(2) (2015), 374 379 Palestine Polytechnic University-PPU 2015 On class of functions related to conic regions and symmetric points FUAD. S. M. AL SARARI and S.LATHA

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

The k-mittag-leffler Function

The k-mittag-leffler Function Int. J. Contemp. Math. Sciences, Vol. 7, 212, no. 15, 75-716 The -Mittag-Leffler Function Gustavo Abel Dorrego and Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda.

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Research Article Some Properties of Certain Class of Integral Operators

Research Article Some Properties of Certain Class of Integral Operators Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 211, Article ID 53154, 1 pages doi:1.1155/211/53154 Research Article Some Properties of Certain Class of Integral Operators

Διαβάστε περισσότερα

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR Khayyam J. Math. 3 217, no. 2, 16 171 DOI: 1.2234/kjm.217.5396 STRONG DIFFERENTIA SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MUTIVAENT ANAYTIC FUNCTIONS DEFINED BY INEAR OPERATOR ABBAS KAREEM WANAS

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

The k-fractional Hilfer Derivative

The k-fractional Hilfer Derivative Int. Journal of Math. Analysis, Vol. 7, 213, no. 11, 543-55 The -Fractional Hilfer Derivative Gustavo Abel Dorrego and Rubén A. Cerutti Faculty of Exact Sciences National University of Nordeste. Av. Libertad

Διαβάστε περισσότερα

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013 Palestine Journal of Matheatics Vol. ( (03, 86 99 Palestine Polytechnic University-PPU 03 On Subclasses of Multivalent Functions Defined by a Multiplier Operator Involving the Koatu Integral Operator Ajad

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

AN APPLICATION OF THE SUBORDINATION CHAINS. Georgia Irina Oros. Abstract

AN APPLICATION OF THE SUBORDINATION CHAINS. Georgia Irina Oros. Abstract AN APPLICATION OF THE SUBORDINATION CHAINS Georgia Irina Oros Abstract The notion of differential superordination was introduced in [4] by S.S. Miller and P.T. Mocanu as a dual concept of differential

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

A Novel Subclass of Analytic Functions Specified by a Family of Fractional Derivatives in the Complex Domain

A Novel Subclass of Analytic Functions Specified by a Family of Fractional Derivatives in the Complex Domain Filomat 31:9 (2017), 2837 2849 https://doi.org/10.2298/fil1709837e Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat A Novel Subclass

Διαβάστε περισσότερα

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients Robert Gardner Brett Shields Department of Mathematics and Statistics Department of Mathematics and Statistics

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

k-fractional Trigonometric Functions

k-fractional Trigonometric Functions International Journal of Contemporary Mathematical Sciences Vol. 9, 2014, no. 12, 569-578 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/icms.2014.4885 -Fractional Trigonometric Functions Rubén

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα