Η ΧΡΗΣΗ ΤΩΝ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΓΙΑ ΤΗΝ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΣΕ ΕΚΔΗΛΩΣΗ ΚΑΤΟΛΙΣΘΗΣΕΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ΧΡΗΣΗ ΤΩΝ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΓΙΑ ΤΗΝ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΣΕ ΕΚΔΗΛΩΣΗ ΚΑΤΟΛΙΣΘΗΣΕΩΝ"

Transcript

1 Η ΧΡΗΣΗ ΤΩΝ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΓΙΑ ΤΗΝ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΣΕ ΕΚΔΗΛΩΣΗ ΚΑΤΟΛΙΣΘΗΣΕΩΝ Πολυκρέτης, Χρήστος 1, Φερεντίνου, Μαρία 2, Χαλκιάς, Χρίστος 3 1 Γεωγράφος, Msc Χαροκόπειο Παν/μιο, Τμήμα Γεωγραφίας, 2 Δρ, Γεωλόγος, 3 Αν. Καθηγητής, Χαροκόπειο Παν/μιο, Τμήμα Γεωγραφίας, Ελ. Βενιζέλου 70, Καλλιθέα Αθήνα 17671, Τηλ , Περίληψη Ένας αρκετά μεγάλος αριθμός μεθόδων και εργαλείων αποτίμησης των φυσικών κινδύνων είναι διαθέσιμος στους αρμόδιους που ασχολούνται με τις συγκεκριμένες διαδικασίες. Η γνώση σχετικά με την πιθανότητα και τη χρονική περίοδο εκδήλωσης καθώς και την ένταση ενός φυσικού κινδύνου κρίνεται ιδιαίτερα χρήσιμη για τον μετριασμό του, τον σχεδιασμό έργων και την εκτίμηση της ποσότητας των ενδεχόμενων ζημιών και απωλειών που μπορεί να προκαλέσει. Ωστόσο, η απόκτηση αυτής της γνώσης απαιτεί την αντιμετώπιση σημαντικών ζητημάτων όπως είναι η ύπαρξη των πολύπλοκων και μη-γραμμικών σχέσεων μεταξύ των παραγόντων που συμβάλλουν στην εκδήλωση ενός φυσικού κινδύνου, η έλλειψη σχετικών δεδομένων και η ενσωμάτωση των δυναμικών αλλαγών που διενεργούνται στο περιβάλλον. Στον τομέα των φυσικών κινδύνων, η μέθοδος των Τεχνητών Νευρωνικών Δικτύων επιτρέπει την προσομοίωση των φαινομένων και τη γενίκευσή τους, παρά την ενδεχόμενη έλλειψη πληροφοριών και την μοναδικότητα του κάθε φαινομένου. Σε αυτό το πλαίσιο, η παρούσα εργασία διερευνά τη δυνατότητα εφαρμογής της τεχνολογίας των Τεχνητών Νευρωνικών Δικτύων για τη χαρτογράφηση της επιδεκτικότητας σε εκδήλωση κατολισθήσεων μέσα από μια εμπειρική έρευνα σε περιοχή της Βόρειας Πελοποννήσου. Λέξεις Κλειδιά: Κατολισθήσεις, Τεχνητά Νευρωνικά Δίκτυα, Χωρική Ανάλυση, Συστήματα Γεωγραφικών Πληροφοριών LANDSLIDE SUSCEPTIBILITY MAPPING BY USING ARTIFICIAL NEURAL NETWORKS Polykretis, Christos 1, Ferentinou, Maria 2, Chalkias, Christos 3 1 Geographer, Msc Harokopio University, Department of Geography, 2 Dr, Geologist, 3 Associate Professor, Harokopio University, Department of Geography, El. Venizelou 70, Kallithea Athens 17671, Tel , Abstract The uncertainty of the natural hazard occurrence makes very difficult the process of decision making and planning. A fairly high number of natural hazard assessment methods and tools is available to decision-makers and planners. Knowledge about the occurrence probability and time period, as well the intensity of a natural hazard is particularly useful for its mitigation, project planning and estimation of the potential amount of damages and losses that it may cause. However, the acquisition of this knowledge requires dealing with important issues such as the existence of complex and nonlinear relationships among factors that contribute to the occurrence of a natural hazard, the lack of relevant data, and the integration of the dynamic changes taking place in the environment. Recognizing the relative weakness of traditional methods to resolve such problems, the researchers have shifted, the last years, their researches in the use of spatial analysis methods related to Artificial Intelligence, such as Artificial Neural Networks. In the field of natural hazards, the Artificial Neural Network method allows the simulation of phenomena and their generalization despite the potential lack of information and the uniqueness of each phenomenon. In this context, this paper investigates the applicability of the Artificial Neural Network technology 1

2 for landslide susceptibility mapping through an empirical research in a region of Northern Peloponnese. Key words: Landslides, Artificial Neural Networks, Spatial Analysis, Geographic Information Systems 1. Εισαγωγή Η διαχείριση των φυσικών κινδύνων αποτελεί αντικείμενο μελέτης με συνεχώς αυξανόμενο ενδιαφέρον τα τελευταία χρόνια. Η συχνότητα εμφάνισης τους σημειώνει ανοδική πορεία και η επιστήμη καλείται μέσω της τεχνολογίας να μετριάσει αν όχι και να αποτρέψει τις επιπτώσεις τους τόσο στο φυσικό, όσο και στο δομημένο περιβάλλον. Ένας από τους πιο ισχυρούς και καταστροφικούς φυσικούς κινδύνους είναι το φαινόμενο των κατολισθήσεων. Κάθε χρόνο προκαλεί τον θάνατο ενός αρκετά μεγάλου αριθμού ανθρώπων σε όλο τον κόσμο (Nadim et al., 2006) και μπορεί να λάβει χώρα απροειδοποίητα και να επεκταθεί για πολλά χιλιόμετρα. Η χαρτογράφηση της επιδεκτικότητας σε εκδήλωση κατολισθήσεων αποτελεί μια από τις συνηθέστερες μεθόδους μελέτης του φαινομένου. Ως επιδεκτικότητα σε εκδήλωση κατολισθήσεων (landslide susceptibility) ορίζεται η ροπή του εδάφους για να παραγάγει κατολισθήσεις (Guzzetti et al., 1999). Η επιδεκτικότητα αυτή εκφράζεται συνήθως με ένα χαρτογραφικό τρόπο. Ένας χάρτης επιδεκτικότητας σε εκδήλωση κατολισθήσεων απεικονίζει τις περιοχές (ή τις ζώνες περιοχών) που πιθανόν να εμφανίσουν κατολισθήσεις στο μέλλον, συσχετίζοντας μερικούς από τους κύριους παράγοντες που συνέβαλαν στην εκδήλωση παλαιότερων κατολισθήσεων (Santacana et al., 2003). Οι χάρτες αυτού του είδους αποτελούν ένα από τα βασικότερα εργαλεία για τον προγραμματισμό των χρήσεων γης, ειδικά στις ορεινές περιοχές. Η αξιοπιστία τους εξαρτάται κυρίως από την ποσότητα και την ποιότητα των διαθέσιμων γεωγραφικών δεδομένων, την κλίμακα εργασίας και την επιλογή της κατάλληλης μεθόδου ανάλυσης (Ayalew and Yamagishi, 2005). Στις μέρες μας, έχουν αναπτυχθεί πολλές μέθοδοι χαρτογράφησης της επιδεκτικότητας σε εκδήλωση κατολισθήσεων οι οποίες βασίζονται στα Συστήματα Γεωγραφικών Πληροφοριών (ΣΓΠ). Σε γενικές γραμμές χωρίζονται σε δύο ομάδες: τις ποιοτικές και τις ποσοτικές μεθόδους. Οι ποιοτικές μέθοδοι εξαρτώνται από τη γνώση και τις απόψεις των ειδικών με αποτέλεσμα να συνοδεύονται από έναν υψηλό βαθμό υποκειμενικότητας. Περιλαμβάνουν τις επιμέρους μεθόδους της γεωμορφολογικής ανάλυσης (Van Westen et al, 2003; Listo and Carvalho Vieira, 2012) και της χρήσης δεικτών ή παραμετρικών χαρτών, οι οποίες συνήθως χρησιμοποιούνται από γεωμορφολόγους. Η μέθοδος της χρήσης δεικτών ή παραμετρικών χαρτών υποδιαιρείται σε δύο προσεγγίσεις: τον συνδυασμό ή υπέρθεση χαρτών-δεικτών (Castellanos et al., 2008; Ruff and Czurda, 2008) και τα λογικά αναλυτικά μοντέλα (Mezughi et al, 2012; Pourghasemi et al, 2012; Thanh and de Smedt, 2012). Αυτές οι δύο προσεγγίσεις μπορούν να χαρακτηριστούν και ημιποσοτικές, καθώς ενσωματώνουν την ιδέα της κατάταξης και τη στάθμισης (απόδοσης τιμών βάρους). Οι ποσοτικές μέθοδοι βασίζονται στις αριθμητικές εκφράσεις των σχέσεων μεταξύ των παραγόντων ελέγχου και της εκδήλωσης των κατολισθήσεων. Περιλαμβάνουν τη στατιστική ανάλυση, τις γεωτεχνικές προσεγγίσεις και τις τεχνικές ευέλικτης υπολογιστικής, όπως τα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ), την Ασαφής Λογική και τις Νευρο-ασαφείς μεθόδους. Οι μέθοδοι στατιστικής ανάλυσης περιλαμβάνουν την στατιστική εκτίμηση των συνδυασμών των παραγόντων που οδήγησαν σε κατολισθήσεις στο παρελθόν και στη συνέχεια την απόδοσή τους για περιοχές που δεν έχουν πληγεί από κατολισθήσεις, αλλά παρουσιάζουν τις ίδιες συνθήκες υποβάθρου (He και Beighley, 2008). Αυτές οι μέθοδοι οι οποίες έχουν εφαρμοστεί από αρκετούς ερευνητές, χωρίζονται στη διμεταβλητή ανάλυση (Conforti et al., 2012; Yilmaz et al., 2012) και στην πολυμεταβλητή ανάλυση (Nandi and Shakoor, 2010; Mousavi et al., 2011; Schicker and Moon, 2012; Baeza et al., 2010; He et al., 2012). Από την άλλη πλευρά, οι γεωτεχνικές προσεγγίσεις εξαρτώνται από τις μηχανικές αρχές της αστάθειας των πρανών, εκφρασμένες από ένα συντελεστή ασφαλείας, χρησιμοποιώντας ντετερμινιστικά (Thiebes et al., 2007; Deb and El-Kadi, 2009; Cervi et al., 2010) ή πιθανολογικά (Jibson et al., 2000; Dussauge-Peisser et al., 2002; Pathak et al., 2006; Liu and Wu, 2008) μοντέλα. Στην πραγματικότητα, στην έμμεση χαρτογράφηση του κινδύνου, η πρόβλεψη των κατολισθήσεων πρέπει να βασίζεται σε πολύπλοκες, άγνωστες και μη-γραμμικές σχέσεις μεταξύ της κατανομής των κατολισθήσεων και των παραγόντων που τις επηρεάζουν (Melchiorre et al., 2008). Τα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) αποτελούν μοντέλα τα οποία καθοδηγούνται από τα 2

3 δεδομένα και καθολικοί προσεγγιστές μη-γραμμικών συναρτήσεων. Η ικανότητά τους να εκπαιδεύονται δομώντας μη-γραμμικές συναρτήσεις από τα δεδομένα είναι ένα σημείο κλειδί για το πρόβλημα της ταξινόμησης των επιρρεπών στις κατολισθήσεις περιοχών. Ως μια νέα αναλυτική προσέγγιση στην εκτίμηση της επιδεκτικότητας σε εκδήλωση κατολισθήσεων τα ΤΝΔ έχουν εφαρμοστεί σε αρκετές μελέτες (μεταξύ άλλων Caniani et al. 2008, Ferentinou et al. 2010, García- Rodríguez & Malpica 2010, Pradhan & Lee 2010, Melchiorre et al. 2011, Li et al. 2012) Η περιοχή μελέτης της εργασίας αυτής τοποθετείται στο βόρειο τμήμα της Πελοποννήσου. Ο χάρτης επιδεκτικότητας σε εκδήλωση κατολισθήσεων για την περιοχή μελέτης κατασκευάστηκε με την ανάπτυξη ενός μοντέλου ΤΝΔ. Τέλος υλοποιήθηκε ανάλυση επικύρωσης για τον υπολογισμό της προβλεπτικής ικανότητας του προτεινόμενου μοντέλου. 2. Περιοχή μελέτης Η περιοχή η οποία επιλέχθηκε να εξεταστεί, αποτελείται από τις λεκάνες απορροής των ποταμών Κράθι και Κριού στην Βόρεια Πελοπόννησο. Ο ποταμός Κράθις έχει μήκος 30 χμ, ενώ η λεκάνη απορροής του έχει έκταση 149 χμ 2. Η ροή του είναι συνεχής, με εξαίρεση το τελευταίο τμήμα του στις εκβολές (5-6 χμ), το οποίο συνήθως είναι άνυδρο κατά τη διάρκεια της θερινής περιόδου (Ανδριοπούλου κ.ά., 2006). Η λεκάνη απορροής του ποταμού Κριού έχει έκταση περίπου 100 χμ 2 και παρουσιάζει μια ασύμμετρη μορφή: η ανατολική της πλευρά της χαρακτηρίζεται από μια απότομη κλίση η οποία σπάνια οδηγεί σε επίπεδους χώρους, ενώ στη δυτική πλευρά της, η λεκάνη σχηματίζεται με εναλλασσόμενα πλατιά και ψηλά οροπέδια (Santoriello et al, 2010). Γενικά, η Πελοπόννησος χαρακτηρίζεται από την εκδήλωση πολλών και αρκετά σοβαρών φυσικών καταστροφών στο εσωτερικό της (π.χ. σεισμοί, κατολισθήσεις, πλημμύρες) οι οποίες έχουν επηρεάσει αρνητικά και σε μεγάλο βαθμό την εξέλιξη της ζωής των κατοίκων της. Αυτός αποτελεί και έναν από τους κυριότερους λόγους σε συνδυασμό με τη διαθεσιμότητα δεδομένων - για τον οποίο επιλέχθηκαν οι συγκεκριμένες λεκάνες απορροής ως πεδίο εφαρμογής της προτεινόμενης μεθοδολογίας. 3. Δεδομένα και μεθοδολογία 3.1 Γενικά Προκειμένου να εκτελέσουμε την ανάλυση μας στην επιλεγμένη περιοχή μελέτης, μια χωρική βάση δεδομένων σχεδιάστηκε και αναπτύχθηκε σε περιβάλλον ΣΓΠ χρησιμοποιώντας το λογισμικό ArcGIS (έκδοση 9.3). Η βάση αυτή αποτελείται από δύο κύρια μέρη: (α) τα θεματικά επίπεδα με τις γεωγραφικές συνθήκες του υποβάθρου (κάλυψη γης, λιθολογία, κλίση, κλπ.) και (β) το σύνολο δεδομένων απογραφής κατολισθήσεων. Τα περισσότερα από τα τελικά επίπεδα ήταν σε ψηφιδωτή μορφή (grid), ενώ άλλα μετατράπηκαν από διανυσματική (σημειακές, γραμμικές ή πολυγωνικές οντότητες) σε ψηφιδωτή μορφή. Επιπλέον, για το συγκεκριμένο μοντέλο, διάφορα εργαλεία χωρικής ανάλυσης εφαρμόστηκαν στο περιβάλλον των ΣΓΠ. 3.2 Δεδομένα Στην παρούσα μελέτη ένα σύνολο δεδομένων απογραφής κατολισθήσεων της περιοχής μελέτης δημιουργήθηκε από τον συνδυασμό της ανάλυσης εικόνων υψηλής ευκρίνειας του λογισμικού πακέτου Google Earth και τη διενέργεια εργασίας πεδίου. Το τελικό σύνολο περιλάμβανε 44 κατολισθήσεις ως πολυγωνικές οντότητες (Σχήμα 1). Παρά το γεγονός ότι στην περιοχή μελέτης μας εντοπίστηκαν μερικές περιπτώσεις καταπτώσεων βράχων, αυτές δεν συμπεριλήφθηκαν στο σύνολο δεδομένων κατολισθήσεων, καθώς αναλύθηκαν παρόμοιοι τύποι κατολισθήσεων. Το τελικό σύνολο δεδομένων κατολισθήσεων χωρίστηκε μ έναν τυχαίο τρόπο σε δύο ξεχωριστές ομάδες: ένα σύνολο εκπαίδευσης (68% του συνόλου δεδομένων κατολισθήσεων) και ένα σύνολο επικύρωσης (32% του συνόλου δεδομένων κατολισθήσεων). Το σύνολο εκπαίδευσης χρησιμοποιήθηκε για την εκπαίδευση του μοντέλου ΤΝΔ, ενώ το σύνολο επικύρωσης για την επαλήθευση των αποτελεσμάτων του. 3

4 Σχήμα 1. Χάρτης περιοχής μελέτης με σύνολο δεδομένων κατολισθήσεων Για τον προσδιορισμό της επιδεκτικότητας σε εκδήλωση κατολισθήσεων της υπό μελέτης περιοχής επιλέχθηκαν οχτώ παράγοντες υποβάθρου. Αυτοί είναι: η κάλυψη γης, η λιθολογία, η απόσταση από το υδρογραφικό δίκτυο, η απόσταση από το οδικό δίκτυο, η απόσταση από τα ρήγματα, το υψόμετρο, η κλίση και η έκθεση του αναγλύφου (Πίνακας 1 και Σχήμα 2). Αν και δεν υπάρχουν τυποποιημένες κατευθυντήριες γραμμές για την επιλογή αυτών των παραμέτρων (Ayalew et al., 2005), η φύση της περιοχής μελέτης, η κλίμακα της ανάλυσης, η διαθεσιμότητα των δεδομένων, καθώς και οι περιπτώσεις αντίστοιχων βιβλιογραφικών μελετών αποτέλεσαν τα κύρια στοιχεία για την επιλογή των συγκεκριμένων παραμέτρων (Yalcin, 2008). Η ευστάθεια των πρανών επηρεάζεται σημαντικά από την κάλυψη γης. Το επίπεδο της κάλυψης γης προήλθε από τα δεδομένα ILOT 2008 του υπουργείου Γεωργίας. Σύμφωνα με την ταξινόμηση αυτής της πηγής δεδομένων, στην περιοχή μελέτης υπάρχουν τέσσερις γενικές κατηγορίες κάλυψης γης: (α) καλλιεργήσιμες εκτάσεις, (β) μη-παραγωγικές εκτάσεις, (γ) δασικές εκτάσεις και (δ) τεχνητές επιφάνειες. Δασικές και μη-παραγωγικές εκτάσεις καλύπτουν το κύριο τμήμα της περιοχής μελέτης. Δεδομένου ότι οι διάφορες λιθολογικές μονάδες παρουσιάζουν διαφορετική συμπεριφορά ευστάθειας πρανών, η λιθολογία διαδραματίζει έναν πολύ σημαντικό ρόλο στη ζωνοποίηση της επιδεκτικότητας σε εκδήλωση κατολισθήσεων (Carrara et al., 1991). Ο λιθολογικός χάρτης της περιοχής μελέτης δημιουργήθηκε από τον Γεωλογικό Χάρτης της Ελλάδας με κλίμακα 1: (Ινστιτούτο Γεωλογικών και Μεταλλευτικών Ερευνών ΙΓΜΕ). Οι κύριοι λιθολογικοί σχηματισμοί στην περιοχή μελέτης είναι οι εξής: (α) κροκαλοπαγή, (β) μάργες, (γ) ανθρακικά πετρώματα: ασβεστόλιθοι και δολομίτες, (δ) κορήματα και κώνοι κορημάτων, (ε) σύγχρονοι σχηματισμοί: πρόσφατες και αλλουβιακές αποθέσεις, (ε) σχιστόλιθοι και φυλλίτες, (στ) μεταμορφωμένα πετρώματα και (ζ) φλύσχης. Η εγγύτητα των πρανών στο υδρογραφικό και το οδικό δίκτυο είναι, επίσης, δύο σημαντικοί παράγοντες όσον αφορά τη ευστάθεια τους. Επιπλέον, λαμβάνοντας υπόψη ότι η περιοχή μελέτης βρίσκεται σε μια τεκτονικά ενεργή ζώνη, η συμμετοχή του παράγοντα της απόστασης από τα ρήγματα κρίνεται αναγκαία για την ανάλυση μας. Για να δημιουργήσουμε αυτά τα επίπεδα απόστασης, ψηφιοποιήσαμε τις γραμμικές οντότητες του υδρογραφικό δικτύου, του οδικού δικτύου και των ρηγμάτων από τον Χάρτη Γενικής Χρήσεως της Ελλάδας με κλίμακα 1: (Γεωγραφική Υπηρεσία Στρατού ΓΥΣ), το λογισμικό του Google Earth και τον Γεωλογικό Χάρτη της Ελλάδας (ΙΓΜΕ), αντιστοίχως. Τα επίπεδα απόστασης που προέκυψαν από αυτές τις γραμμικές οντότητες, ταξινομήθηκαν σε πέντε κατηγορίες με βάση τη μέθοδο των φυσικών ορίων. Το Ψηφιακό Μοντέλο Εδάφους (ΨΜΕ) ήταν το κλειδί για τη δημιουργία των υπολοίπων σημαντικών τοπογραφικών παραμέτρων που σχετίζονται με την εκδήλωση του φαινομένου των κατολισθήσεων. Στην συγκεκριμένη μελέτη, η παραγωγή του ΨΜΕ (με μέγεθος κελιού 20Χ20) 4

5 βασίστηκε σ ένα διανυσματικό επίπεδο με τις ανά 20 μ ισοϋψείς καμπύλες της περιοχής μελέτης. Από αυτό το DEM εξήχθησαν τα επίπεδα του υψομέτρου, της κλίσης και της έκθεσης του αναγλύφου. Τα πρώτα δύο επίπεδα ταξινομήθηκαν σε πέντε κατηγορίες με βάση τη μέθοδο των φυσικών ορίων, ενώ το τρίτο επίπεδο σε εννέα κατηγορίες (επίπεδη, Β, ΒΑ, Α, ΝΑ, Ν, ΝΔ, Δ, ΒΔ) μ ένα χειροκίνητο τρόπο. Πίνακας 1. Σύνολα δεδομένων περιοχής μελέτης Τύπος Παράγοντες Πηγή δεδομένων Αεχική μορφή Τοπογραφία Υψόμετρο διανυσματικό επίπεδο με τις ανά 20 μ ισοϋψείς καμπύλες Εγγύτητα Ψηφιδωτή Κλίση ΨΜΕ Ψηφιδωτή Έκθεση ΨΜΕ Ψηφιδωτή Απόσταση από οδικό δίκτυο Απόσταση από υδρογραφικό δίκτυο Απόσταση από ρήγματα Εικόνες Google Earth Χάρτης Γενικής Χρήσεως Ελλάδας 1: (ΓΥΣ) Γεωλογικός Χάρτης Ελλάδας 1: (ΙΓΜΕ) Διανυσματική (γραμμές) Διανυσματική (γραμμές) Διανυσματική (γραμμές) Λιθολογία Λιθολογία Γεωλογικός Χάρτης Ελλάδας 1: (ΙΓΜΕ) Διανυσματική (πολύγωνα) Κάλυψη γης Κάλυψη γης Ilot 2008 Διανυσματική (πολύγωνα) 5

6 Σχήμα 2. Χάρτες παραγόντων υποβάθρου (κάλυψη γης, λιθολογία, απόσταση από το οδικό δίκτυο, απόσταση από το υδρογραφικό δίκτυο) 6

7 Σχήμα 2 (συνέχεια). Χάρτες παραγόντων υποβάθρου (απόσταση από τα ρήγματα, υψόμετρο, κλίση, έκθεση) 3.3 Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) Δεν υπάρχει κάποιος κοινά αποδεκτός ορισμός σχετικά με το τί είναι Τεχνητό Νευρωνικό Δίκτυο ή τι θα έπρεπε να είναι. Γενικά, όμως, μπορεί να οριστεί ως ένα μαθηματικό ή υπολογιστικό μοντέλο επεξεργασίας πληροφοριών που βασίζεται στις γνωστικές διαδικασίες και την οργανωτική 7

8 δομή των νευρο-βιολογικών δικτύων (Shachmurove and Witkowska, 2000). Αποτελείται από έναν αριθμό απλών διασυνδεδεμένων μονάδων επεξεργασίας, που ονομάζονται τεχνητοί νευρώνες ή κόμβοι (artificial neurons or nodes) οι οποίοι είναι ανάλογοι με τους βιολογικούς νευρώνες και λειτουργούν με ένα μη-γραμμικό, κατανεμημένο, παράλληλο και τοπικό τρόπο για να εκτελέσουν μια κοινή καθολική εργασία. Η δομή των νευρώνων και των μεταξύ τους συνδέσεων, γνωστή ως αρχιτεκτονική ή τοπολογία του δικτύου, καθορίζει την τελική συμπεριφορά του δικτύου και περιλαμβάνει τα ακόλουθα βασικά χαρακτηριστικά: (α) τον τρόπο σύνδεσης μεταξύ των νευρώνων, (β) τον αριθμό των νευρώνων και (γ) τον αριθμό των επιπέδων. Το πολυεπίπεδο perceptron (multi-layer perceptron MLP) είναι ίσως η πιο δημοφιλής και πιο ευρέως χρησιμοποιούμενη αρχιτεκτονική ΤΝΔ. Αποτελείται από ένα επίπεδο εισόδου (input layer), ένα επίπεδο εξόδου (output layer), και ένα ή περισσότερα κρυμμένα επίπεδα (hidden layers). Κάθε επίπεδο περιέχει έναν επαρκή αριθμό νευρώνων. Το επίπεδο εισόδου είναι παθητικό και απλώς λαμβάνει τα δεδομένα. Σε αντίθεση με το επίπεδο εισόδου, τόσο τα κρυμμένα επίπεδα, όσο και το επίπεδο εξόδου είναι ενεργά, καθώς αυτά επεξεργάζονται τα δεδομένα. Το επίπεδο εξόδου παράγει τα αποτελέσματα του νευρωνικού δικτύου. Ο αριθμός των νευρώνων στα επίπεδα εισόδου και εξόδου συνήθως εξαρτάται από την εφαρμογή για την οποία έχει σχεδιαστεί το δίκτυο. Ο αριθμός των κρυμμένων επιπέδων και των νευρώνων τους είναι συνήθως καθορίζεται από τη μέθοδο δοκιμής και λάθους ( trial and error method). Στην περίπτωση του τεχνητού νευρώνα, τα σήματα εισέρχονται στο σώμα του νευρώνα ως σταθμισμένοι είσοδοι. Η στάθμιση αυτή απορρέει από το γεγονός ότι κάθε είσοδος μπορεί μεμονωμένα να πολλαπλασιάζεται με ένα βάρος σύνδεσης (Krenker et al., 2011). Το σώμα του νευρώνα αθροίζει, τότε, τις σταθμισμένες εισόδους σύμφωνα με την εξίσωση: n net i 0 w i i (1) όπου w i είναι η τιμή του βάρους και x i η τιμή της εισόδου. Στη συνέχεια, το σώμα επεξεργάζεται το άθροισμα. Αν αυτό υπερβαίνει το κατώφλι τότε ο νευρώνας ενεργοποιείται και παράγει μια έξοδο την οποία, τελικώς, μεταδίδει (ως σήμα) στους παρακείμενους σ αυτόν νευρώνες. Η τιμή της παραγόμενης εξόδου (y i ) προκύπτει μέσω μιας συνάρτησης (f) η οποία ονομάζεται συνάρτηση ενεργοποίησης (activation function): y i = f (net) (2) Ένα ΤΝΔ αποκτά περισσότερες γνώσεις σχετικά με το περιβάλλον του μέσα από μια επαναληπτική διαδικασία προσαρμογών που εφαρμόζεται στα βάρη του ως απόκριση στις τιμές σφάλματος μεταξύ των πραγματικών τιμών εξόδου και των επιθυμητών (επιδιωκόμενων) τιμών εξόδου. Η διαδικασία αυτή ονομάζεται εκμάθηση (learning) ή εκπαίδευση (training) και γενικά ορίζεται ως η διαδικασία με την οποία οι ελεύθερες παράμετροι (δηλαδή οι τιμές των βαρών) ενός ΤΝΔ προσαρμόζονται μέσω μιας συνεχιζόμενης διαδικασίας διέγερσης από το περιβάλλον στο οποίο το δίκτυο είναι ενσωματωμένο (Bakpo and Kabari, 2011). Για την εκτέλεση αυτής της διαδικασίας, στους κόμβους εισόδου του ΤΝΔ εισάγεται ένα σύνολο εκπαιδευτικών παραδειγμάτων, που ανήκουν στον τομέα του παρεχόμενου προβλήματος, το οποίο ονομάζεται σύνολο εκπαίδευσης (training set). Τα εν λόγω παραδείγματα είναι γνωστά και ως μοτίβα (patterns), με το καθένα απ αυτά να αποτελείται από μερικές εισόδους και τις συναφείς επιδιωκόμενες εξόδους. Οι είσοδοι προέρχονται από ένα σύνολο εισόδων x = (x 1,..., x n ) R n, ενώ οι έξοδοι από ένα αντίστοιχο σύνολο επιδιωκόμενων εξόδων t = (t 1,..., t m ) R m (Caliusco and Stegmayer, 2010). Στο τέλος της φάσης εκπαίδευσης, το δίκτυο παρέχει ένα μοντέλο που θα πρέπει να είναι σε θέση να προβλέπει μια επιδιωκόμενη τιμή από μια δεδομένη τιμή εισόδου (Lee και Evangelista, 2006). Μετά την ολοκλήρωση της διαδικασίας εκπαίδευσης και εάν αυτή είναι επιτυχής, το ΤΝΔ αποκτά το χαρακτηριστικό της γενίκευσης. Ως γενίκευση (generalisation) ορίζεται η ικανότητα ενός ΤΝΔ να επιτυγχάνει την παραπάνω σύγκλιση για δεδομένα που δεν είχαν συμπεριληφθεί στο αρχικό σύνολο εκπαίδευσης (Duin, 2000). Η ικανότητά του αυτή εξαρτάται κυρίως από τη φύση των δεδομένων του συνόλου εκπαίδευσης καθώς και από το μέγεθος του δικτύου. Έτσι, όταν το σύνολο εκπαίδευσης περιέχει θόρυβο ή όταν προτιμάται ένας μεγάλος αριθμός νευρώνων στο 8

9 κρυμμένο επίπεδο, τότε υπάρχει μεγάλη πιθανότητα το δίκτυο, μετά το πέρας της εκπαίδευσης, να έχει απλώς απομνημονεύσει τα παραδείγματα εκπαίδευσης και να μην έχει μάθει να γενικεύει σε νέες καταστάσεις-παραδείγματα. Το πρόβλημα αυτό ονομάζεται υπερ-προσαρμογή (over-fitting) ή υπερ-εκπαίδευση (over-training) (Zhang and Friedrich, 2003). Η εκπαίδευση ενός ΤΝΔ μπορεί να πραγματοποιηθεί, μέσω ενός αριθμού αλγορίθμων, με δύο τρόπους: με εποπτεία (supervised) και χωρίς εποπτεία (unsupervised). Στην εκπαίδευση με εποπτεία, το δίκτυο ορίζει την τιμή των παραμέτρων του για κάθε έγκυρη τιμή εισόδου δεδομένου ότι γνωρίζει την αντίστοιχη επιθυμητή τιμή εξόδου. Ο όρος με εποπτεία βασίζεται στο γεγονός ότι οι επιθυμητές τιμές εξόδου που παρέχονται στους επιμέρους κόμβους του επιπέδου εξόδου, προέρχονται από έναν εξωτερικό δάσκαλο (Abraham, 2005). Στην εκπαίδευση χωρίς εποπτεία, το σύνολο εκπαίδευσης που εισάγεται στο δίκτυο, αποτελείται μόνο από δεδομένα (διανύσματα) εισόδου, ενώ οι έξοδοι καθορίζονται από το ίδιο το δίκτυο. Στην εκπαίδευση με εποπτεία, ο βασικός αλγόριθμος εκμάθησης που χρησιμοποιείται, είναι ο αλγόριθμος οπισθόδρομης διάδοσης (back-propagation algorithm). Ο αλγόριθμος αυτός αποτελείται από δύο περάσματα-σαρώσεις : ένα προς τα εμπρός (ορθό) και ένα προς τα πίσω (οπισθόδρομο). Το προς τα εμπρός πέρασμα περιλαμβάνει βασικά την τροφοδοσία στο δίκτυο των δεδομένων εκπαίδευσης με τη μορφή διανυσμάτων εισόδου και την ενεργοποίηση των κόμβων του (μέσω των συναρτήσεων ενεργοποίησης) για την παραγωγή των διανυσμάτων εξόδου. Το προς τα πίσω πέρασμα, με τη σειρά του, περιλαμβάνει τον υπολογισμό του σφάλματος (δηλαδή της διαφοράς μεταξύ του υπολογιζόμενου και επιθυμητού διανύσματος εξόδου) για όλους τους κόμβους του επιπέδου εξόδου και τη διάδοση αυτού του σφάλματος στα προηγούμενα επίπεδα επεξεργασίας με σκοπό την ενημέρωση-προσαρμογή των βαρών του δικτύου. Αυτή η ενημέρωση αναμένεται να προκαλέσει την ελαχιστοποίηση του σφάλματος. Το σφάλμα υπολογίζεται ως το μέσο τετραγωνικό σφάλμα (mean squared error MSE) και ορίζεται από τη συνάρτηση σφάλματος: Ε N 2 (3) i 1 όπου y i είναι η υπολογιζόμενη έξοδος και d i η επιθυμητή έξοδος για κάθε κόμβο εξόδου. Όσο μικρότερη είναι η τιμή της συγκεκριμένης συνάρτησης, τόσο καλύτερη είναι η ικανότητα πρόβλεψης του δικτύου. Προκειμένου να επιτευχθεί η ελαχιστοποίηση της συνάρτησης σφάλματος, εφαρμόζεται ο κανόνας μείωσης της βαθμίδας για την ενημέρωση των βαρών του δικτύου. Έτσι, κάθε τιμή βάρους, αρχίζοντας από το επίπεδο εξόδου και καταλήγοντας, μέσω όλων των κρυμμένων επιπέδων, στο επίπεδο εισόδου, ενημερώνεται σύμφωνα με τη σχέση (Schneider and Wredeb, 1998): Δ η Ε (4) όπου η είναι μια σταθερά που ονομάζεται ρυθμός εκμάθησης (learning rate). Στη συνέχεια, τα δεδομένα εισόδου τροφοδοτούνται προς τα εμπρός πάλι, παράγοντας νέα έξοδο και νέο σφάλμα για όλους τους κόμβους του επιπέδου εξόδου. Η διαδικασία αυτή επαναλαμβάνεται έως ότου αποκτηθεί ένα αποδεκτό ελαχιστοποιημένο σφάλμα. Όταν το σφάλμα φτάσει μια αποδεκτή τιμή, η εκπαίδευση σταματά. Τα κύρια στάδια της ανάλυσης ΤΝΔ που υλοποιήσαμε στην παρούσα μελέτη, είναι τα εξής: (1) Τυχαία δειγματοληψία: αφορούσε δύο ξεχωριστές περιπτώσεις: (α) την επιλογή 300 τυχαίων σημείων κατολίσθησης, δηλαδή σημείων που προκύπτουν από τα πολύγωνα των κατολισθήσεων (σύνολο: 443 ψηφίδες) και (β) την επιλογή τυχαίων σημείων μηκατολίσθησης, δηλαδή σημείων που προκύπτουν από την έκταση της περιοχής μελέτης απαλλαγμένης όμως από τις εκτάσεις (πολύγωνα) των κατολισθήσεων (σύνολο: ψηφίδες). Έπειτα, αποδώσαμε την τιμή 1 στα σημεία κατολίσθησης και την τιμή 0 στα σημεία μηκατολίσθησης (δεδομένα επιδιωκόμενων εξόδων). (2) Κανονικοποίηση παραγοντικών επιπέδων: συνιστούσε την επαναταξινόμηση των ψηφιδωτών επιπέδων των οκτώ παραγόντων υποβάθρου. Η επαναταξινόμηση αυτή περιλάμβανε 9

10 την απόδοση ακέραιων τιμών, από 1 έως 5 (δεδομένα εισόδων), στις επιμέρους κατηγορίες τους, με βάση τις τιμές του Δείκτη Επιδεκτικότητας Κατολισθήσεων (Landslide Susceptibility Index LSI) (Ercanoglu, 2005; Bui et al., 2011; Akgun, 2012; Demir et al., 2012) που παρουσίαζαν. (3) Μοντελοποίηση και εκπαίδευση του ΤΝΔ: επετεύχθη μέσω της χρήσης ενός προγράμματος (script) το οποίο ήταν γραμμένο στο περιβάλλον προγραμματισμού του λογισμικού MATLAB (R2008a). Αρχικά, προκειμένου να εντοπιστεί το ΤΝΔ με τη βέλτιστη απόδοση στα συγκεκριμένα εκπαιδευτικά διανύσματα, αναπτύχθηκαν μια σειρά από ΤΝΔ, χρησιμοποιώντας τη μέθοδο δοκιμής και λάθους" στον προσδιορισμό των διαφόρων παραμέτρων αρχιτεκτονικής (αριθμός επιπέδων, αριθμός νευρώνων ανά επίπεδο, κ.ά.) και εκπαίδευσης (συναρτήσεις ενεργοποίησης, αριθμός επαναλήψεων, κ.ά.) που περιέχονταν στο πρόγραμμα. Σχετικά με την εκκίνηση των βαρών εφαρμόστηκε η μέθοδος εκκίνησης με τυχαία αρχικά βάρη. Επίσης, η επιδιωκόμενη τιμή σφάλματος (κριτήριο διακοπής) επιλέχθηκε να είναι ίση με 0,01. Μετά από τη διενέργεια των απαραίτητων δοκιμών, εντοπίστηκε ότι το ΤΝΔ με τη βέλτιστη απόδοση ήταν αυτό το οποίο αποτελούταν από ένα επίπεδο εισόδου (με 8 νευρώνες, έναν για κάθε παράγοντα υποβάθρου), ένα κρυμμένο επίπεδο (με 40 νευρώνες) και ένα επίπεδο εξόδου (μ έναν μόνο νευρώνα). Επιπλέον, οι κατάλληλες συναρτήσεις ενεργοποίησης ήταν η συνάρτηση υπερβολικής εφαπτομένης για τους νευρώνες του κρυμμένου επιπέδου και η γραμμική συνάρτηση για τους νευρώνες του επιπέδου εξόδου. Ακολούθως, εκτελέστηκαν οι παραλλαγές του αλγορίθμου οπισθόδρομης διάδοσης που παρέχονται από το λογισμικό του MATLAB (R2008a). Ο Πίνακας 2 παρουσιάζει ενδεικτικά την απόδοση του παραπάνω δικτύου σε σχέση με την παραλλαγή του αλγορίθμου και τον αριθμό των επαναλήψεων (epochs) της διαδικασίας εκπαίδευσης. Πίνακας 2. Απόδοση ΤΝΔ σε σχέση με την παραλλαγή του αλγορίθμου και τον αριθμό των επαναλήψεων Συνάρτηση Παραλλαγή αλγορίθμου οπισθόδρομης διάδοσης (BP) Αριθμός επεναλήψεων (epochs) Απόδοση (MSE) Trainbfg BFGS Algorithm ,135 Trainbr Automated Regularization 420 0,248 Traincgb Powell-Beale Restarts ,133 Traincgf Fletcher-Reeves Update ,148 Traincgp Polak-Ribiére Update ,131 Traingd Batch Gradient Descent ,343 Traingdm Gradient Descent with Momentum ,424 Traingda Gradient Descent with with adaptive learning rate ,336 Traingdx Gradient Descent with with adaptive learning rate & Momentum ,198 Trainlm Levenberg-Marquardt ,132 Trainrp Resilient Backpropagation ,145 Trainscg Scaled Conjugate Gradient ,130 Όπως προκύπτει από τον συγκεκριμένο πίνακα, η πιο αποτελεσματική παραλλαγή του αλγορίθμου οπισθόδρομης διάδοσης βρέθηκε ότι είναι η Scale Conjugate Gradient (trainscg), καθώς απέδωσε μια αρκετά ικανοποιητική (σε σχέση με την επιδιωκόμενη) τιμή σφάλματος (ίση με 0,130), τοποθετώντας τα περισσότερα διανύσματα εισόδου πολύ κοντά στις επιδιωκόμενες τιμές εξόδου 0 και 1 (Σχήμα 3). 10

11 ΚΑΛΥΨΗ ΓΗΣ ΓΕΩΛΟΓΙΑ ΑΠΟΣΤΑΣΗ ΑΠΟ ΟΔΙΚΟ ΑΠΟΣΤΑΣΗ ΑΠΟ ΥΔΡΟΓΡΑΦΙΚΟ ΑΠΟΣΤΑΣΗ ΑΠΟ ΡΗΓΜΑΤΑ ΥΨΟΜΕΤΡΟ ΚΛΙΣΗ ΕΚΘΕΣΗ Ποσοστό ( %) 1 ο Συνέδριο Χωρικής Ανάλυσης: Πρακτικά, Αθήνα, 2013, Σ. Καλογήρου (Επ.) ISBN: Σχήμα 3. Ολοκλήρωση διαδικασίας εκπαίδευσης (αριστερά) και αποτέλεσμα ΤΝΔ (δεξία) (4) Ανάλυση των προκύπτοντων από το ΤΝΔ βαρών: αποσκοπούσε στην παραγωγή των τελικών τιμών βαρών των κανονικοποιημένων επιπέδων (Σχήμα 4). Στα πλαίσια των ΤΝΔ, η ανάλυση αυτή είναι γνωστή ως διαμέριση των βαρών. Πρόκειται για ένα δυναμικό χαρακτηριστικό των ΤΝΔ το οποίο αφορά στην ικανότητα που επιδεικνύουν για ανάλυση, μέσω μιας ιδιαίτερης επεξεργασίας των συνδετικών βαρών των επιπέδων τους. Η μέθοδος διαμέρισης των βαρών προτάθηκε από τον Garson (1991) και περιλαμβάνει τη διαμέριση των βαρών του κρυμμένου επιπέδου προς το επίπεδο εξόδου για κάθε νευρώνα στα αντίστοιχα συστατικά τα οποία συνδέονται με την είσοδο του κάθε νευρώνα Παράγοντες υποβάθρου Σχήμα 4. Τελικές τιμές βαρών παραγόντων υποβάθρου (5) Δημιουργία τελικού χάρτη επιδεκτικότητας: περιλάμβανε τον συνδυασμό/υπέρθεση των οκτώ κανονικοποιημένων παραγοντικών επιπέδων, λαμβάνοντας υπόψη τις τελικές τιμές βαρών τους. Με λίγα λόγια, πραγματοποιήθηκε ο σταθμισμένος συνδυασμός των συγκεκριμένων επιπέδων. Έπειτα, ο τελικός χάρτης επιδεκτικότητας σε εκδήλωση κατολισθήσεων (Σχήμα 5) ταξινομήθηκε σε πέντε κατηγορίες (Πολύ Χαμηλή, Χαμηλή, Μέτρια, Υψηλή και Πολύ Υψηλή επιδεκτικότητα) με βάση τη μέθοδο των φυσικών ορίων. 11

12 Σχήμα 5. Τελικός χάρτης επιδεκτικότητας σε εκδήλωση κατολισθήσεων που προέκυψε από το μοντέλο ΤΝΔ 4. Αποτελέσματα Τα αποτελέσματα της μεθόδου που μόλις περιγράφηκε, παρουσιάζονται στα Σχήματα 4 και 5. Οι πιο σημαντικοί παράγοντες υποβάθρου είναι η κάλυψης γης, η απόσταση από τα ρήγματα και η έκθεση του αναγλύφου, με τιμές βαρών 14,47%, 13,37% και 13,08%, αντιστοίχως. Από την άλλη πλευρά, το υψόμετρο και η κλίση του αναγλύφου εμφανίζουν τη χαμηλότερη σημασία (με τιμές βαρών 10,72% και 10,60%, αντίστοιχα) για τη χαρτογράφηση της επιδεκτικότητας σε εκδήλωση κατολισθήσεων στην υπό μελέτη περιοχή. Ο παραγώμενος χάρτης επιδεκτικότητας σε εκδήλωση κατολισθήσεων δείχνει ότι το 26% (περίπου 73 χμ 2 ) και το 12% (περίπου 34 χμ 2 ) της περιοχής μελέτης ανήκουν στις κατηγορίες Υψηλής και Πολύ Υψηλής επιδεκτικότητας, αντιστοίχως. Επίσης, σύμφωνα με τον ίδιο χάρτη, οι κατηγορίες Υψηλής και Πολύ Υψηλής επιδεκτικότητας εντοπίζονται κυρίως στο ανατολικό, δυτικό και βόρειο τμήμα της περιοχής μελέτης. Η υπέρθεση του τελικού χάρτη επιδεκτικότητας με το σύνολο δεδομένων κατολισθήσεων υπέδειξε ότι το 60%, το 22% και το 11% (σύνολο: 93%) των ψηφίδων των πολυγώνων κατολισθήσεων εμπίπτουν στις κατηγορίες Πολύ Υψηλής, Υψηλής και Μέτριας επιδεκτικότητας, αντιστοίχως. Τέλος, προκειμένου να εκτιμηθεί η συνολική απόδοση του μοντέλου, εφαρμόστηκε μια τυπική ανάλυση επικύρωσης, γνωστή ως ανάλυση ROC (receiver operating characteristics), χρησιμοποιώντας τα υπόλοιπα 143 σημεία κατολίσθησης που έμειναν εκτός της ανάλυσης μας, καθώς και μια ίση τυχαίως επιλεγμένη ποσότητα σημείων μη-κατολίσθησης (σύνολο επικύρωσης). Η επικύρωση αποτελεί μια πολύ σημαντικά διαδικασία για οποιοδήποτε μοντέλο ανάλυσης του φαινομένου των κατολισθήσεων, διότι παρέχει τη δυνατότητα της απόκτησης της γνώσης σχετικά με την προγνωστική αξία αυτών των μοντέλων (Remondo et al., 2003). Για την υλοποίηση αυτής της ανάλυσης, σχεδιάστηκε η αντίστοιχη καμπύλη ROC (ROC curve) και υπολογίστηκε η τιμή AUC (area under curve περιοχή κάτω από την καμπύλη). Στο γράφημα της ανάλυσης ROC, η ευαισθησία (sensitivity) του μοντέλου παρουσιάζεται ως μια συνάρτηση της ειδικότητας (specificity). Η αντίστοιχη καμπύλη ROC καταδεικνύει την ικανότητα του μοντέλου να διακρίνει σωστά μεταξύ θετικών και αρνητικών παρατηρήσεων στο χώρο επικύρωσης (Montrasio et al., 2011). Μια υψηλή ευαισθησία υποδεικνύει ένα μεγάλο αριθμό αληθών θετικών (σωστών προβλέψεων), ενώ μια υψηλή ειδικότητα υποδεικνύει ένα μικρό αριθμό ψευδών θετικών 12

13 True Positive Fraction 1 ο Συνέδριο Χωρικής Ανάλυσης: Πρακτικά, Αθήνα, 2013, Σ. Καλογήρου (Επ.) ISBN: (λανθασμένων προβλέψεων). Για παράδειγμα, μια αληθινή θετική (true positive) είναι η πρόβλεψη μιας κατολίσθησης σε μια θέση όπου εκδηλώθηκε κατολίσθηση, ενώ μια ψεύτικη θετική (false positive) είναι η πρόβλεψη μιας κατολίσθησης σε μια θέση όπου δεν εκδηλώθηκε κατολίσθηση (Akgun, 2012). Στην πράξη, η τιμή AUC παίρνει τιμές που κυμαίνονται από 0,5 έως 1 και χρησιμοποιείται κυρίως από τον εκάστοτε ερευνητή όταν αυτός επιθυμεί ένα γενικό μέτρο προβλεψιμότητας (Fawcett, 2006). Ως εκ τούτου, η ιδανική μέθοδος συνοδεύεται από μια τιμή AUC κοντά στην τιμή 1 (τέλεια προσαρμογή), ενώ μια τιμή AUC κοντά στην τιμή 0,5 καταδεικνύει μια μέθοδο η οποία παρουσιάζει μικρότερη ακρίβεια στα αποτελέσματα της (τυχαία προσαρμογή). Το Σχήμα 6 απεικονίζει την καμπύλη ROC του μοντέλου ΤΝΔ για το σύνολο επικύρωσης. Η τιμή AUC η οποία, για το συγκεκριμένο μοντέλο, ισούται με 0,842, καταδεικνύει μια πολύ καλή ικανότητα πρόβλεψης του μονέλου False Positive Fraction Σχήμα 6. Καμπύλη ROC του μοντέλου ΤΝΔ 5. Συμπεράσματα Για τον ελληνικό χώρο (όπως και για τις περισσότερες χώρες), οι κατολισθητικές κινήσεις αποτελούν έναν από τους σημαντικότερους φυσικούς κινδύνους με τεράστιες οικονομικές και κοινωνικές επιπτώσεις. Δεδομένου ότι οφείλονται στη συνεπίδραση πολλών παραγόντων (φυσικών και ανθρωπογενών), δεν μπορούν να χαρακτηριστούν ως μονοσήμαντα φαινόμενα. Ωστόσο, στις μέρες μας, ο γεω-επιστήμονας έχει πλέον στη διάθεση του πολλά εργαλεία τα οποία αν συνδυαστούν κατάλληλα μπορούν να επιφέρουν πολλά και ουσιαστικά αποτελέσματα. Στην περίπτωση της παρούσας μελέτης αρκούσε ο συνδυασμός μερικών διαθέσιμων δεδομένων και των κατάλληλων λογισμικών πακέτων προκειμένου να επιτευχθεί η δημιουργία του χάρτη επιδεκτικότητας σε εκδήλωση κατολισθήσεων για την επιλεγμένη περιοχή μελέτης. Τα αποτελέσματα της μεθοδολογίας που ακολουθήθηκε, μπορούν να βοηθήσουν σε μεγάλο βαθμό τους μηχανικούς (και γενικά όλους τους αρμόδιους φορείς) στις αποφάσεις τους για την κατασκευή τεχνικών έργων. Τα αποτελέσματα αυτά προέκυψαν από την εφαρμογή της μεθόδου των Τεχνητών Νευρωνικών Δικτύων. Η συγκεκριμένη μέθοδος μπορεί να χαρακτηριστεί ως μια μη σταθερή μέθοδος δεδομένου ότι τα αποτελέσματα της εξαρτώνται σε μεγάλο βαθμό από το χρησιμοποιούμενο σύνολο εκπαίδευσης και τις προσδιοριζόμενες, κάθε φορά, παραμέτρους αρχιτεκτονικής και εκπαίδευσης. Τέλος, η εξέταση των εναλλακτικών επιλογών ως προς τις παραδοχές της ανάλυσης μας (ομαδοποίηση αρχικών δεδομένων παραγόντων υποβάθρου, αριθμός παραγόντων υποβάθρου, κατηγοριοποίηση τελικού χάρτη επιδεκτικότητας, μέγεθος συνόλου επικύρωσης, κλπ) μπορεί να επιφέρει διαφορετικά αποτελέσματα και γι αυτό μπορεί ν αποτελέσει θέμα μελλοντικών μελετών. 6. Βιβλιογραφία Ελληνική Ανδριοπούλου Α., Γκρίτζαλης Κ., Λεγάκης Α. και Σκουλικίδης Ν., 2006, Σχέσεις ποικιλότητας βενθικής πανίδας με την σύνθεση του υποστρώματος (Περίπτωση μελέτης: ποταμός Κράθις, Πελοπόννησος), 8ο Πανελλήνιο Συμπόσιο Ωκεανογραφίας και Αλιείας, Θεσσαλονίκη, 4-8 Ιουνίου 2006, Τεύχος Περιλήψεων, 188, σελ

14 Διεθνής Abraham A., 2005, Artificial Neural Networks, p , In: Sydenham P.H. and Thorn R. (ed.), Handbook of Measuring System Design, John Wiley & Sons. Akgun A., 2012, A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey, Landslides, 9(1), pp Ayalew L. and Yamagishi H., 2005, The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains Central Japan, Geomorphology, 65, Ayalew L., Yamagishi H., Maruib H. and Takami K., 2005, Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications, Engineering Geology, 81 (4), Baeza C. and Corominas J., 2001, Assessment of shallow landslide susceptibility by means of multivariate statistical techniques, Earth Surf Proc Land 26: Bakpo F. S. and Kabari L. G., 2011, Diagnosing Skin Diseases Using an Artificial Neural Network, Part 4, Chapter 13, pp , In: Suzuki K. (ed.), Artificial Neural Networks - Methodological Advances and Biomedical Applications, InTech, Rijeka, Croatia Bui T.D., Lofman O., Revhaug I. and Dick O., 2011, Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression, Nat. Hazards, 59, Caliusco M.L. and Stegmayer G., 2010, Semantic Web Technologies and Artificial Neural Networks for Intelligent Web Knowledge Source Discovery, Advanced Information and Knowledge Processing, Emergent Web Intelligence: Advanced Semantic Technologies, Part 1, p Caniani D., Pascale S., Sdao F. and Sole A., 2008, Neural networks and landslide susceptibility: a case study of the urban area of Potenza, Natural Hazards, 45, Carrara A., Cardinali M., Detti R., Guzzetti F., Pasqui V. and Reichenbach P, 1991, GIS techniques and statistical models in evaluating landslide hazard, Earth Surface Processes and Landforms, 16, Castellanos Abella E.A. and Van Westen C.J., 2008, Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba, Geomorphology, 94(3-4), pp Cervi F., Berti M., Borgatti L., Ronchetti F., Manenti F. and Corsini A., 2010, Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: A case study in the northern Apennines (Reggio Emilia Province, Italy), Landslides, 7(4), pp Conforti M., Robustelli G., Muto F. and Critelli S., 2012, Application and validation of bivariate GISbased landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy), Natural Hazards, 61(1), pp Deb S.K. and El-Kadi A.I., 2009, Susceptibility assessment of shallow landslides on Oahu, Hawaii, under extreme-rainfall events, Geomorphology, 108(3-4), pp Demir G., Aytekin M., Akgün A., Ikizler S.B. and Tatar O., 2012, A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods, Natural Hazards, pp Duin R.P.W., 2000, Learned from Neural Networks, p. 9-13, In: van Vliet L. J., Heijnsdijk J. W. J., Kielman T. and Knijnenburg P.M.W. (eds.), Proceedings ASCI 2000, 6th Annual Conference of the Advanced School for Computing and Imaging, ASCI, Delft Dussauge-Peisser C., Helmstetter A., Grasso J.-R., Hantz D., Desvarreux P., Jeannin M. and Giraud M., 2002, Probabilistic approach to rock fall hazard assessment: potential of historical data analysis, European Geophysical Society, Natural Hazards and Earth System Sciences 2: pp Ercanoglu M., 2005, Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks, European Geosciences Union, Natural Hazards and Earth System Sciences, vol. 5, pp Fawcett T., 2006, An introduction to ROC analysis, Pattern Recognition Letters, 27(8),

15 Ferentinou M., Chalkias Ch., Sakellariou M., 2010, Landslide susceptibility mapping in national scale and preliminary risk analysis applying computational methods in a GIS environment, 9th Panellenic Conference of Geography, pp García-Rodríguez M.J. and Malpica J.A., 2010, Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an artificial neural network model, Natural Hazards and Earth System Science, 10(6), pp Garson G.D., 1991, Interpreting neural network connection weights, AI expert, 6, Guzzetti F., Carrara A., Cardinali M. and Reichenbach P., 1999, Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study central Italy, Geomorphology, 31, He, Y. and Beighley R. E., 2008, GIS-based regional landslide susceptibility mapping: a case study in southern California, Earth Surf. Process. Landforms 33, pp He S., Pan P., Dai L., Wang H. and Liu, J., 2012, Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China, Geomorphology, , pp Jibson R. W., Harp E. L. and Michael J. A., 2000, A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California Area, Engineering Geology, vol. 58, pp Krenker A., Bešter J. and Kos A., 2011, Introduction to the Artificial Neural Networks, Part 1, Chapter 1, pp. 3-18, In: Suzuki K. (ed.), Artificial Neural Networks - Methodological Advances and Biomedical Applications, InTech, Rijeka, Croatia. Lee S. and Evangelista D. G., 2006, Earthquake-induced landslide-susceptibility mapping using an artificial neural network, Natural Hazards and Earth Systems Sciences, 6, Li Y., Chen G., Tang C., Zhou G. and Zheng L., 2012, Rainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural Network, Natural Hazards and Earth System Science, 12(8), pp Listo F.D.L.R. and Carvalho Vieira B., 2012, Mapping of risk and susceptibility of shallow-landslide in the city of São Paulo, Brazil, Geomorphology, , pp Liu C.-N. and Wu C.-C., 2008, Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach, Environmental Geology, 55(4), pp Melchiorre C., Matteucci M., Azzoni A. and Zanchi A., 2008, Artificial neural networks and cluster analysis in landslide susceptibility zonation, Geomorphology 94, Melchiorre C., Castellanos Abella E. A., van Westen C.J. and Matteucci M., 2011, Evaluation of prediction capability, robustness, and sensitivity in non-linear landslide susceptibility models, Guantánamo, Cuba, Computers and Geosciences, 37(4), pp Mezughi T.H., Akhir J.M., Rafek A.G. and Abdullah I., 2012, Analytical Hierarchy Process method for mapping landslide susceptibility to an area along the E-W highway (Gerik-Jeli), Malaysia, Asian Journal of Earth Sciences, 5(1), pp Montrasio L., Valentino R. and Losi G. L., 2011, Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale, Nat. Hazards Earth Syst. Sci., 11, Mousavi S.Z., Kavian A., Soleimani K., Mousavi S.R. and Shirzadi A., 2011, GIS-based spatial prediction of landslide susceptibility using logistic regression model, Geomatics, Natural Hazards and Risk, 2(1), pp Nadim F., Kjekstad O., Peduzzi P., Herold C. and Jaedicke C., 2006, Global landslide and avalanche hotspots, Landslides 3(2), pp Nandi A. and Shakoor A., 2010, A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses, Engineering Geology, 110 (1-2), pp Pathak S., Poudel R. K. and Kansakar B. R., 2006, Application of Probabilistic Approach in Rock Slope Stability Analysis An Experience from Nepal, Disaster Mitigation of Debris Flows, Slope Failures and Landslides: des, vol. 2, pp Pourghasemi H.R., Pradhan B. and Gokceoglu C., 2012, Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran, Natural Hazards, 63(2), pp Pradhan B. and Lee S., 2010, Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia, Landslides, 7(1), pp

16 Remondo J., González-Díez A., Díaz de Terán J.R. and Cendrero A., 2003, Landslide susceptibility models utilizing spatial data analysis techniques. A case study from the Lower Deba Valley, Guipúzcoa (Spain), Nat. Hazards, 30, Ruff M. and Czurda K., 2008, Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria), Geomorphology, 94(3-4), pp Santacana N., Baeza B., Corominas J., De Paz A. and Marturia J., 2003, A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain), Natural Hazards 30: pp Santoriello A., Scelza F. and Bove R., 2010, Egialea Survey Project: Method and Strategies, p , In: Niccolucci F. and Hermon S. (eds.), Beyond the Artifact: Digital Interpretation of the Past, Proceedings of CAA2004, ARCHAEOLINGUA, Budapest. Schicker R. and Moon V., 2012, Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale, Geomorphology, , pp Schneider G. and Wredeb P., 1998, Artificial neural networks for computer-based molecular design, Progress in Biophysics & Molecular Biology, 70, Shachmurove Y. and Witkowska D., 2000, Utilizing Artificial Neural Network Model to Predict Stock Markets, University of Pennsylvania, Center for Analytic Research in Economics and the Social Sciences, p Thanh L. N. and de Smedt F., 2012, Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam, Environmental Earth Sciences, 66(7), pp Thiebes B., Bell R. and Glade T., 2007, Deterministic landslide susceptibility analysis using SINMAP case study in the Swabian Alb, Germany, In: Proceedings of the conference "Geomorphology for the Future", Obergurgl, Austria, pp Van Westen C. J., Rengers N. and Soeters R., 2003, Use of geomorphological information in indirect landslide susceptibility assessment, Natural Hazards 30, Yalcin A., 2008, GIS-based landslide susceptibility mapping using analytical process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations, Catena, 72, Yilmaz C., Topal T. and Süzen M. L., 2012, GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey), Environmental Earth Sciences, 65 (7), pp Zhang Z. and Friedrich K., 2003, Artificial neural networks applied to polymer composites: a review, Composites Science and Technology, 63,

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση Υπολογιστική Νοημοσύνη Μάθημα 9: Γενίκευση Υπερπροσαρμογή (Overfitting) Ένα από τα βασικά προβλήματα που μπορεί να εμφανιστεί κατά την εκπαίδευση νευρωνικών δικτύων είναι αυτό της υπερβολικής εκπαίδευσης.

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΜΕΛΟΣ ΤΗΣ ΔΙΕΘΝΟΥΣ ΚΑΙ ΕΥΡΩΠΑΪΚΗΣ ΕΤΑΙΡΕΙΑΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ (RSAI, ERSA) Οικονομική Κρίση και Πολιτικές Ανάπτυξης και Συνοχής 10ο Τακτικό Επιστημονικό

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 2006 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα 1. Εισαγωγή 1 2. Μέθοδοι σταθερών

Διαβάστε περισσότερα

Μηχανουργική Τεχνολογία ΙΙ

Μηχανουργική Τεχνολογία ΙΙ Μηχανουργική Τεχνολογία ΙΙ Χαρακτηριστικά διεργασιών - Παραμετροποίηση-Μοντελοποίηση Associate Prof. John Kechagias Mechanical Engineer, Ph.D. Παραμετροποίηση - Μοντελοποίηση Στο κεφάλαιο αυτό γίνεται

Διαβάστε περισσότερα

Backpropagation Multilayer Feedforward Δίκτυα. Κυριακίδης Ιωάννης 2013

Backpropagation Multilayer Feedforward Δίκτυα. Κυριακίδης Ιωάννης 2013 Backpropagation Multilayer Feedforward Δίκτυα Κυριακίδης Ιωάννης 2013 Εισαγωγή Τα νευρωνικά δίκτυα Perceptron που εξετάσαμε μέχρι τώρα είχαν το μειονέκτημα ότι δεν μπορούσαν να αντιμετωπίσουν προβλήματα

Διαβάστε περισσότερα

Εφαρµογές γεωγραφικών επεξεργασιών

Εφαρµογές γεωγραφικών επεξεργασιών ΕΞΑΡΧΟΥ ΝΙΚΟΛΟΠΟΥΛΟΣ ΜΠΕΝΣΑΣΣΩΝ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε. ΛΑΖΑΡΙ ΗΣ & ΣΥΝΕΡΓΑΤΕΣ ΑΝΩΝΥΜΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΛΕΤΩΝ Α.Ε. ΓΕΩΘΕΣΙΑ ΣΥΜΒΟΥΛΟΙ ΑΝΑΠΤΥΞΗΣ Ε.Π.Ε. Εφαρµογές γεωγραφικών επεξεργασιών Α. Κουκουβίνος

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ

ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ Καλύβας Θ., Ζέρβας Ε.¹ ¹ Σχολή Θετικών Επιστημών και Τεχνολογίας, Ελληνικό Ανοικτό Πανεπιστήμιο,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ» ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ

Διαβάστε περισσότερα

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί

Διαβάστε περισσότερα

Επεξεργασία χωρικών δεδομένων στο πλαίσιο του μαθήματος «Συνθετικό Γεωγραφικό Θέμα»

Επεξεργασία χωρικών δεδομένων στο πλαίσιο του μαθήματος «Συνθετικό Γεωγραφικό Θέμα» Επεξεργασία χωρικών δεδομένων στο πλαίσιο του μαθήματος «Συνθετικό Γεωγραφικό Θέμα» Βασίλης Μπατζάκης, Υπ. Διδάκτωρ Καλλιθέα, 2017 Χωρικά δεδομένα θεματικά επίπεδα Αρχικά καλείστε να επεξεργαστείτε χωρικά

Διαβάστε περισσότερα

ΠΡΟΚΑΤΑΡΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΔΙΑΚΙΝΔΥΝΕΥ- ΣΗΣ ΕΝΑΝΤΙ ΚΑΤΟΛΙΣΘΗΣΕΩΝ ΜΕ ΒΑΣΗ ΤΗ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΠΕΡΙΦΕΡΕΙΑΚΗ ΚΛΙΜΑΚΑ

ΠΡΟΚΑΤΑΡΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΔΙΑΚΙΝΔΥΝΕΥ- ΣΗΣ ΕΝΑΝΤΙ ΚΑΤΟΛΙΣΘΗΣΕΩΝ ΜΕ ΒΑΣΗ ΤΗ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΠΕΡΙΦΕΡΕΙΑΚΗ ΚΛΙΜΑΚΑ ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ, ΧΡΙΣΤΟΣ ΧΑΛΚΙΑΣ 41 ΠΡΟΚΑΤΑΡΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΔΙΑΚΙΝΔΥΝΕΥ- ΣΗΣ ΕΝΑΝΤΙ ΚΑΤΟΛΙΣΘΗΣΕΩΝ ΜΕ ΒΑΣΗ ΤΗ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΠΕΡΙΦΕΡΕΙΑΚΗ ΚΛΙΜΑΚΑ Μαρία Φερεντίνου, 1 Χρίστος

Διαβάστε περισσότερα

ΥΩΡΟΘΔΣΖΖ ΚΑΣΑΛΛΖΛΩΝ ΘΔΔΩΝ ΔΓΚΑΣΑΣΑΖ Υ.Τ.Σ.Τ. ΜΔ ΣΖ ΥΡΖΖ G.I.S.: ΔΦΑΡΜΟΓΖ ΣΖ ΕΑΚΤΝΘΟ

ΥΩΡΟΘΔΣΖΖ ΚΑΣΑΛΛΖΛΩΝ ΘΔΔΩΝ ΔΓΚΑΣΑΣΑΖ Υ.Τ.Σ.Τ. ΜΔ ΣΖ ΥΡΖΖ G.I.S.: ΔΦΑΡΜΟΓΖ ΣΖ ΕΑΚΤΝΘΟ ΥΩΡΟΘΔΣΖΖ ΚΑΣΑΛΛΖΛΩΝ ΘΔΔΩΝ ΔΓΚΑΣΑΣΑΖ Υ.Τ.Σ.Τ. ΜΔ ΣΖ ΥΡΖΖ G.I.S.: ΔΦΑΡΜΟΓΖ ΣΖ ΕΑΚΤΝΘΟ Φαηδεπαλαγηψηνπ Μ. 1, Οηθνλνκίδεο Γ. 2 θαη Βνπδνχξεο Κ. 3 1 Γεωλόγος, Αριζηοηέλειο Πανεπιζηήμιο Θεζζαλονίκης, 54124,

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE

ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE ΚΑΤΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Τμήμα Διοικητικής Επιστήμης & Τεχνολογίας Οικονομικό Πανεπιστήμιο Αθηνών 1. Κ. Πραματάρη, Δ.Ε.Τ. / Ο.Π.Α. The

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

Κεφάλαιο Τοπολογικές απεικονίσεις Αζιμουθιακή ισόχρονη απεικόνιση

Κεφάλαιο Τοπολογικές απεικονίσεις Αζιμουθιακή ισόχρονη απεικόνιση Κεφάλαιο 9 Σύνοψη Στο κεφάλαιο αυτό, περιγράφονται αναλυτικές χαρτογραφικές μέθοδοι μετασχηματισμού του χώρου, μετατρέποντας τη γεωμετρία του χάρτη με τρόπο που να απεικονίζεται το ίδιο το χωρικό φαινόμενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΠΛΗΜΜΥΡΕΣ ΚΑΙ ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ

ΜΑΘΗΜΑ ΠΛΗΜΜΥΡΕΣ ΚΑΙ ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ ΜΑΘΗΜΑ ΠΛΗΜΜΥΡΕΣ ΚΑΙ ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ Μελέτη χαρτογράφησης πληµµύρας (flood mapping) µε χρήση του υδραυλικού µοντέλου HEC RAS Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Μάϊος 2006 1 Εκτίµηση

Διαβάστε περισσότερα

Προσαρμογή περιοχικών υδρολογικών σχέσεων στις Ελληνικές λεκάνες

Προσαρμογή περιοχικών υδρολογικών σχέσεων στις Ελληνικές λεκάνες Ημερίδα Ερευνητικού Προγράμματος ΔΕΥΚΑΛΙΩΝ «Εκτίμηση πλημμυρικών ροών στην Ελλάδα σε συνθήκες υδροκλιματικής μεταβλητότητας: Ανάπτυξη φυσικά εδραιωμένου εννοιολογικού πιθανοτικού πλαισίου και υπολογιστικών

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ. και ΣΥΣΤΗΜΑΤΑ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ

ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ. και ΣΥΣΤΗΜΑΤΑ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ και ΣΥΣΤΗΜΑΤΑ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ ΣΚΟΠΟΣ ΜΑΘΗΜΑΤΟΣ ΣΥΝΔΕΣΗ ΜΕ ΑΛΛΑ ΜΑΘΗΜΑΤΑ ΣΕ ΠΟΙΟΥΣ ΑΠΕΥΘΥΝΕΤΑΙ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΟΡΓΑΝΩΣΗ ΠΗΓΕΣ ΔΙΔΑΣΚΟΝΤΕΣ 1o μάθημα: ΕΙΣΑΓΩΓΗ Τί είναι Γεωπληροφορική

Διαβάστε περισσότερα

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος Εαρινό Εξάμηνο 2008 Τρίτη 6:00 μμ 9:00 μμ ΧΩΔ01-101 Το μάθημα περιλαμβάνει προχωρημένες έννοιες σε θέματα πιθανοτήτων, συλλογής

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα

ASPROFOS ENGINEERING S.A.

ASPROFOS ENGINEERING S.A. ASPROFOS ENGINEERING S.A. ΜΕΛΕΤΕΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ ΕΦΑΡΜΟΓΕΣ GIS ΣΕ ΕΝΕΡΓΕΙΑΚΑ ΕΡΓΑ Γιώτη Ευαγγελία 1 - Χουρμουζιάδης Δημήτρης 2 1 Γεωγράφος Ειδικός Γεωπληροφορικής, MSc 2 Δασολόγος

Διαβάστε περισσότερα

CLIMATE CHANGE IMPACTS ON THE WATER BALANCE OF SMALL SCALE WATER BASINS

CLIMATE CHANGE IMPACTS ON THE WATER BALANCE OF SMALL SCALE WATER BASINS . 1,. 2. 3 1,3,,,, 54 124 2,,,,54 124 E-mails: 1 hatzi1@civil.auth.gr, 2 diatol@geo.auth.gr, 3 niktheod@civil.auth.gr H. -. - -,,., -, -., -,. :,,. CLIMATE CHANGE IMPACTS ON THE WATER BALANCE OF SMALL

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ"

Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ" 2 ε ΚΑΣΔΤΘΤΝΗ ΠΟΤΓΧΝ «ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ ΣΧΝ ΟΡΔΙΝΧΝ ΠΔΡΙΟΥΧΝ» Πεξηβάιινλ

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ - ΕΝΟΤΗΤΑ 1 7/4/2013 ΕΝΟΤΗΤΕΣ ΜΑΘΗΜΑΤΟΣ. Ορισμός

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ - ΕΝΟΤΗΤΑ 1 7/4/2013 ΕΝΟΤΗΤΕΣ ΜΑΘΗΜΑΤΟΣ. Ορισμός ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΕΝΟΤΗΤΑ 1 : ΕΙΣΑΓΩΓΗ Διάλεξη 1: Γενικά για το ΓΣΠ, Ιστορική αναδρομή, Διαχρονική εξέλιξη Διάλεξη 2 : Ανάλυση χώρου (8/4/2013) Διάλεξη 3: Βασικές έννοιες των Γ.Σ.Π.. (8/4/2013)

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013.

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. Πρακτικές και καινοτομίες στην εκπαίδευση και την έρευνα. Άγγελος Μπέλλος Καθηγητής Μαθηματικών

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνητή νοημοσύνη

Πληροφορική 2. Τεχνητή νοημοσύνη Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο

Διαβάστε περισσότερα

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος Εαρινό Εξάµηνο 2010/11 Τρίτη 6:00 µµ 9:00 µµ ΧΩΔ01-002 Το µάθηµα περιλαµβάνει προχωρηµένες έννοιες σε θέµατα πιθανοτήτων,

Διαβάστε περισσότερα

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή.

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Τόγιας Παναγιώτης ΤΕΙ Δυτικής Ελλάδας ptogias@outlook.com Μαργαρίτης Σωτήρης ΤΕΙ

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ Ε ΑΦΟΥΣ

ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ Ε ΑΦΟΥΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ Ε ΑΦΟΥΣ Χρίστος Χαλκιάς Τµήµα Γεωγραφίας Σ υ σ τ ή µ α τ α Γ ε ω γ ρ α φ ι κ ώ ν Π λ η ρ ο φ ο ρ ι ώ ν ΙΙ Τι είναι ένα ΨΜΕ Ψηφιακό Μοντέλο Εδάφους θεωρείται κάθε

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΟΠΟΓΡΑΦΙΑΣ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ Πτυχιακή Εργασία των Αϊβαλιώτης Κων/νος (ΑΕΜ 902) Τσουρέκας Κων/νος (ΑΕΜ 559)

Διαβάστε περισσότερα

Μνημόνιο Συνεργασίας μεταξύ Εθνικού Αστεροσκοπείου Αθηνών και Ινστιτούτου Γεωλογικών και Μεταλλευτικών Ερευνών

Μνημόνιο Συνεργασίας μεταξύ Εθνικού Αστεροσκοπείου Αθηνών και Ινστιτούτου Γεωλογικών και Μεταλλευτικών Ερευνών Μνημόνιο Συνεργασίας μεταξύ Εθνικού Αστεροσκοπείου Αθηνών και Ινστιτούτου Γεωλογικών και Μεταλλευτικών Ερευνών Παρακολούθηση Κατολισθητικών Φαινομένων σε Εθνική κλίμακα Ελευθερία Πογιατζή Διεύθυνση Τεχνικής

Διαβάστε περισσότερα

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+ Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+ Ερευνητικές,Δραστηριότητες,και, Ενδιαφέροντα,, Τμήμα,Μηχανικών,Η/Υ,&,Πληροφορικής, Τομέας,Λογικού,των,Υπολογιστών, Εργαστήριο,Γραφικών,,Πολυμέσων,και,Γεωγραφικών,

Διαβάστε περισσότερα

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΔΙΚΤΥO RBF. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.

Διαβάστε περισσότερα

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΙΕΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ

Διαβάστε περισσότερα

Ηµερίδα: Γεωπληροφορική και Εκπαίδευση Η Ελληνική Πραγµατικότητα Χαροκόπειο Πανεπιστήµιο ευτέρα και Τρίτη, 21-22 Maΐου 2007. Γεώργιος Ν.

Ηµερίδα: Γεωπληροφορική και Εκπαίδευση Η Ελληνική Πραγµατικότητα Χαροκόπειο Πανεπιστήµιο ευτέρα και Τρίτη, 21-22 Maΐου 2007. Γεώργιος Ν. Ηµερίδα: Γεωπληροφορική και Εκπαίδευση Η Ελληνική Πραγµατικότητα Χαροκόπειο Πανεπιστήµιο ευτέρα και Τρίτη, 21-22 Maΐου 2007 Γεώργιος Ν. Φώτης Geoinformatics Geoinformatics is a science which develops and

Διαβάστε περισσότερα

Γεωγραφικά Πληροφοριακά Συστήµατα (GIS) στη διαχείριση καταστροφών

Γεωγραφικά Πληροφοριακά Συστήµατα (GIS) στη διαχείριση καταστροφών Γεωγραφικά Πληροφοριακά Συστήµατα (GIS) στη διαχείριση καταστροφών Χρίστος Χαλκιάς ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ - ΜΠΣ, ΚΑΤΕΥΘΥΝΣΗ ΙΑΧΕΡΙΣΗΣ ΦΥΣΙΚΩΝ ΚΑΙ ΑΝΘΡΩΠΟΓΕΝΩΝ ΚΑΤΑΣΤΡΟΦΏΝ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ

Διαβάστε περισσότερα

ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY

ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY 10 ο COMECAP 2010, Πρακτικά Συνεδρίου, Πάτρα 10 th COMECAP 2010, Proceedings, Patras, Greece ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY ΥΧΡΟΥΡΟΝΗΚΖ ΓΗΑΚΤΜΑΝΖ ΣΧΝ ΖΛΔΚΣΡΗΚΧΝ ΔΚΚΔΝΧΔΧΝ ΣΖΝ ΔΛΛΑΓΑ ΓΗΑ ΣΖΝ ΥΡΟΝΗΚΖ ΠΔΡΗΟΓΟ 1998-2007

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Καραγιώργου Σοφία Εισαγωγή Προσομοιώνει βιολογικές διεργασίες (π.χ. λειτουργία του εγκεφάλου, διαδικασία

Διαβάστε περισσότερα

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη 6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη Σάββας Νικολαΐδης 1 ο

Διαβάστε περισσότερα

ΤΕΙ Ιονίων Νήσων - Εργαστηριακές Ασκήσεις στα Γεωγραφικά Συστήματα Πληροφοριών

ΤΕΙ Ιονίων Νήσων - Εργαστηριακές Ασκήσεις στα Γεωγραφικά Συστήματα Πληροφοριών ΕΡΓΑΣΤΗΡΙΟ 8 ο Χωρικές λειτουργίες με διανυσματικά αρχεία Στο εργαστήριο αυτό θα μάθουμε να χρησιμοποιούμε χωρικές αναλύσεις διανυσματικών αρχείων μέσα από την επίλυση ενός χωρικού προβλήματος. Θα προσπαθήσουμε

Διαβάστε περισσότερα

1. Εισαγωγή Βάση δεδομένων Μεθοδολογία Νευρωνικών Δικτύων Αποτελέσματα Βιβλιογραφια Παραρτήμα Ι...

1. Εισαγωγή Βάση δεδομένων Μεθοδολογία Νευρωνικών Δικτύων Αποτελέσματα Βιβλιογραφια Παραρτήμα Ι... ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ ΠΑΡΑ ΟΤΕΟ 7 ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΣΥΝΟΠΤΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΗΜΙΟΥΡΓΙΑ ΣΥΝΟΠΤΙΚΩΝ ΠΡΟΤΥΠΩΝ Συγγραφείς: Φίλιππος Τύµβιος

Διαβάστε περισσότερα

Η διεπιστημονική ορολογία του τομέα διαχείρισης φυσικών κινδύνων Το παράδειγμα του σεισμικού κινδύνου

Η διεπιστημονική ορολογία του τομέα διαχείρισης φυσικών κινδύνων Το παράδειγμα του σεισμικού κινδύνου Η διεπιστημονική ορολογία του τομέα διαχείρισης φυσικών κινδύνων Το παράδειγμα του σεισμικού κινδύνου ΠΕΡΙΛΗΨΗ Βασιλική Μασούρα Ο τομέας της διαχείρισης φυσικών κινδύνων είναι ένας χώρος συνάντησης της

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΙΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΟ ΑΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΗΣ ΠΕΡΙΟΧΗΣ ΤΟΥ ΒΟΛΟΥ

ΔΙΑΣΤΗΜΙΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΟ ΑΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΗΣ ΠΕΡΙΟΧΗΣ ΤΟΥ ΒΟΛΟΥ ΔΙΑΣΤΗΜΙΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΟ ΑΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΗΣ ΠΕΡΙΟΧΗΣ ΤΟΥ ΒΟΛΟΥ Δρ. Μ. Στεφούλη, stefouli@igme.gr Π. Κρασάκης, MSc Γεωλόγος / Ειδικός ΓΠΣ Εισαγωγή Σκοπός της παρουσίασης είναι η αξιολόγηση: Εξειδικευμένων

Διαβάστε περισσότερα

Δομές δεδομένων και ψηφιακή αναπαράσταση χωρικών φαινομένων

Δομές δεδομένων και ψηφιακή αναπαράσταση χωρικών φαινομένων Ενότητα 4 η Δομές δεδομένων και ψηφιακή αναπαράσταση χωρικών φαινομένων Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. - bnakos@central.ntua.gr Bασίλης Κρασανάκης Υποψήφιος διδάκτορας Ε.Μ.Π. - krasvas@mail.ntua.gr Β.

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ Ενότητα 8 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-ΕΙΣΑΓΩΓΗ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-ΕΙΣΑΓΩΓΗ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-ΕΙΣΑΓΩΓΗ Χαρτογραφία Η τέχνη ή επιστήμη της δημιουργίας χαρτών Δημιουργεί την ιστορία μιας περιοχής ενδιαφέροντος Αποσαφηνίζει και κάνει πιο ξεκάθαρο κάποιο συγκεκριμένο

Διαβάστε περισσότερα

Τηλεπισκόπηση και Γεωγραφικά Συστήματα Πληροφοριών (ΓΣΠ) στη διαχείριση περιβαλλοντικών κινδύνων πλημμύρες

Τηλεπισκόπηση και Γεωγραφικά Συστήματα Πληροφοριών (ΓΣΠ) στη διαχείριση περιβαλλοντικών κινδύνων πλημμύρες Τηλεπισκόπηση και Γεωγραφικά Συστήματα Πληροφοριών (ΓΣΠ) στη διαχείριση περιβαλλοντικών κινδύνων πλημμύρες Από Καθηγητή Ιωάννη Ν. Χατζόπουλο, διευθυντή του Εργαστηρίου Τηλεπισκόπησης & ΣΓΠ του Τμήματος

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 η ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Ι ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΗ ΘΕΩΡΗΣΗ ΠΕΡΙΟΧΗΣ ΚΑΤΑΣΚΕΥΗΣ ΣΗΡΑΓΓΑΣ

ΑΣΚΗΣΗ 5 η ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Ι ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΗ ΘΕΩΡΗΣΗ ΠΕΡΙΟΧΗΣ ΚΑΤΑΣΚΕΥΗΣ ΣΗΡΑΓΓΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ MΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝ. ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ `9, 157 80 ΖΩΓΡΑΦΟΥ, ΑΘΗΝΑ NATIONAL TECHNICAL

Διαβάστε περισσότερα

Το κοινωνικό στίγμα της ψυχικής ασθένειας

Το κοινωνικό στίγμα της ψυχικής ασθένειας Διεπιζηημονική Φρονηίδα Υγείας(2015) Τόμος 7,Τεύχος 1, 8-18 ISSN 1791-9649 Το κοινωνικό στίγμα της ψυχικής ασθένειας Κνξδώζε Α 1, Σαξίδε Μ 2, Σνπιηώηεο Κ 3 1 Ννζειεύηξηα ΤΔ, MSc, Γεληθό Ννζνθνκείν Κνξίλζνπ.

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

Οι διαθέσιμες μέθοδοι σε γενικές γραμμές είναι:

Οι διαθέσιμες μέθοδοι σε γενικές γραμμές είναι: Χωρική Ανάλυση Ο σκοπός χρήσης των ΣΓΠ δεν είναι μόνο η δημιουργία μίας Β.Δ. για ψηφιακές αναπαραστάσεις των φαινομένων του χώρου, αλλά κυρίως, η βοήθειά του προς την κατεύθυνση της υπόδειξης τρόπων διαχείρισής

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Δημιουργία Ψηφιακού Μοντέλου Βυθού για τον κόλπο του Σαρωνικού, με τη χρήση Συστημάτων Γεωγραφικών Πληροφοριών

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Δημιουργία Ψηφιακού Μοντέλου Βυθού για τον κόλπο του Σαρωνικού, με τη χρήση Συστημάτων Γεωγραφικών Πληροφοριών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ ΠΤΥΧΙΑΚΗ

Διαβάστε περισσότερα

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ - ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) "ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ" 2 η ΚΑΤΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΤΕΙ Ιονίων Νήσων - Εργαστηριακές Ασκήσεις στα Γεωγραφικά Συστήματα Πληροφοριών

ΤΕΙ Ιονίων Νήσων - Εργαστηριακές Ασκήσεις στα Γεωγραφικά Συστήματα Πληροφοριών ΕΡΓΑΣΤΗΡΙΟ 9 ο Χωρικές λειτουργίες με ψηφιδωτά και διανυσματικά αρχεία Σε αυτό το εργαστήριο, θα ασχοληθούμε με χωρικές λειτουργίες βασιζόμενοι κυρίως σε ψηφιδωτά αρχεία. Μετά τις εκτεταμένες πυρκαγιές

Διαβάστε περισσότερα

8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 637

8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 637 8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 637 Υλοποιηση νεων τεχνολογιων (Web GIS, Application Servers) για τη δυναμικη προσβαση μεσω διαδικτυου στη βαση δεδομενων του Ελληνικου Εθνικου Κεντρου Ωκεανογραφικων

Διαβάστε περισσότερα

ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ

ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ Ιωάννα Τζουλάκη Κώστας Τσιλίδης Ιωαννίδης: κεφάλαιο 2 Guyatt: κεφάλαιο 18 ΕΠΙςΤΗΜΟΝΙΚΗ ΙΑΤΡΙΚΗ Επιστήμη (θεωρία) Πράξη (φροντίδα υγείας) Γνωστικό μέρος Αιτιό-γνωση Διά-γνωση Πρό-γνωση

Διαβάστε περισσότερα

Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών. (Geographical Information Systems GIS)

Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών. (Geographical Information Systems GIS) Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών (Geographical Information Systems GIS) ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ, ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΧΑΛΚΙΑΣ ΧΡΙΣΤΟΣ Εισαγωγή στα GIS 1 Ορισµοί ΣΓΠ Ένα σύστηµα γεωγραφικών πληροφοριών

Διαβάστε περισσότερα

,,, (, 100875) 1989 12 25 1990 2 23, - 2-4 ;,,, ; -

,,, (, 100875) 1989 12 25 1990 2 23, - 2-4 ;,,, ; - 25 3 2003 5 RESOURCES SCIENCE Vol. 25 No. 3 May 2003 ( 100875) : 500L - 2-4 - 6-8 - 10 114h - 120h 6h 1989 12 25 1990 2 23-2 - 4 : ; ; - 4 1186cm d - 1 10cm 514d ; : 714 13 317 714 119 317 : ; ; ; :P731

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής Πανεπιστήµιο Πειραιώς, Καραολή ηµητρίου 80, 18534 Πειραιάς Τηλ. 210 414-2147, e-mail: sofianop@unipi.gr

Διαβάστε περισσότερα

Earthquake, Landslide and Flood Disaster Prevention: the SciNetNatHaz project

Earthquake, Landslide and Flood Disaster Prevention: the SciNetNatHaz project Information: K. Papatheodorou, Project Coordinator, TEI of Central Macedonia, Hellas, www.scinetnathaz.net Earthquake, Landslide and Flood Disaster Prevention: the SciNetNatHaz project K. Papatheodorou

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 18η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Machine Learning του T. Mitchell, McGraw- Hill, 1997,

Διαβάστε περισσότερα

Περιεχόμενα. Πρόγραμμα Spatial Analyst. Εισαγωγή στο Πρόγραμμα Spatial Analyst. κεφάλαιο 1. Πρόλογος... 9 Περιεχόμενα... 11

Περιεχόμενα. Πρόγραμμα Spatial Analyst. Εισαγωγή στο Πρόγραμμα Spatial Analyst. κεφάλαιο 1. Πρόλογος... 9 Περιεχόμενα... 11 Πρόλογος... 9 Περιεχόμενα... 11 Πρόγραμμα Spatial Analyst κεφάλαιο 1 Εισαγωγή στο Πρόγραμμα Spatial Analyst Γενικά... 23 υνατότητες του Spatial Analyst... 23 Επεξηγήσεις συμβατικών όρων... 24 Σειρά διαδοχικών

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ NAIADE ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ. Υπεύθυνη Μαθήματος Αναστασία Στρατηγέα Αναπλ. Καθηγ. Ε.Μ.Π.

ΜΕΘΟΔΟΣ NAIADE ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ. Υπεύθυνη Μαθήματος Αναστασία Στρατηγέα Αναπλ. Καθηγ. Ε.Μ.Π. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΟΣ NAIADE Υπεύθυνη Μαθήματος

Διαβάστε περισσότερα

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ» ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΕΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ: ΕΔΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ «ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης

Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης Α. Αϊναλής 1, Ι. Μελιάδης 2, Π. Πλατής 3 και Κ. Τσιουβάρας 4 1 Διεύθυνση

Διαβάστε περισσότερα

Τα GIS στην Πρόληψη και ιαχείριση των Φυσικών Καταστροφών

Τα GIS στην Πρόληψη και ιαχείριση των Φυσικών Καταστροφών Ηµερίδα: Πρόληψη - ιαχείριση των Φυσικών Καταστροφών. Ο ρόλος του Αγρονόµου Τοπογράφου Μηχανικού Τα GIS στην Πρόληψη και ιαχείριση των Φυσικών Καταστροφών Γεώργιος Ν.Φώτης Αναπληρωτής Καθηγητής ΠΘ Kωστής

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ARCGIS ΚΑΙ INNOVYZE INFOWATER ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΥΔΡΕΥΣΗΣ

ΕΦΑΡΜΟΓΕΣ ARCGIS ΚΑΙ INNOVYZE INFOWATER ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΥΔΡΕΥΣΗΣ http://www.hydroex.gr ΕΦΑΡΜΟΓΕΣ ARCGIS ΚΑΙ INNOVYZE INFOWATER ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΥΔΡΕΥΣΗΣ Σπύρος Μίχας, Πολιτικός Μηχανικός, PhD, MSc Ελένη Γκατζογιάννη, Πολιτικός Μηχανικός, MSc Αννέτα

Διαβάστε περισσότερα

Κωδικός μαθήματος: (ώρες):

Κωδικός μαθήματος: (ώρες): Γενικές πληροφορίες μαθήματος: Τίτλος μαθήματος: Γεωγραφικά Συστήματα Πληροφοριών Πιστωτικές Κωδικός μαθήματος: CE0-UE1 Φόρτος εργασίας μονάδες: (ώρες): 90 Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

Η ΧΡΗΣΗ ΤΗΣ ΠΟΛΥΔΙΑΣΤΑΤΗΣ ΤΥΧΑΙΑΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΣΤΗΝ ΚΟΙΝΩΝΙΟΛΟΓΙΚΗ ΕΡΕΥΝΑ THE USE OF MULTISTAGE RANDOM SAMPLING IN SOCIAL RESEARCH

Η ΧΡΗΣΗ ΤΗΣ ΠΟΛΥΔΙΑΣΤΑΤΗΣ ΤΥΧΑΙΑΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΣΤΗΝ ΚΟΙΝΩΝΙΟΛΟΓΙΚΗ ΕΡΕΥΝΑ THE USE OF MULTISTAGE RANDOM SAMPLING IN SOCIAL RESEARCH Η ΧΡΗΣΗ ΤΗΣ ΠΟΛΥΔΙΑΣΤΑΤΗΣ ΤΥΧΑΙΑΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΣΤΗΝ ΚΟΙΝΩΝΙΟΛΟΓΙΚΗ ΕΡΕΥΝΑ Μαρκοπούλου, Διονυσία 1,* 1 Περιβαλλοντολόγος Χαρτογράφος, Email: markopoulou.d@gmail.com Περίληψη Σκοπός της εργασίας αυτής

Διαβάστε περισσότερα

Διερεύνηση της Πιθανότητας Κινδύνου Έναντι Ρευστοποίησης Βασιζόμενη σε Επιτόπου Δοκιμές, με τη Χρήση Νευρωνικού Δικτύου

Διερεύνηση της Πιθανότητας Κινδύνου Έναντι Ρευστοποίησης Βασιζόμενη σε Επιτόπου Δοκιμές, με τη Χρήση Νευρωνικού Δικτύου Διερεύνηση της Πιθανότητας Κινδύνου Έναντι Ρευστοποίησης Βασιζόμενη σε Επιτόπου Δοκιμές, με τη Χρήση Νευρωνικού Δικτύου Assessing Liquefaction Potential from in-situ Investigation by Means of an Artificial

Διαβάστε περισσότερα

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries No. 2 3+/,**, Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 2, pp.3+/,,**,. * * Development of a Seismic Data Analysis System for a Short-term Training for Researchers

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ

ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ ΠΑΡΑ ΟΤΕΟ 9 ΠΛΑΤΦΟΡΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ Συγγραφείς: ημήτρης Παρώνης, Αδριανός Ρετάλης, Φίλιππος Τύμβιος,

Διαβάστε περισσότερα

Διδάσκουσα: Χάλκου Χαρά,

Διδάσκουσα: Χάλκου Χαρά, Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών

Διαβάστε περισσότερα

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα Γιώργος Γιαννής, Παναγιώτης Παπαντωνίου, Ελεονώρα Παπαδημητρίου, Αθηνά Τσολάκη Τομέας Μεταφορών και Συγκοινωνιακής Υποδομής,

Διαβάστε περισσότερα

Αξιολόγηση Κατολισθήσεων κατά μήκος οδικών αξόνων. Εφαρμογή στον οδικό άξονα Σέρρες- Λαϊλιάς

Αξιολόγηση Κατολισθήσεων κατά μήκος οδικών αξόνων. Εφαρμογή στον οδικό άξονα Σέρρες- Λαϊλιάς Ημερίδα «Κατολισθητικά Φαινόμενα: Εκδήλωση- Παρακολούθηση- Αντιμετώπιση» - 7 Δεκεμβρίου 2015 Αξιολόγηση Κατολισθήσεων κατά μήκος οδικών αξόνων. Εφαρμογή στον οδικό άξονα Σέρρες- Λαϊλιάς ΘΕΟΔΟΣΙΟΣ Θ. ΠΑΠΑΛΙΑΓΚΑΣ,

Διαβάστε περισσότερα

Εφαρμογή Υπολογιστικών Τεχνικών στη Γεωργία

Εφαρμογή Υπολογιστικών Τεχνικών στη Γεωργία Ελληνική ημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Εφαρμογή Υπολογιστικών Τεχνικών στη Γεωργία Ενότητα 6 : Συστήματα Λήψης Αποφάσεων στην Γεωργία (2/3) Μελετίου Γεράσιμος 1 Ανοιχτά Ακαδημαϊκά Μαθήματα

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα & Περιβάλλον

Πληροφοριακά Συστήματα & Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ» «Χωρικά μοντέλα πρόβλεψης αναβλάστησης

Διαβάστε περισσότερα

Κεφάλαιο 9. 9 Ψηφιακά μοντέλα αναγλύφου και Υδρολογία. 9.1 Εντοπισμός και ομαλοποίηση καταβυθίσεων

Κεφάλαιο 9. 9 Ψηφιακά μοντέλα αναγλύφου και Υδρολογία. 9.1 Εντοπισμός και ομαλοποίηση καταβυθίσεων Κεφάλαιο 9 9 Ψηφιακά μοντέλα αναγλύφου και Υδρολογία Η κίνηση του νερού πάνω στη γήινη επιφάνεια ελέγχεται κατά κύριο λόγο από τη μορφολογία του εδάφους. Στη συνέχεια εξετάζεται η δυνατότητα χρήσης ψηφιακών

Διαβάστε περισσότερα