Gravitational Waves in any dimension

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Gravitational Waves in any dimension"

Transcript

1 How is an EFT for Gravitational Waves in any dimension like a bead on a string? with S. Hadar and B. Kol O.B., S.H. & B.K., Phys. Rev. D 88, (2013) O.B. & S.H., Phys. Rev. D 89, (2014) O.B., S.H. & B.K., IJMPA 29, 24, 30 (2014) University, Berlin 20 October 2014

2 Outline 1 Motivation 2 A bead on a string 3 Electromagnetism: the AD self-force in any dimension 4 Gravitational Waves in d dimensions 5 Conclusions

3 Everything should be made as simple as possible, but not simpler - Albert Einstein

4 Everything should be made as simple as possible, but not simpler - Albert Einstein Bead + string (elastic eld) Electric charge + EM eld 2-Body system + GR eld

5 Everything should be made as simple as possible, but not simpler - Albert Einstein Ŝ = = ( ) ˆQ G Q Bead + string (elastic eld) Electric charge + EM eld 2-Body system + GR eld

6 Everything should be made as simple as possible, but not simpler - Albert Einstein Ŝ = = ( ) ˆQ G Q, F = δŝ δ^x Bead + string (elastic eld) Electric charge + EM eld 2-Body system + GR eld

7 y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] x

8 y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), x

9 y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 2 t 2 x] φ = δ(x) Q(t)/ T, c 2 = T/λ x

10 y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 t 2 x] 2 φ = δ(x) Q(t)/ T, c 2 = T/λ { y(t x/c) x > 0 = φ(x, t) = y(t + x/c) x < 0 x

11 y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 t 2 x] 2 φ = δ(x) Q(t)/ T, c 2 = T/λ { y(t x/c) x > 0 = φ(x, t) = y(t + x/c) x < 0 = Q = T [( x φ) 0 + ( x φ) 0 ] = 2 Z ẏ, Z = λt = mÿ = U ext + Q = F ext 2 Z ẏ x

12 y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 t 2 x] 2 φ = δ(x) Q(t)/ T, c 2 = T/λ { y(t x/c) x > 0 = φ(x, t) = y(t + x/c) x < 0 = Q = T [( x φ) 0 + ( x φ) 0 ] = 2 Z ẏ, Z = λt = mÿ = U ext + Q = F ext 2 Z ẏ x

13 y(t) T, λ F ext m φ(x, t) [ m ] [ λ S = dt 2 ẏ2 U ext + dtdx 2 φ 2 T ] 2 φ 2 dtq(t) [φ(x = 0) y] = φ(x = 0, t) = y(t), φ = [ c 2 t 2 x] 2 φ = δ(x) Q(t)/ T, c 2 = T/λ { y(t x/c) x > 0 = φ(x, t) = y(t + x/c) x < 0 = Q = T [( x φ) 0 + ( x φ) 0 ] = 2 Z ẏ, Z = λt = mÿ = U ext + Q = F ext 2 Z ẏ x

14 Field doubling at the level of the Action An eective action for φ (kinetic term & source term): S = T [ ] 1 dtdx 2 c φ 2 2 φ Z dt ẏ φ(x = 0)

15 Field doubling at the level of the Action An eective action for φ (kinetic term & source term): S = T [ ] 1 dtdx 2 c φ 2 2 φ Z dt ẏ φ(x = 0) Double the eld and the source (Schwinger-Keldysh, Galley) : These reect directed propagation Interpretation: "pulling" mirror / radiation "sink" φ ˆφ, Q ˆQ = δq δy ŷ

16 Field doubling at the level of the Action An eective action for φ (kinetic term & source term): S = T [ ] 1 dtdx 2 c φ 2 2 φ Z dt ẏ φ(x = 0) Double the eld and the source (Schwinger-Keldysh, Galley) : These reect directed propagation Interpretation: "pulling" mirror / radiation "sink" φ ˆφ, Q ˆQ = δq δy ŷ Doubled action: Ŝ [ φ, ˆφ; Q, ˆQ ] = = [ d d δs x δφ ˆφ + δs ] δq ˆQ [ Z dx c ˆφ ( ω 2 + x 2 dω 2π EOM found by varying w.r.t. ˆφ ) ( φ 2iωZ y ˆφ(0)+ŷ ) ] φ(0)

17 Feynman rules Directed propagator (non-hatted hatted) Source vertex x = G ω (x, x) = c ei ω c x x i ω Z x Q ω = iω Z y ω Hatted source vertex ˆQ ω = + iω Z ŷ ω

18 Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c )

19 Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c ) Radiation-Reaction eective action dω Ŝ RR = + c.c. = 2π ˆQ ω G ω (0, 0) Q ω + c.c. dω = 2π iω Z ŷ ω y ω + c.c. = 2 Z ŷ ẏ dt

20 Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c ) Radiation-Reaction eective action dω Ŝ RR = + c.c. = 2π ˆQ ω G ω (0, 0) Q ω + c.c. dω = 2π iω Z ŷ ω y ω + c.c. = 2 Z ŷ ẏ dt Radiation-Reaction (Self-) Force F RR = δŝ RR δŷ = 2 Z ẏ

21 Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c ) Radiation-Reaction eective action dω Ŝ RR = + c.c. = 2π ˆQ ω G ω (0, 0) Q ω + c.c. dω = 2π iω Z ŷ ω y ω + c.c. = 2 Z ŷ ẏ dt Radiation-Reaction (Self-) Force F RR = δŝ RR δŷ = 2 Z ẏ

22 Radiation (x > 0) A bead on a string - results φ ω (x) = x = c y ω e iω x/c = φ(t, x) = y(t x c ) Radiation-Reaction eective action dω Ŝ RR = + c.c. = 2π ˆQ ω G ω (0, 0) Q ω + c.c. dω = 2π iω Z ŷ ω y ω + c.c. = 2 Z ŷ ẏ dt Radiation-Reaction (Self-) Force F RR = δŝ RR δŷ = 2 Z ẏ damping

23 Electromagnetism in d dimensions S = 1 4Ωˆd+1 F µν F µν d d x A µ J µ d d x (D := d 1, ˆd := d 3, c = 1)

24 Electromagnetism in d dimensions S = 1 4Ωˆd+1 F µν F µν d d x A µ J µ d d x (D := d 1, ˆd := d 3, c = 1) Dierent, more, or both?

25 Electromagnetism in d dimensions S = 1 4Ωˆd+1 F µν F µν d d x A µ J µ d d x (D := d 1, ˆd := d 3, c = 1) Dierent, more, or both? In the right basis, only a little more, and a little dierent!

26 Electromagnetism - intermediate basis (have no fear!) Multipoles = (solid) spherical harmonics, scalar & vector dω A t/r = 2π J t/r dω = 2π A ω t/r x e iωt, A Ω = J t/r ω x e iωt, J Ω = = (k 1 k 2 k l ) STF, x = dω ( 2π dω ( A ω S Ωx +A ω Vℵ x ℵ Ω ) e iωt ) 2π J S ω Ω x +J Vℵ ω xℵ Ω e iωt ( x k 1x k2 x k ) STF l r l Y l m (Ω)

27 Electromagnetism - intermediate basis (have no fear!) Multipoles = (solid) spherical harmonics, scalar & vector dω A t/r = A ω 2π t/r x e iωt dω ( ), A Ω = A ω S 2π Ωx +A ω Vℵ x ℵ Ω e iωt J t/r dω = J t/r ω 2π x e iωt dω (, J Ω = J S ω 2π Ω x ) +J Vℵ ω xℵ Ω e iωt = (k 1 k 2 k l ) STF, x ( = x k 1x k2 x k ) STF l S = 1 dω N r l Y l m (Ω) 2 2π l,ˆd S ω 2l+ˆd+1{[ S ω = drr iωaω r 1 2 r l (rl A ω t ) + cs iωa r 2 ω S A ω t 2 cs r 2 1 r l (rl A ω S ) A ω 2 r ( ω 2 + c s r 2 cv ) A r 4 ω 2 c s Vℵ r ] r l (rl A ω Vℵ ) ]} Ωˆd+1 [A ω r J r ω + Aω t J t ω + csaω S JS ω + csaω Vℵ JVℵ ω + c.c. N l,ˆd = Γ(1 + ˆd/2) 2 l Γ(l ˆd/2) = ˆd!! (2l + ˆd)!!, c s := l(l + ˆd), c v = cs + ˆd 1

28 Electromagnetism - intermediate basis (have no fear!) Multipoles = (solid) spherical harmonics, scalar & vector dω A t/r = A ω 2π t/r x e iωt dω ( ), A Ω = A ω S 2π Ωx +A ω Vℵ x ℵ Ω e iωt J t/r dω = J t/r ω 2π x e iωt dω (, J Ω = J S ω 2π Ω x ) +J Vℵ ω xℵ Ω e iωt = (k 1 k 2 k l ) STF, x ( = x k 1x k2 x k ) STF l S = 1 dω N r l Y l m (Ω) 2 2π l,ˆd S ω 2l+ˆd+1{[ S ω = drr iωaω r 1 2 r l (rl A ω t ) + cs iωa r 2 ω S A ω t 2 cs r 2 1 r l (rl A ω S ) A ω 2 r ( ω 2 + c s r 2 cv ) A r 4 ω 2 c s Vℵ r ] r l (rl A ω Vℵ ) ]} Ωˆd+1 [A ω r J r ω + Aω t J t ω + csaω S JS ω + csaω Vℵ JVℵ ω + c.c. N l,ˆd = Γ(1 + ˆd/2) 2 l Γ(l ˆd/2) = ˆd!! (2l + ˆd)!!, c s := l(l + ˆd), c v = cs + ˆd 1

29 Electromagnetism - intermediate basis (have no fear!) Multipoles = (solid) spherical harmonics, scalar & vector dω A t/r = A ω 2π t/r x e iωt dω ( ), A Ω = A ω S 2π Ωx +A ω Vℵ x ℵ Ω e iωt J t/r dω = J t/r ω 2π x e iωt dω (, J Ω = J S ω 2π Ω x ) +J Vℵ ω xℵ Ω e iωt = (k 1 k 2 k l ) STF, x ( = x k 1x k2 x k ) STF l S = 1 dω N r l Y l m (Ω) 2 2π l,ˆd S ω 2l+ˆd+1{[ S ω = drr iωaω r 1 2 r l (rl A ω t ) + cs iωa r 2 ω S A ω t 2 cs r 2 1 r l (rl A ω S ) A ω 2 r ( ω 2 + c s r 2 cv ) A r 4 ω 2 c s Vℵ r ] r l (rl A ω Vℵ ) ]} Ωˆd+1 [A ω r J r ω + Aω t J t ω + csaω S JS ω + csaω Vℵ JVℵ ω + c.c. N l,ˆd = Γ(1 + ˆd/2) 2 l Γ(l ˆd/2) = ˆd!! (2l + ˆd)!!, c s := l(l + ˆd), c v = cs + ˆd 1

30 Electromagnetism - reduction to gauge invariant elds 1 Scalar eld & source: A r ω = 1 ω 2 cs r 2 Ã ω S : = A ω t iωa ω S ρ S ω : = Jt ω + i ωr l+ˆd+1 Vector eld & source: [ iω r l (rl A t ω ) + c ] s r l+2 (rl A S ω ) Ωˆd+1 Jr ω ( r l+ˆd+1 A ω Vℵ, ρ Vℵ ω := JVℵ ω ) Λ Λ 1 Jr ω, Λ := ω2 r 2 c s

31 Electromagnetism - reduction to gauge invariant elds 2 Scalar (Electric) eld A ω E = ( ) 1 ( l r l 1 (1 Λ) r l (A ω t iωa ω S ) ) ρ A rˆd [ ( ) E ω = x i Λ ] dωˆd+1 rˆd+1 l + ˆd ω rˆd 1 Λ 1 J w( r) n r 2 ρ ω( r) ( ) 0 = N r2l+ˆd+1 l l,ˆd ω l + ˆd 2 + r 2 + 2l + ˆd + 1 r A E ρ A E ω r

32 Electromagnetism - reduction to gauge invariant elds 2 Scalar (Electric) eld A ω E = ( ) 1 ( l r l 1 (1 Λ) r l (A ω t iωa ω S ) ) ρ A rˆd [ ( ) E ω = x i Λ ] dωˆd+1 rˆd+1 l + ˆd ω rˆd 1 Λ 1 J w( r) n r 2 ρ ω( r) ( ) 0 = N r2l+ˆd+1 l l,ˆd ω l + ˆd 2 + r 2 + 2l + ˆd + 1 r A E ρ A E ω r Vector (Magnetic) eld A ω Mℵ = l A ω Vℵ /r ρ A Mℵ ω = 1 l rˆd+2 0 = N l,ˆd r2l+ˆd+1 l + ˆd l J w( r) ( ( r ) ) x ℵ dωˆd+1 ( ω 2 + r 2 + 2l + ˆd + 1 r r ) A Mℵ ρ A Mℵ ω

33 Electromagnetism - reduction to gauge invariant elds 2 More (2 x x ω) elds, but 1d ; Dierent wave equations Scalar (Electric) eld A ω E = ( ) 1 ( l r l 1 (1 Λ) r l (A ω t iωa ω S ) ) ρ A rˆd [ ( ) E ω = x i Λ ] dωˆd+1 rˆd+1 l + ˆd ω rˆd 1 Λ 1 J w( r) n r 2 ρ ω( r) ( ) 0 = N r2l+ˆd+1 l l,ˆd ω l + ˆd 2 + r 2 + 2l + ˆd + 1 r A E ρ A E ω r Vector (Magnetic) eld A ω Mℵ = l A ω Vℵ /r ρ A Mℵ ω = 1 l rˆd+2 0 = N l,ˆd r2l+ˆd+1 l + ˆd l J w( r) ( ( r ) ) x ℵ dωˆd+1 ( ω 2 + r 2 + 2l + ˆd + 1 r r ) A Mℵ ρ A Mℵ ω

34 EM Feynman rules in general d Directed propagator, from solution of wave equation r r = G A E /A Mℵ ret (r, r) = i ω 2l+ˆd M l,ˆd RE/M 1 jα (ωr < ) h+ α (ωr > )δ, R E 1 = l+ˆd, R M ˆd 1 l = 1/RM 1, α = l+ 2, M l,ˆd = π 2 2α+1 N l,ˆd Γ2 (α+1)

35 EM Feynman rules in general d Directed propagator, from solution of wave equation r r = G A E /A Mℵ ret (r, r) = i ω 2l+ˆd M l,ˆd RE/M 1 jα (ωr < ) h+ α (ωr > )δ, R E 1 = l+ˆd, R M ˆd 1 l = 1/RM 1, α = l+ 2, M l,ˆd = π 2 2α+1 N l,ˆd Γ2 (α+1) Electric & Magentic source vertices Q (E) ω = dr j α(ωr )ρ A E ω (r ) = 1 [ d l + ˆd D x x iω j α(ωr ) J ω( x ) x 1 ( ] ρω( x r l+ˆd 1 r l+ˆd j α(ωr )) ) Q (M,ℵ) ω = d D ( x j α(ωr) ( r ) ℵ J w( r)) (k l x 1)

36 EM in general d - results Radiation-Reaction eective action: Ŝ RR = A E + A M = ˆQ G Q

37 EM in general d - results Radiation-Reaction eective action: Ŝ RR = A E + A M = ˆQ G Q = 1 2 dω 2π In even d: = dt, [ ˆQ(E) ω GA E ret (0, 0) Q (E) ω l+ ˆd+1 ( ) 2 l+ˆd ˆd!!(2l+ˆd)!! l ˆQ (E) + ˆQ(M,ℵ) ω 2l+ˆd t Q (E) G A Mℵ ret l2ˆd ˆQ(M) + ] (0, 0) Q (M,ℵ) ω +c.c. 2l+ˆd t Q (M) (l+1)(l+ˆd 1)

38 EM in general d - results Radiation-Reaction eective action: Ŝ RR = A E + A M = ˆQ G Q = 1 2 dω 2π In even d: = dt, [ ˆQ(E) ω GA E ret (0, 0) Q (E) ω l+ ˆd+1 ( ) 2 l+ˆd ˆd!!(2l+ˆd)!! l ˆQ (E) + ˆQ(M,ℵ) ω 2l+ˆd t Q (E) G A Mℵ ret l2ˆd ˆQ(M) + ] (0, 0) Q (M,ℵ) ω +c.c. 2l+ˆd t Q (M) (l+1)(l+ˆd 1) Radiation-Reaction (Self-) Force (on a point-charge in d dimensions) FAD = δŝ d RR = ( ) 2 (d 2) δˆ x q2 (d 1)!!(d 3)!! d 1 t x + (6 1PN terms) +

39 Gravitation - GW from a 2-body system S = 1 16πG d g R d d x 1 h µν T µν d d x, 2 µ T µν = 0, g µν = η µν + h µν ( c = 1, linearized source )

40 Gravitation - GW from a 2-body system S = 1 16πG d g R d d x 1 h µν T µν d d x, 2 µ T µν = 0, g µν = η µν + h µν ( c = 1, linearized source ) The same as EM elds and sources, but dierent Radiation zone: A (E/M) ω (r) h (E/M/T) System zone: h µν (φ, A i, σ ij ) ω (r) (gauge-invariant elds) (NRG elds, Kol & Smolkin '07) these highlight spatial tensor structure, hierarchy in terms of PN ds 2 = e 2φ ( dt A i dx i) 2 e 2φ γ ij dx i dx j

41 Gravitation - 1D reduced action & Feynman rules Goal - like EM: S (E/M/T) = 1 dω 2 2π dr [ r 2l+ˆd+1 N l,ˆd R ɛ l,ˆd h ω ɛ ( ( h ω ɛ Tω ɛ + c.c. )] ω 2 + r 2 + 2l+ˆd+1 r )h ɛ ω r

42 Gravitation - 1D reduced action & Feynman rules Goal - like EM: S (E/M/T) = 1 dω 2 2π dr [ r 2l+ˆd+1 N l,ˆd R ɛ l,ˆd h ω ɛ ( ( h ω ɛ Tω ɛ + c.c. )] ω 2 + r 2 + 2l+ˆd+1 r )h ɛ ω r r ɛ = Gret(r, r) = i G ω 2l+ˆd M l,ˆd Rɛ l,ˆd j α (ωr < ) h + α (ωr > )δ r = Q ɛ ω, = ˆQ ɛ ω

43 Gravitation - special case d = 4 No tensor modes! S (E/M) = 1 dω [ r 2l+2 ( dr 2 2π R ɛ (2l+1)!! hω (E/M) ω 2 + r 2 + 2(l+1) ) r h (E/M) ω r ( )] h ω (E/M) T (E/M) ω + c.c., R ɛ : = l + 2 ( ) ɛ l + 1, ɛ = 1 (E), ɛ = 1 (M) l 1 l

44 Gravitation - special case d = 4 No tensor modes! S (E/M) = 1 dω [ r 2l+2 ( dr 2 2π R ɛ (2l+1)!! hω (E/M) ω 2 + r 2 + 2(l+1) ) r h (E/M) ω r ( )] h ω (E/M) T (E/M) ω + c.c., R ɛ : = l + 2 ( ) ɛ l + 1, ɛ = 1 (E), ɛ = 1 (M) l 1 l r r ɛ = Gret(r, r) = igω2l+1 (2l + 1)!! j l+ 1 (ωr < ) h + 2 l+ 1 (ωr > ) R ɛ 2 = Q ɛ ω, = ˆQ ɛ ω

45 Gravitation - Vertices via zone seperation Work in radiation zone eliminate system zone System zone itself includes non-linear vertices; grouped together (by PN order) Radiation-zone vertices dened as Q := :=

46 Gravitation (4d) - results Ŝ linear = h E + h M = dt l G ( ) l+1 [ (l + 2) (l + 1) (2l + 1)!! (l 1) l ˆQ (E) 2l+1 t Q (E) l + (l + 1) ˆQ (M) 2l+1 t Q (M) ]

47 Gravitation (4d) - results Ŝ linear = h E + h M = dt l G ( ) l+1 [ (l + 2) (l + 1) (2l + 1)!! (l 1) l ˆQ (E) 2l+1 t Q (E) l + (l + 1) ˆQ (M) 2l+1 t Q (M) ] As promised.

48 Gravitation (4d) - results O Ŝ O = G dt 1 5 ˆQ ij E 5 t Q ij E Q ij E : Mass quadrupole = Burke-Thorne potential & self-force

49 Gravitation (4d) - results O, NO Ŝ O = G dt 1 5 ˆQ ij E 5 t Q ij E Q ij E : Mass quadrupole = Burke-Thorne potential & self-force [ Ŝ O+NO = G dt 1 5 ˆQ ij E 5 t Q ij E 4 45 ˆQ ij M 5 t Q ij M + 1 ] ijk ˆQ 189 E 7 t Q ijk E Q ij E : Mass quadrupole (+1PN corrected including rst system zone nonlinear eect: gravitating potential energy, Gm Am B r ) Q ij M : Current quadrupole Q ijk E : Mass octupole

50 Everything should be made as simple as possible, but not simpler - Albert Einstein Ŝ = = ( ) ˆQ G Q, F = δŝ δ^x Bead + string (elastic eld) Electric charge + EM eld 2-Body system + GR eld

51 Everything should be made as simple as possible, but not simpler - Albert Einstein Ŝ = = ( ) ˆQ G Q, F = δŝ δ^x Ŝ = 2 Z ŷẏdt Ŝ= dt l+ ˆd+1 ( ) 2 ˆd!!(2l+ˆd)!! l+ˆd l ˆQ (E) 2l+ˆd t Q l2ˆd ˆQ (M) (E) + 2l+ˆd t Q (M) (l+1)(l+ˆd 1) Ŝ= dt G ( ) l+1 (l+2) (2l+1)!!(l 1) [ l+1 ˆQ (E) l 2l+1 t Q (E) + l ] l+1 ˆQ (M) 2l+1 t Q (M)

52 Conclusions Unied description of dierent physical systems Joint analytical Action formulation of radiation & reaction EM (AD): New results in general dimension GR: Economization of traditional computations Nonlinear eects Coming soon: leading, +1PN, some +2PN in any dimension

53 Questions? Thank you for your attention

54 Image credits K. Thorne (Caltech) & T. Carnahan (NASA GSFC) MIT OpenCourseWare Electrostatic Visualizations Flickr's Flood G, (creative commons license) C. R. Galley, PR 110 (2013) 17, W. D. Goldberger & I. D. Rothstein, PRD 73 (2006)

55 In frequency domain - SAME. EM in non-even d Transforming to time domain = branch-cut = non-locality [( ) ˆQ(t) t 2l+ˆd 1 Q(t) ˆQ(t) 2 H(2l + ˆd ˆd) H(l + 2 ) t 2l+ˆd Q (t) t dt t t 2l+ˆd t Q(t ) Reg Reg.: Detweiler-Whiting decomposition, generalizes Dirac's odd propagator ]

56 Gravitation - Full source vertices [ Q (E) = 1 d 3 x x ( r l r l+2 j (l + 1)(l + 2) l+ 1 (ri t) 2 4 ( r l+1 r l+2 j l+ 1 (ri t)) tt 0a x a +2 j 2 l+ 1 ( (2l + 1)!! = 1 + p=0 (2p)!!(2l + 2p + 1)!! ( (2l + 1)!! p=0 (2p)!!(2l + 2p + 1)!! (2l + 1)!! p=0 (2p)!!(2l + 2p + 1)!! (2l + 1)!! + p=0 (2p)!!(2l + 2p + 1)!! d 3 x Q (M) = 1 l + 2 8p(l + p + 1) (l + 1)(l + 2) ) (T 00 + T aa ) (ri t) 2 t T ab x a x b +r 2 j 2 l+ 1 (ri t) 2 ( 2 t T 00 T aa )] ) [ ] STF d 3 x t 2p T 00 r 2p x ) [ 4p (l + 1)(l + 2) ( p ) [ l + 1 l + 2 [ 2 (l + 1)(l + 2) ] STF d 3 x t 2p T aa r 2p x ] STF d 3 x t 2p+1 T 0a r 2p x a ] STF d 3 x t 2p+2 T ab r 2p x ab { r l 1 ( r l+2 ) ( ( j l+ 1 (ri t) 2 x T 0a)) k l x 1 2 j l+ 1 2 (ri t) 2ɛ k lba tt ac x bc 1} ( (2l + 1)!! = 1 + 2p ) [ d 3 x t 2p r 2p ( Bi-group ( meeting, 2 x T 0a)) ] k STF l Humboldt x 1

57 Origin-normalized Bessel functions From Bessel's functiosn B α {J α, Y α, H ± α }, b α := Γ(α + 1)2 α B α(x) x α They satisfy [ x 2 + 2α + 1 ] x + 1 b α (x) = 0 x jα in the vicinity of the origin x = 0 is given by jα (x) = p=0 ( ) p (2α)!! (2p)!!(2p + 2α)!! x2p The outgoing waves at x are h± := j ± iỹ: h ± α (x) ( i) α+1/2 2α+1/2 Γ(α + 1) π e ±ix x α+1/2

58 Singular origin-normalized Bessel functions Around x = 0 the Bessel function of the 2nd kind for α non-integer is ỹ α (x) = = Γ(α + 1)2α cos(απ)j α (x) J α (x) x α sin(απ) Γ(α + 1)2α ( ) p x 2p [ cos(απ) sin(απ) (2p)!! 2 p 2 α Γ(p + α + 1) 2α x 2α ] Γ(p α + 1) p=0 while for integer α = n, ỹ n (x) = 2(2n)!! n (2m 2)!! π (2n 2m)!! x 2m + 2 ( x ) jn π ln (x) 2 m=1 (2n)!! ( ) k [ψ(k + 1) + ψ(n + k + 1)] π (2k)!!(2n + 2k)!! x2k k=0 where ψ(n + 1) = H(N) γ is the digamma function, dened using the Harmonic numbers H(N) and the Euler-Mascheroni constant γ.

59 Eective Field Theory description of GR For example, Einstein-Infeld-Homann agrangian Figure from W. D. Goldberger and I. D Rothstein, PRD 73 (2006)

60 Hatted variables - interpretation Doubling the elds eectively mirrors them. Hatted elds "pull" from the mirror's surface, absorbing radiation from the original elds. 0 = δŝ δφ(x) = dx δeom φ(x ) δφ(x) ˆφ(x ) ˆρ(x) ˆφ satises an equation for linearized deviations from the background φ with a source ˆρ and reversed propagation. In the absence of its source ˆφ vanishes, namely ˆρ = 0 = ˆφ = 0 φ, ρ are physical observables, unlike ˆφ, ˆρ.

61 Field doubling Problem: Action formalism not compatible with non-conservative eects. Solution: Field Doubling (QFT: in-in/ctp, Schwinger '61; Classical version: Galley 2012, 2013). Ŝ := S[q 1 ] S[q 2 ] Figure from C. R. Galley, PR 110 (2013)

62 Field doubling Keldysh representation: q 1 := q ˆq q 2 := q 1 2 ˆq ˆq is deviation from physical trajectory. Expand: Ŝ := S[q 1 ] S[q 2 ] = δs δq ˆq + 1 δ 3 S 6 δq 3 ˆq In classical setting (physical condition q 1 = q 2 ) only terms linear in ˆq survive.

63 Field doubling In our problem: S[φ, ρ] Ŝ[φ, ˆφ; ρ, ˆρ] := [ δs dx δφ(x) ˆφ(x) + δs ] δρ(x) ˆρ(x) EOM: δŝ δˆx = 0 Propagators are directed (retarded/odd).

64 GR - NO details Ŝ = G dt [ 1 5 ˆQ ij E 5 t Q ij E 4 45 ˆQ ij M 5 t Q ij M + 1 ] ijk ˆQ 189 E 7 t Q ijk E where Q ij E = 2 A=1 [ m A v2 m B 4 r 3 t ( v x) + 11 ] 42 2 t (x x2 i x j 13 ) δij x 2 A A 2 Q ij M [m = ( x v) i x j] TF Q ijk E = A=1 2 A=1 ( m x i x j x k) TF A A

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011 2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

3+1 Splitting of the Generalized Harmonic Equations

3+1 Splitting of the Generalized Harmonic Equations 3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime

Διαβάστε περισσότερα

A Hierarchy of Theta Bodies for Polynomial Systems

A Hierarchy of Theta Bodies for Polynomial Systems A Hierarchy of Theta Bodies for Polynomial Systems Rekha Thomas, U Washington, Seattle Joint work with João Gouveia (U Washington) Monique Laurent (CWI) Pablo Parrilo (MIT) The Theta Body of a Graph G

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i = A Summary Of Linear Continuum Mechanics 1 Vector Analysis Inner / Scalar / Dot product Norm of a vector Kronecker delta a b = a i b i = a b cos θ a = [a a] 1/2 = a 1 a 1 + a 2 a 2 + a 3 a 3 δ ij = I =

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Monetary Policy Design in the Basic New Keynesian Model

Monetary Policy Design in the Basic New Keynesian Model Monetary Policy Design in the Basic New Keynesian Model Jordi Galí CREI, UPF and Barcelona GSE June 216 Jordi Galí (CREI, UPF and Barcelona GSE) Monetary Policy Design June 216 1 / 12 The Basic New Keynesian

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Dual null formulation (and its Quasi-Spherical version)

Dual null formulation (and its Quasi-Spherical version) filename= dualnull.tex 2003-0403 Hisaaki Shinkai hshinkai@postman.riken.go.jp Dual null formulation (and its Quasi-Spherical version This note is for actual coding of the double null formulation by Hayward

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

Higher spin gauge theories and their CFT duals

Higher spin gauge theories and their CFT duals Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability A. Cisterna 1 M. Cruz 2 T. Delsate 3 J. Saavedra 4 1 Universidad Austral de Chile 2 Facultad de

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

Constitutive Relations in Chiral Media

Constitutive Relations in Chiral Media Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

Physics 582, Problem Set 2 Solutions

Physics 582, Problem Set 2 Solutions Physics 582, Problem Set 2 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 Symmetries and Conservation Laws In this problem set we return to a study of scalar electrodynamics which has the Lagrangian

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα