α) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "α) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10)"

Transcript

1 Θεωρούμε τρίγωνο ΑΒΓ με ΑΒ=9 και ΑΓ=15. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. ΑΔ 2 ΑΕ α) Να αποδείξετε ότι = και = 2 ΑΒ 3 ΕΓ β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 15) (Μονάδες 10)

2 Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. α) Να εξετάσετε σε ποιές από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε την απάντησή σας. i. ΑΒ=8, ΑΓ=12, A 35, ΔΕ=20, ΔΖ=30, Δ 35. ii. A 47, B 38, E 47, Δ 95. iii. ΑΒ=ΑΓ, A Δ, ΔΕ=ΔΖ. (Μονάδες 15) β) Στις περιπτώσεις που το τρίγωνο ΑΒΓ είναι όμοιο με το ΔΕΖ, να γράψετε τους ίσους λόγους των ομόλογων πλευρών τους. (Μονάδες 10)

3 Στο παρακάτω ςχήμα τα τμήματα ΑΕ και ΒΔ τζμνονται ςτο Γ. Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΕΔΓ είναι όμοια ςε κάθε μια από τισ παρακάτω περιπτώςεισ: α) ΑΒ//ΔΕ (Μονάδεσ 12) 1 β) ΒΓ=2ΔΓ και ΕΓ ΑΓ 2 (Μονάδεσ 13)

4 α) Να εξετάσετε αν δύο τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια σε κάθε μία από τις παρακάτω περιπτώσεις: i. ΑΓ=4, ΒΓ=16, ΒΑ=18, ΔΖ=10, ΕΖ=40, ΔΕ=48. = ii. A = 63, Γ 83, Δ = 63, Ε = 34. (Μονάδες 15) β) Έστω τρίγωνο ΑΒΓ με πλευρές ΑΒ=6, ΑΓ=7 και ΒΓ=8. Ποιο θα είναι το μήκος των πλευρών ενός τριγώνου ΔΕΖ το οποίο είναι όμοιο με το τρίγωνο ΑΒΓ, με λόγο ομοιότητας 3; (Μονάδες 10)

5 Ένας άνθρωπος σπρώχνει ένα κουτί προς τα πάνω στη ράμπα του παρακάτω σχήματος. α) Να αποδείξετε ότι για το ύψος y, που απέχει το κουτί από το έδαφος κάθε χρονική στιγμή, ισχύει ότι s y=, όπου s το μήκος που έχει διανύσει το κουτί πάνω στη ράμπα. 4 β) Όταν το κουτί απέχει από το έδαφος 2 m, να βρείτε: i. Το μήκος s που έχει διανύσει το κουτί στη ράμπα. ii. Την απόσταση του σημείου Δ από την άκρη της ράμπας Α. (Μονάδες 15) (Μονάδες 3) (Μονάδες 7)

6 Τα μήκη των πλευρών τριγώνου ΑΒΓ είναι α=8, β=6 και γ=5. α) Να αποδείξετε ότι το τρίγωνο είναι αμβλυγώνιο. (Μονάδες 11) β) Να υπολογίσετε τις προβολές της πλευράς ΑΒ στις πλευρές ΑΓ και ΒΓ. (Μονάδες 14)

7 Σε τρίγωνο ΑΒΓ η διχοτόμος της γωνίας Α τέμνει την πλευρά ΒΓ σε σημείο Δ, τέτοιο ώστε ΒΔ 3 =. ΔΓ 4 3 α) Να αποδείξετε ότι ΑΒ= ΑΓ. 4 (Μονάδες 12) 5 β) Αν επιπλέον ισχύει ότι ΒΓ= ΑΓ, να εξετάσετε αν το τρίγωνο ΑΒΓ είναι ορθογώνιο. Να 4 δικαιολογήσετε την απάντησή σας. (Μονάδες 13)

8 α) Ποιες από τις παρακάτω τριάδες θετικών αριθμών μπορούν να θεωρηθούν μήκη πλευρών ορθογωνίου τριγώνου; Να δικαιολογήσετε την απάντησή σας. i. 3, 4, 5 ii. 3λ, 4λ, 5λ ( λ>0) iii. 4, 5, 6 (Μονάδες18) β) Στο παρακάτω ορθογώνιο τρίγωνο να αποδείξετε ότι, το μήκος x είναι ακέραιο πολλαπλάσιο του 4. (Μονάδες 7)

9 Από ένα σημείο Σ που βρίσκεται έξω από έναν δοσμένο κύκλο φέρουμε τα εφαπτόμενα τμήματα ΣΑ και ΣΒ και μία τέμνουσα ΣΓΔ. Να αποδείξετε ότι: α) i. Τα τρίγωνα ΣΒΓ και ΣΔΒ είναι όμοια. ii. Τα τρίγωνα ΣΑΓ και ΣΔΑ είναι όμοια. (Μονάδες 16) β) ΑΓ ΒΔ=ΑΔ ΒΓ (Μονάδες 9)

10 Τα παρακάτω τρίγωνα ΑΒΓ και ΔΕΖ έχουν Α = Ζ, Β = Ε και ΑΓ=25, ΕΖ=12, ΕΔ=18 και ΖΔ=15. α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια. (Μονάδες 8) β) Να συμπληρώσετε την ισότητα των λόγων με τις κατάλληλες πλευρές του τριγώνου ΔΕΖ : ΒΑ ΑΓ ΓΒ = = (Μονάδες 9) γ) Να υπολογίσετε τα x και y. (Μονάδες 8)

11 Στο σχήμα που ακολουθεί, το τμήμα ΔΕ είναι παράλληλο στην πλευρά ΒΓ του τριγώνου ΑΒΓ και επιπλέον ισχύουν ΑΔ=4, ΔΒ=5 και ΔΕ=6. α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΑΔΕ είναι όμοια. β) Με τη βοήθεια του ερωτήματος α) να συμπληρώσετε τα κενά στην ισότητα: ΑΒ... ΑΓ = =... ΔΕ... (Μονάδες 9) (Μονάδες 9) 4 5 γ) Ένας μαθητής χρησιμοποιεί την αναλογία = για να υπολογίσει το x. Να εξηγήσετε γιατί 6 x αυτή η αναλογία είναι λάθος, να γράψετε τη σωστή και να υπολογίσετε την τιμή τουx. (Μονάδες 7)

12 Τα παρακάτω τρίγωνα ΑΒΓ και ΔΕΖ είναι ορθογώνια με ορθές τις γωνίες Α και Δ αντίστοιχα. Επιπλέον, για τις πλευρές των τριγώνων ΑΒΓ και ΔΕΖ αντίστοιχα ισχύουν ΑΒ=28, ΑΓ=24 και ΔΕ=21, ΔΖ=18. α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια. (Μονάδες 10) β) Με τη βοήθεια του ερωτήματος α) να συμπληρώσετε κατάλληλα τα κενά: ΑΒ... ΑΓ = =... ΕΖ... (Μονάδες 9) γ) Από τις παρακάτω ισότητες να επιλέξετε τη σωστή i. ΖΕ = ΓΒ ii. ΖΕ = ΓΒ iii. ΖΕ = ΓΒ iv. ΖΕ= ΓΒ (Μονάδες 6)

13 Στο σχήμα που ακολουθεί ισχύουν ΑΒ//ΔΓ, ΑΕ=6, ΑΒ=8, ΓΕ=15 και ΔΕ=10. α) Να βρείτε δυο ζεύγη ίσων γωνιών των τριγώνων ΑΕΒ και ΔΕΓ. Να αιτιολογήσετε την απάντησή σας. (Μονάδες 8) β) Να αποδείξετε ότι τα τρίγωνα ΑΕΒ και ΔΕΓ είναι όμοια και να γράψετε την ισότητα των λόγων των ομόλογων πλευρών τους. (Μονάδες 9) γ) Να υπολογίσετε τα τμήματα ΒΕ και ΔΓ. (Μονάδες 8)

14 Να χρησιμοποιήσετε τις πληροφορίες που σας δίνονται για το κάθε ζεύγος τριγώνων των παρακάτω σχημάτων, προκειμένου να απαντήσετε στα ακόλουθα: α) Ποιο από τα παρακάτω ζεύγη τριγώνων είναι όμοια και ποιο δεν είναι; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 14) β) Για το ζεύγος των όμοιων τριγώνων του προηγούμενου ερωτήματος, i. να γράψετε την ισότητα των λόγων των ομόλογων πλευρών. (Μονάδες 6) ii. να βρείτε το λόγο ομοιότητάς τους. 1 ο ζεύγος: τρίγωνα ΚΛΜ και ΖΔΕ 2 ο ζεύγος: τρίγωνα ΑΒΓ και ΗΚΛ (Μονάδες 5)

15 Στο παρακάτω σχήμα, τα πολύγωνα ΑΒΓΔΕ και ΚΛΜΝΡ είναι όμοια και έχουν Δ =Ν και Β =Λ. α) Να προσδιορίσετε το λόγο ομοιότητάς τους. Να αιτιολογήσετε την απάντησή σας. β) Να υπολογίσετε το μήκος της πλευράς ΑΕ. γ) Να βρείτε την περίμετρο του πολυγώνου ΑΒΓΔΕ. (Μονάδες 8) (Μονάδες 8) (Μονάδες 9)

16 Στο τρίγωνο ΑΒΓ του παρακάτω σχήματος, το τμήμα ΔΕ είναι παράλληλο στην πλευρά ΒΓ του τριγώνου. Από το σημείο Δ φέρουμε την παράλληλη προς τη ΒΕ η οποία τέμνει την ΑΓ στο σημείο Ζ. Να αποδείξετε ότι: Α Β Ζ Ε Γ α) Β γ) ΑΕ ΑΓ = ΑΔ ΑΒ ΑΖ ΑΕ = ΑΔ ΑΒ ΑΕ ΑΖ = ΑΓ ΑΕ (Μονάδες 10) (Μονάδες 10) (Μονάδες 5)

17 Δίνεται τρίγωνο ΑΒΓ και τυχαίο σημείο Δ στην πλευρά ΒΓ. Φέρνουμε από το σημείο Δ παράλληλες στις πλευρές ΑΓ και ΑΒ που τέμνουν αντίστοιχα τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ. Να αποδείξετε ότι: α) β) ΔΕ ΒΔ = ΑΓ ΒΓ ΖΔ ΔΓ = ΑΒ ΒΓ ΔΕ ΖΔ γ) + = 1 ΑΓ ΑΒ (Μονάδες 10) (Μονάδες 10) (Μονάδες 5)

18 Δίνεται ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) και ΒΕ το ύψος του. Αν είναι ΑΒ=3, ΓΔ=7 και ΒΓ=4 τότε, α) να αποδείξετε ότι ΒΕ= 2 3. (Μονάδες 13) β) να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ. (Μονάδες 12)

19 Στη διχοτόμο Οδ της γωνίας ˆ xoy θεωρούμε τα σημεία Α, Β τέτοια ώστε ΟΒ = 2ΟΑ. Η κάθετος στην Οδ στο σημείο Α τέμνει την πλευρά Οx στο σημείο Ε και έστω Δ η προβολή του Β στην Οy. Να αποδείξετε ότι: α) Τα τρίγωνα ΟΑΕ και ΟΔΒ είναι όμοια. β) 2ΟΑ 2 = ΟΔ ΟΕ. (Μονάδες 10) (Μονάδες 15)

20 Στο κυρτό τετράπλευρο ΑΒΓΔ του παρακάτω σχήματος, η διχοτόμος της γωνίας Α είναι παράλληλη στην πλευρά ΒΓ και τέμνει τη ΔΒ στο Ε και τη ΔΓ στο Ζ. Αν ΑΔ = 12, ΑΒ = 8, ΔΕ= 9 και ΖΓ = 6, να αποδείξετε ότι: α) ΕΒ = 6 (Μονάδες 13) β) ΔΖ =9 (Μονάδες 12)

21 Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε, Ζ, Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε Να αποδείξετε ότι: α)εζ//θη//δβ. AΕ ΑΖ ΓΗ ΓΘ 1 = = = =. ΑΔ ΑΒ ΓΒ ΓΔ 3 (Μονάδες 10) β) ΕΖ = ΘΗ = 1 3 ΔΒ. (Μονάδες 10) γ) ΕΖΗΘ παραλληλόγραμμο. (Μονάδες 5)

22 Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ και Ε των πλευρών ΑΒ και ΑΓ αντίστοιχα ώστε ΑΔ ΑΕ 1 = =. Από το σημείο Ε φέρνουμε παράλληλη προς την ΑΒ, η οποία τέμνει την ΑΒ ΑΓ 3 ΒΓ στο σημείο Ζ. Να αποδείξετε ότι : α) Τα τρίγωνα ΑΒΓ και ΑΔΕ είναι όμοια. β) 3ΒΖ = ΒΓ. (Μονάδες 10) (Μονάδες 15)

23 Οι διαγώνιοι του τραπεζίου ΑΒΓΔ (ΑΒ//ΓΔ) με ΓΔ>ΑΒ τέμνονται στο Ο. Η παράλληλη από το Β προς την ΑΔ τέμνει την ΑΓ στο Μ. Αν ΟΑ=12, ΟΒ=9 και ΟΓ=36, να αποδείξετε ότι: α) ΟΔ = 27 (Μονάδες 12) β) ΟΜ = 4 (Μονάδες 13)

24 Σε ημικύκλιο διαμέτρου ΑΒ κέντρου Ο θεωρούμε σημείο του Δ. Η χορδή ΔΒ τέμνει το ημικύκλιο διαμέτρου ΟΒ στο Γ. Να αποδείξετε ότι: α) Τα τρίγωνα ΑΔΒ και ΟΓΒ είναι όμοια. (Μονάδες 12) β) (ΑΔΒ)= 4 (ΟΓΒ) (Μονάδες 13)

25 Δίνεται τρίγωνο ΑΒΓ (ΑΒ>ΑΓ) και ΑΔ, ΑΕ η εσωτερική και η εξωτερική διχοτόμος του αντίστοιχα. Αν είναι ΑΒ=6, ΔΒ=3, ΒΓ=5 και ΒΕ=15, να αποδείξετε ότι: α) ΑΓ = 4 (Μονάδες 12) β) ΔΕ = 12 (Μονάδες 13)

26 Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( ˆΑ = 90 ) με ύψος ΑΔ και ΑΓ= 8, ΔΓ= 32. Να υπολογίσετε τα 5 μήκη των παρακάτω τμημάτων: α) ΒΓ (Μονάδες 9) β) ΑΒ (Μονάδες 8) γ) ΑΔ (Μονάδες 8)

27 Δίνεται τρίγωνο ΑΒΓ με πλευρές α= 7, β= 4 και μ = 33. α) Να αποδείξετε ότι γ=5. β (Μονάδες 13) β) Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις γωνίες του. (Μονάδες 12)

28 Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( ˆΑ = 90 ) με ΑΓ= 4 και ύψος ΑΔ= α) Να υπολογίσετε το μήκος του τμήματος ΔΓ. β) Να αποδείξετε ότι 9 ΔΒ=. 5 γ) Να βρείτε το εμβαδόν του τριγώνου ΑΒΓ. (Μονάδες 10) (Μονάδες 10) (Μονάδες 5)

29 Δίνεται τρίγωνο ΑΒΓ με πλευρές ΑΒ= 6, ΒΓ= 9 και ˆΒ 60. = α) Να αποδείξετε ότι ΑΓ= 3 7. β) Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις γωνίες του. γ) Να υπολογίσετε την προβολή της ΑΒ πάνω στη ΒΓ. (Μονάδες 8) (Μονάδες 8) (Μονάδες 9)

30 ΘΕΜΑ 4 Σε οξυγϊνιο τρίγωνο ΑΒΓ φζρουμε τα φψη του ΑΔ και ΒΕ. α) Αν το τρίγωνο ΑΒΓ είναι και ςκαληνό, τότε: i. Να αποδείξετε ότι τα τρίγωνα ΑΔΓ και ΒΕΓ είναι όμοια. (Μονάδεσ 10) ii. Να δικαιολογήςετε γιατί τα τρίγωνα ΑΔΒ και ΒΕΑ δεν μπορεί να είναι όμοια. (Μονάδεσ 10) β) Αν το τρίγωνο ΑΒΓ είναι και ιςοςκελζσ με κορυφή το Γ, τότε μποροφμε να ιςχυριςτοφμε ότι τα τρίγωνα ΑΔΒ και ΒΕΑ είναι όμοια; Να αιτιολογήςετε την απάντηςή ςασ. (Μονάδεσ 5)

31 ΘΕΜΑ 4 Σε κφκλο κζντρου Ο θεωροφμε δφο χορδζσ του ΑΒ και ΓΔ που τζμνονται ςε ζνα ςημείο Μ. α) Αν το ςημείο Α είναι το μζςο του τόξου ΓΔ, να αποδείξετε ότι: i. Όταν η χορδή ΑΒ είναι κάθετη ςτο χορδή ΓΔ, τότε AM AB 2 AΓ (Μονάδεσ 8) ii. Όταν η χορδή ΑΒ δεν είναι κάθετη ςτη χορδή ΓΔ, ιςχφει η ςχζςη αιτιολογήςετε την απάντηςή ςασ. β) Αν για τισ χορδζσ ΑΒ και ΓΔ που τζμνονται ςε ςημείο Μ ιςχφει ότι αποδείξετε ότι το ςημείο Α είναι το μζςο του τόξου ΓΔ. AM AB 2 AΓ ; Να (Μονάδεσ 9) AM AB 2 AΓ, να (Μονάδεσ 8)

32 ΘΕΜΑ 4 Στην πλευρά ΑΒ παραλληλογράμμου ΑΒΓΔ θεωροφμε ςημείο Ε τζτοιο, ώςτε πλευρά ΔΓ θεωροφμε ςημείο Ζ τζτοιο, ώςτε ςτα ςημεία Μ και Ν αντίςτοιχα, να αποδείξετε ότι: α) ΑΜ=ΓΝ=2MN BE 1 AB και ςτην 3 1 ΔΖ ΔΓ. Αν η διαγώνιοσ ΑΓ τζμνει τισ ΔΕ και ΒΖ 3 (Μονάδεσ 13) 1 β) MN A Γ 5 (Μονάδεσ 12)

33 ΘΕΜΑ 4 Δίνεται τρίγωνο ΑΒΓ. Θεωροφμε ΑΜ τη διάμεςό του και Ε τυχαίο ςημείο του τμήματοσ ΒΜ. Από το Ε φζρουμε ευθεία παράλληλη ςτην ΑΜ που τζμνει την πλευρά ΑΒ ςτο Δ και την προζκταςη τησ ΓΑ ςτο Ζ. α) Να ςυμπληρώςετε τισ αναλογίεσ και να αιτιολογήςετε την επιλογή ςασ: ΔΕ i. ΑΒ ΕΖ ii. ΓΜ (Μονάδεσ 12) β) Να αποδείξετε ότι το άθροιςμα ΔΕ+ΕΖ είναι ςταθερό, για οποιαδήποτε θζςη του Ε ςτο ΒΜ. (Μονάδεσ 13)

34 ΘΕΜΑ 4 Δίνεται κφκλοσ (O,R) και μία διάμετρόσ του ΑΒ. Με διαμζτρουσ τα τμήματα ΟΑ και ΟΒ γράφουμε τουσ κφκλουσ κζντρων Κ και Λ αντίςτοιχα. Ζνασ τζταρτοσ κφκλοσ κζντρου Μ και ακτίνασ ρ εφάπτεται εξωτερικά των κφκλων κζντρων κζντρου Ο. Κ και Λ και εςωτερικά του κφκλου α) Να εκφράςετε τισ διακζντρουσ ΚΜ, ΛΜ και ΟΜ των αντιςτοίχων κφκλων ωσ ςυνάρτηςη των ακτίνων τουσ, δικαιολογώντασ την απάντηςή ςασ. (Μονάδεσ 12) β) Να αποδείξετε ότι R. 3 (Μονάδεσ 13)

35 ΘΕΜΑ 4 Ένα κινητό ξεκινάει από ένα σημείο Α και κινείται βόρεια 3 χιλιόμετρα, κατόπιν συνεχίζει 10 χιλιόμετρα ανατολικά, στη συνέχεια προχωράει 4 χιλιόμετρα βόρεια και τέλος 14 χιλιόμετρα ανατολικά καταλήγοντας στο σημείο Ε. α) Αν από το σημείο Ε επιστρέψει στο σημείο Α από το οποίο ξεκίνησε, κινούμενο ευθύγραμμα, να βρείτε την απόσταση ΑΕ που θα διανύσει. (Μονάδες 12) β) Τα σημεία Α, Γ και Ε είναι συνευθειακά; Να αιτιολογήσετε πλήρως την απάντησή σας. (Μονάδες 13)

36 ΘΕΜΑ 4 Δφο παίκτεσ Π1 και Π2 παίηουν ςε ζνα τραπζηι του μπιλιάρδου με διαςτάςεισ 1x2 μζτρα. Μία άςπρθ μπάλα τοποκετείται ζτςι ώςτε, να απζχει 1,75 μζτρα από τθν πλευρά ΒΓ και 0,75 μζτρα από τθν πλευρά ΔΓ, όπωσ φαίνεται ςτο ςχιμα. Ο παίκτθσ Π1 παίηει πρώτοσ και χτυπάει τθν μπάλα Μ ζτςι ώςτε, να προςκροφςει ςτο απζναντι μζροσ του τραπεηιοφ ςτο ςθμείο Ε και κατόπιν να μπει ςτθν τρφπα που βρίςκεται ςτο μζςον τθσ πλευράσ ΓΔ. Ο παίκτθσ Π2 τοποκετεί τθν μπάλα Μ πάλι ςτο ίδιο ςθμείο εκκίνθςθσ και προτίκεται να χτυπιςει ζτςι τθ μπάλα ώςτε, να προςκροφςει ςτθν πλευρά ΓΔ ςε ςθμείο τθσ Κ και κατόπιν να μπει ςτθν τρφπα ςτθν κορυφιβ (θ διαδρομι ΜΚΒ όπωσ φαίνεται ςτο ςχιμα). Ο ςυμπαίκτθσ του ιςχυρίηεται ότι αυτό δεν μπορεί να πραγματοποιθκεί και κα χάςει. (Σημείωση: Η γωνία με τθν οποία χτυπάει θ μπάλα ςε μία πλευρά ιςοφται με τθ γωνία με τθν οποία απομακρφνεται) α) Να βρείτε πόςο απζχει το ςθμείο Ε από τθν κορυφι Γ του μπιλιάρδου. (Μονάδεσ 12) β) Γιατί ο παίκτθσ Π1 ιςχυρίηεται ότι κα χάςει ο ςυμπαίκτθσ του; Να αιτιολογιςετε πλιρωσ τθν απάντθςι ςασ. (Μονάδεσ 13)

37 ΘΕΜΑ 4 Στο παρακάτω ςκαληνό τρίγωνο ΑΒΓ θεωροφμε τα ςημεία Δ και Ε ςτισ πλευρζσ ΑΒ και ΑΓ αντίςτοιχα, ζτςι ώςτε να ιςχφουν: 2 2 AE ΑΓ και A Δ ΑΒ. 3 3 α) Να αποδείξετε ότι β) Να εξετάςετε αν ιςχφει ΑΕΔ ΑΓΒ. AE ΕΔ AΓ. ΒΓ γ) Να εξετάςετε αν το τμήμα ΒΓ είναι παράλληλο ςτο τμήμα ΔΕ. (Μονάδεσ 9) (Μονάδεσ 8) (Μονάδεσ 8) Να αιτιολογήςετε πλήρωσ τισ απαντήςεισ ςασ.

38 ΘΕΜΑ 4 Σε δυο ςθμεία ενόσ ευκφγραμμου δρόμου ΑΒ βρίςκονται δυο κατακόρυφοι ςτφλοι φψουσ 2 και 3 μζτρων αντίςτοιχα. Χρθςιμοποιοφμε δυο ςφρματα για να ενϊςουμε τθν κορυφι του κακενόσ με τθ βάςθ του άλλου, ϊςτε τα δυο ςφρματα να διαςταυρϊνονται ςε ζνα ςθμείο Κ (ςχιμα). α) Να βρείτε τα ηεφγθ των όμοιων τριγϊνων που ςχθματίηονται. Να αιτιολογιςετε τθν απάντθςι ςασ. (Μονάδεσ 8) β) Προκειμζνου να μετριςουμε πόςο απζχει από το ζδαφοσ το ςθμείο Κ ςτο οποίο διαςταυρϊνονται τα ςφρματα, μετριςαμε τθν απόςταςθ του Κ από τον μικρότερο ςτφλο και τθν βρικαμε 4 μζτρα. Αν θ απόςταςθ ΑΒ των ςτφλων ιταν 10 μζτρα, πόςο απείχε το ςθμείο Κ από το ζδαφοσ; (Μονάδεσ 9) γ) Δείξτε ότι όποια και αν είναι θ απόςταςθ ΑΒ που απζχουν οι δυο ςτφλοι μεταξφ τουσ, θ απόςταςθ του ςθμείου Κ, όπου διαςταυρϊνονται τα δυο ςφρματα από το ζδαφοσ,κα είναι θ ίδια. (Μονάδεσ 8)

39 ΘΕΜΑ 4 Δίνεται τρίγωνο ΑΒΓ εγγεγραμμζνο ςε κφκλο (Ο,R) τζτοιο ώςτε να ιςχφει 2 2 2α β γ 2. Αν η προζκταςη τησ διαμζςου του ΑΜ τζμνει τον κφκλο ςτο ςημείο Ρ, να αποδείξετε ότι : α) β) α 3 μ α 2 α 3 ΜΡ 6 γ) (ΑΒΓ)=6 (ΜΡΓ) (Μονάδεσ 8) (Μονάδεσ 8) (Μονάδεσ 9)

40 ΘΕΜΑ 4 Κυρτό τετράπλευρο ΑΒΓΔ είναι εγγεγραμμζνο ςε κφκλο. Οι διαγώνιοί του ΑΓ και ΒΔ τζμνονται ςτο ςημείο Μ, το οποίο είναι το μζςο τησ διαγωνίου ΒΔ. Να αποδείξετε ότι: α) β) γ) (Μονάδεσ 7) (Μονάδεσ 9) (Μονάδεσ 9)

41 ΘΕΜΑ 4 Δίνεται τρίγωνο ΑΒΓ και τα ςημεία Δ και Ε των πλευρών του ΑΒ και ΑΓ αντίςτοιχα, ώςτε ΑΔ ΑΕ 1. Από το ςημείο Α φζρνουμε ευθεία (ε) παράλληλη ςτη ΒΓ. Η ΑΒ ΑΓ 3 ευθεία (ε) τζμνει τισ προεκτάςεισ των ΒΕ και ΓΔ ςτα ςημεία Ζ, Η αντίςτοιχα. Να αποδείξετε ότι: α) ΔΕ//ΓΒ β) ΖΕ = 1 2 ΕΒ. γ) ΑΖ = 1 2 ΒΓ. δ) (ΒΗΖ) =2 (ΑΒΖ) (Μονάδεσ 5) (Μονάδεσ 7) (Μονάδεσ 7) (Μονάδεσ 6)

42 ΘΕΜΑ 4 Δίνεται τραπζηιο ΑΒΓΔ (ΑΒ//ΓΔ) και ςθμείο Μ τθσ πλευράσ του ΑΔ ώςτε ΑΜ 1. ΑΔ 3 Από το Μ φζρνουμε παράλλθλθ προσ τισ βάςεισ του τραπεηίου, θ οποία τζμνει τισ ΑΓ και ΒΓ ςτα ςθμεία Κ και N αντίςτοιχα. Να αποδείξετε ότι: α) AK 1 AΓ 3 β) ΚΝ ΑΒ = 2 3 (Μονάδεσ 6) (Μονάδεσ 6) γ) ΜΝ = 1 3 ΓΔ ΑΒ (Μονάδεσ 6) δ) Ο ιςχυριςμόσ «τα τραπζηια ΑΒΝΜ και ΑΒΓΔ είναι όμοια» είναι αλθκισ ι ψευδισ; Να δικαιολογιςετε τθν απάντθςι ςασ. (Μονάδεσ 7)

43 ΘΕΜΑ 4 Δίνονται δφο κφκλοι (Ο, α) και (Κ, β) με α>β, οι οποίοι εφάπτονται εξωτερικά ςτο Μ. Φζρνουμε το κοινό εφαπτόμενο τμήμα ΑΒ με Α,Β ςημεία των κφκλων (Ο, α) και (Κ, β) αντίςτοιχα. Από το Μ Θεωροφμε την κάθετη ςτο ΑΒ, η οποία τζμνει τα ευθφγραμμα τμήματα ΑΚ και ΑΒ ςτα ςημεία Λ και Ν αντίςτοιχα. Να αποδείξετε ότι: α) ΜΛ = αβ α β (Μονάδεσ 8) β) ΛΝ = αβ α β γ) Αν Ε1 και Ε 2 είναι τα εμβαδά των κφκλων (Ο, α) και (Κ, β) αντίςτοιχα, τότε (Μονάδεσ 8) Ε Ε ( ΑΛΝ). ( ΚΜΛ) (Μονάδεσ 9)

44 ΘΕΜΑ 4 Δίνεται τρίγωνο ΑΒΓ και ςημεία Μ, Λ και Ζ πάνω ςτισ πλευρζσ ΑΒ, ΑΓ και ΒΓ αντίςτοιχα τζτοια, ώςτε ΑΜ 1 ΑΒ, ΑΛ 2 ΑΓ και ΒΖ 1 ΒΓ α) Να αποδείξετε ότι ΑΜΛ ΑΒΓ β) Να αποδείξετε ότι 1 3 ΜΖΛ 5 ΑΒΓ 18. γ) Να υπολογίςετε το λόγο των εμβαδών ΑΜΖΛ ΑΒΓ.. (Μονάδεσ 7) (Μονάδεσ 12) (Μονάδεσ 6)

45 ΘΕΜΑ 4 Θεωροφμε τρίγωνο ΑΒΓ με διάμεςο Η, να αποδείξετε ότι: α) ΑΗ ΑΔ ΑΓ ΑΕ α 5 ΑΜ. Αν τα φψη του ΑΔ και ΒΕ τζμνονται ςτο ςημείο 2 (Μονάδεσ 8) β) Η γωνία Α του τριγϊνου ΑΒΓ είναι οξεία. (Μονάδεσ 9) γ) ΑΗ ΑΔ α 2 (Μονάδεσ 8)

46 ΘΕΜΑ 4 Δίνεται ιςοςκελζσ τρίγωνο ΑΒΓ με ΑΒ = ΑΓ, α) Να αποδείξετε ότι: i) Τα τρίγωνα ΒΔΓ και ΑΒΓ είναι όμοια. ˆΑ 36 και η διχοτόμοσ του ΒΔ. (Μονάδεσ 6) 2 ii) ΑΔ ΑΓ ΔΓ (Μονάδεσ 9) β) Αν θεωρήςουμε το ΑΓ ωσ μοναδιαίο τμήμα (ΑΓ = 1), να υπολογίςετε το μήκοσ του τμήματοσ ΑΔ και το λόγο ΑΔ ΔΓ. (Μονάδεσ 10)

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΝΑΛΟΓΙΕΣ Α. ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ Ο 1. Δίνεται τρίγωνο ABΓ με AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει τις AB,AΓ στα Δ,E αντίστοιχα. α) Να αποδείξετε ότι AΔ = AB

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB

Διαβάστε περισσότερα

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.

Διαβάστε περισσότερα

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ. 1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ. 1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο 14 1 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:9 ο _18997 ΘΕΜΑ Β Ένας άνθρωπος σπρώχνει ένα κουτί προς τα πάνω στη ράµπα του παρακάτω σχήµατος. α) Να αποδείξετε ότι για το ύψος y, που απέχει το κουτί από

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων Λύσεις Διαγωνισμάτων Λύσεις 1 ου Διαγωνίσματος Θέμα 1 ο α) Από μία κορυφή, π.χ. την Α, φέρουμε ευθεία xy ΒΓ. Τότε ω = Β και φ = Γ, ως εντός εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα.

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Παπαθανάση Κέλλυ Πατσιμάς Ανδρέας Πατσιμάς Δημήτρης Ραμαντάνης Βαγγέλης

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) Να αποδείξετε

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ 5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Θ ΕΜΑ Β 2814 1. Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι Α= 8. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Καρδαμίτσης Σπύρος «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον

Διαβάστε περισσότερα

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7 ΒΑΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 4 7. Αν ισχύουν να αποδείξετε ότι. Αν ισχύει ότι 5 5 να αποδείξετε

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130 ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΒΖ είναι παραλληλόγραµµο.

Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΒΖ είναι παραλληλόγραµµο. 1. ίνεται παραλληλόγραµµο ΑΒΓ µε ΑΒ=2ΒΓ. Προεκτείνουµε την πλευρά Α κατά τµήµα Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΓΒ είναι

Διαβάστε περισσότερα

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ ο ΘΕΜΑ 84. Δίνεται ισοσκελές τρίγωνο ΑΒΓ B EH B και Z B, να αποδείξετε ότι: α) Τα τρίγωνα ΒΓΔ και ΓΒΕ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1. ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ. ΕΝΟΤΗΤΑ 1 Η : Τα βασικά γεωμετρικά σχήματα 1

ΕΝΟΤΗΤΑ 1. ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ. ΕΝΟΤΗΤΑ 1 Η : Τα βασικά γεωμετρικά σχήματα 1 ΕΝΟΤΗΤΑ Η : Τα βασικά γεωμετρικά σχήματα ΕΝΟΤΗΤΑ. ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ Όταν ήμουν χρονών άρχισα να διαβάζω τα Στοιχεία του Ευκλείδη Αυτό ήταν ένα από τα μεγάλα γεγονότα στη ζωή μου, τόσο εκτυφλωτικό

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) Α1. Να αποδείξετε ότι,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. 7η έκδοση

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. 7η έκδοση Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 7η έκδοση Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ ο ΘΕΜΑ 84. Δίνεται ισοσκελές τρίγωνο ΑΒΓ B EH B και Z B, να α) Τα τρίγωνα ΒΓΔ και ΓΒΕ είναι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο )

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο ) 0 05 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -0 ο _9005 ΘΕΜΑ Β (7 ο -9 ο ) Σε τρίγωνο ΑΒΓ η διχοτόµος της γωνίς Αˆ τέµνει την πλευρά ΒΓ σε σηµείο, τέτοιο ώστε Β 3 =

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

. Ασκήσεις για εξάσκηση

. Ασκήσεις για εξάσκηση . Ασκήσεις για εξάσκηση Βασικές ασκήσεις Εφαρµογές 1.76 ίνεται ένα τρίγωνο ΑΒΓ µε AB= 8 και AΓ= 1. Ένας κύκλος διέρχεται από τα σηµεία Β και Γ και τέµνει τις πλευρές ΑΒ και ΑΓ στα σηµεία και Ε αντίστοιχα.

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ Διατυπώστε το θεώρημα του Θαλή, κάνετε σχήμα και γράψτε την αναλογία που εκφράζει το θεώρημα του Θαλή στο συγκεκριμένο σχήμα. Απάντηση: «Αν τρείς τουλάχιστον παράλληλες ευθείες

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. 5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1 Έστω ΑΒΓ ένα τρίγωνο με πλευρές α, β και γ. Συμβολίζουμε με τα την ημιπερίμετρο α + β + γ του ΑΒΓ, δηλαδή: τ =. 2 Το εμβαδόν Ε του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ.3414. Βεϊζη Αρίων Α.Μ.3551. Μουτζιάνου Γεώργιος Α.Μ. 3405. Παντελάκη Άννα Α.Μ.3341

Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ.3414. Βεϊζη Αρίων Α.Μ.3551. Μουτζιάνου Γεώργιος Α.Μ. 3405. Παντελάκη Άννα Α.Μ.3341 Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ.3414 Βεϊζη Αρίων Α.Μ.3551 Μουτζιάνου Γεώργιος Α.Μ. 3405 Παντελάκη Άννα Α.Μ.3341 Παπουτσάκης Κώστας Α.Μ.3249 Χριστοφάκη Μαρία Α.Μ.3277 1 Ορισμοί 1. Σημείο είναι

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

1 Εγγεγραµµένα σχήµατα

1 Εγγεγραµµένα σχήµατα Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου 3. Έστω x = 3 4 :4+ 5 και y = 45 4 3 + 73. (α) Να βρεθούν οι αριθμοί

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 Θέμα 1 ο A. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: Ρ(Α Β) = Ρ(Α) +

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1

ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1 ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1 ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 2 ΠΕΡΙΕΧΕΙ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΤΡΙΓΩΝΑ ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ ΤΡΑΠΕΖΙΑ ΕΓΓΕΓΡΑΜΜΕΝΑ ΣΧΗΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 3 ΦΡΟΝΤΙΣΤΗΡΙΑ

Διαβάστε περισσότερα

Α={1,11,111,1111,..., 11...1 }

Α={1,11,111,1111,..., 11...1 } Θαλής Γ' Γυμνασίου 1995-1996 1. Δύο μαθητές Α, Β χρησιμοποιούν ένα πίνακα 3x3, όπως στο σχήμα, για να παίξουν "τρίλιζα". Καθένας γράφει σ' ένα τετραγωνάκι της επιλογής του ένα σταυρό ή έναν κύκλο. (Και

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ Τηλ. 0 36653-0367784 - Fax: 0 36405 Tel. 0 36653-0367784 - Fax: 0 36405 ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 B ΓΥΜΝΑΣΙΟΥ 3 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5 A = a: b b. 5a ΘΕΜΑ ο Έστω α θετικός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

222223 444441 222220+ 2. Θαλής 1998 Β Γυµνασίου Α= 1998 1997 + 1996 1995 + + 2 1

222223 444441 222220+ 2. Θαλής 1998 Β Γυµνασίου Α= 1998 1997 + 1996 1995 + + 2 1 Να αποδείξετε ότι ο αριθµός 222223 444441 222220+ 222216 2 222222 είναι ακέραιος. Να βρεθεί ο ακέραιος αυτός. Θαλής 1998 Β Γυµνασίου Να αποδειχθεί ότι ο αριθµός Α= 1998 1997 + 1996 1995 + + 2 1 είναι πολλαπλάσιο

Διαβάστε περισσότερα