Εξερευνώντας γεωμετρικές έννοιες με μαθητές Γ Γυμνασίου χρησιμοποιώντας το λογισμικό Geogebra σε αντιδιαστολή με το χαρτί και το μολύβι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εξερευνώντας γεωμετρικές έννοιες με μαθητές Γ Γυμνασίου χρησιμοποιώντας το λογισμικό Geogebra σε αντιδιαστολή με το χαρτί και το μολύβι"

Transcript

1 Έρκυνα, Επιθεώρηση Εκπαιδευτικών Επιστημονικών Θεμάτων, Τεύχος 1ο, , 2014 Εξερευνώντας γεωμετρικές έννοιες με μαθητές Γ Γυμνασίου χρησιμοποιώντας το λογισμικό Geogebra σε αντιδιαστολή με το χαρτί και το μολύβι Αικατερίνη Ρουμπή Μαθηματικός ΠΕ3, 1 ο Γυμνάσιο Αμαρουσίου Περίληψη. Στην παρούσα εργασία παρουσιάζονται τα ευρήματα της έρευνας που εκπονήθηκε στα πλαίσια της επιμόρφωσης β-επιπέδου, 4 ης περιόδου Μαΐου- Νοεμβρίου Ένα τρίωρο σενάριο με κατάλληλα φύλλα εργασίας εφαρμόστηκε σε ένα τμήμα της Γ Γυμνασίου στο εργαστήρι υπολογιστών του σχολείου και σε ένα άλλο τμήμα της Γ Γυμνασίου στην τάξη με χαρτί και μολύβι. Η έρευνα δείχνει πως η διαδικασία μάθησης στα δύο προαναφερθέντα περιβάλλοντα μάθησης είναι διαφορετική. Τα εργαλεία ενός λογισμικού μπορούν να διαμεσολαβήσουν τις έννοιες και να διευκολύνουν τη νοητή δημιουργία τους καθώς και την αναγνώριση σχέσεων και κανονικοτήτων. Στο παραδοσιακό μοντέλο χαρτί- μολύβι η νοητική ικανότητα του μαθητή είναι ο βασικός παράγοντας που οδηγεί στη μάθηση. Η παρούσα μελέτη επιβεβαιώνει την έρευνα. Λέξεις κλειδιά: περιβάλλον μάθησης, λογισμικό, δραστηριότητα Εισαγωγή Από το 2010 έως σήμερα στην Ελλάδα γίνεται μια μεγάλη προσπάθεια αλλαγής της στάσης και της συμπεριφοράς απέναντι στα Μαθηματικά και στη Μαθηματική Εκπαίδευση στα σχολεία όλων των βαθμίδων. Αυτή η προσπάθεια συνίσταται καταρχήν στον εμπλουτισμό των σχολικών βιβλίων με τη βοήθεια μικροπειραμάτων και κατά δεύτερον στη συστηματική επιμόρφωση των εκπαιδευτικών, γνωστή ως επιμόρφωση β-επιπέδου. Τα διαδραστικά σχολικά βιβλία των Μαθηματικών (από την 3 η Δημοτικού έως και τη β Λυκείου) υπάρχουν στο διαδίκτυο στην ψηφιακή τους μορφή και είναι εμπλουτισμένα με 830 μικροπειράματα. Ο εκπαιδευτικός μπορεί να επιλέγει όποια από αυτά ταιριάζουν στη διδασκαλία του και στην τάξη του και είτε να τα παρουσιάζει αυτούσια στους μαθητές, με τη βοήθεια διαδραστικού πίνακα ή προτζέκτορα, είτε στην καλύτερη περίπτωση να εμπλέκει τους μαθητές στις δραστηριότητες του μικροπειράματος και με κατάλληλο φύλλο εργασίας να τους δίνει την ευκαιρία του πειραματισμού και της ανακάλυψης. Κάθε ένα από τα 830 μικροπειράματα περιέχει οδηγίες και δραστηριότητες που μπορούν να χρησιμοποιηθούν άμεσα αλλά υπάρχει και η δυνατότητα επέμβασης στο αρχείο λογισμικού και μετατροπής του ανάλογα με τις ανάγκες της εκάστοτε διδασκαλίας. Η επιμόρφωση β-επιπέδου των εκπαιδευτικών στόχους έχει την εξοικείωση των εκπαιδευτικών με τα διάφορα διαθέσιμα λογισμικά, με την έννοια της δραστηριότητας και του φύλλου εργασίας αλλά κυρίως την αλλαγή στάσης των εκπαιδευτικών απέναντι στη διδασκαλία των Μαθηματικών ώστε από το μοντέλο πίνακας-κιμωλία να περάσει ομαλά και επιτυχώς σε ένα μοντέλο πειραματισμού και διερευνητικής συμμετοχής των μαθητών

2 234 Α. Ρουμπή (Κυνηγός κ.ά., 2008). Σύμφωνα με αυτό το μοντέλο η γνώση δεν «παρουσιάζεται» στο μαθητή αλλά μέσα από δοκιμή και λάθος και από διαπραγμάτευση σε ομάδες «ανακαλύπτεται». Η διαδικασία αυτή δεν είναι αυτόματη. Περνά μέσα από διατύπωση εικασίας, έλεγχο, αναδιατύπωση αν χρειαστεί και τέλος μαθηματική εξήγηση (αν μιλάμε για μαθητές γυμνασίου) ή μαθηματική απόδειξη (αν μιλάμε για μαθητές λυκείου). Θεωρητικό πλαίσιο Η τεχνολογία έχει εισβάλει καθοριστικά και καταλυτικά στη ζωή μας. Και στην εκπαίδευση μας αναγκάζει να επαναπροσδιορίσουμε τι σημαίνει γνώση και πώς επιτυγχάνεται(kaput, 1998). Η τεχνολογία ανοίγει ένα καινούριο παράθυρο στη δόμηση νοήματος, παρέχει εργαλεία δημιουργίας και ανακάλυψης και μπορεί να κάνει τα Μαθηματικά πιο προσιτά στους μαθητές (Noss & Hoyles, 1996). Η έρευνα (Arzarello et al., 2002) έχει δείξει ότι η τεχνολογία από μόνη της δεν προκαλεί εκπαιδευτική αλλαγή, το λογισμικό από μόνο του δεν παρέχει τη μετάβαση. Αν, όμως, τα εργαλεία του λογισμικού έχουν γίνει σαφή και έχουν εισαχθεί στη σχολική κουλτούρα τότε είναι δυνατόν να χρησιμοποιηθεί το λογισμικό με παραγωγικό τρόπο. Συγκεκριμένα στην περιοχή της γεωμετρίας τα σύγχρονα γεωμετρικά λογισμικά δημιουργούν δυναμικούς διασυνδεδεμένους μικρόκοσμους μέσα στους οποίους πραγματοποιούνται κατασκευές, διερευνήσεις που θα ήταν εξ ορισμού δύσκολες στα πλαίσια των συμβατικών εργαλείων της διδακτικής αίθουσας (Κεΐσογλου, 2006). Ο ρόλος του εκπαιδευτικού εξακολουθεί να είναι καθοριστικός καθώς και ο ρόλος της δραστηριότητας και του σωστά δομημένου φύλλου εργασίας. Οι Laborde et al. (2006) διακρίνουν τέσσερα είδη δραστηριοτήτων : Δραστηριότητες στις οποίες το περιβάλλον διευκολύνει τις υλικές ενέργειες αλλά δεν αλλάζει τη δραστηριότητα για τους μαθητές, πχ παράγοντας σχήματα και μετρώντας τα στοιχεία τους. Δραστηριότητες στις οποίες το περιβάλλον διευκολύνει την εξερεύνηση και ανάλυση των μαθητών πχ προσδιορίζοντας σχέσεις μέσα σε ένα σχήμα μέσω του συρσίματος. Δραστηριότητες οι οποίες μπορούν να γίνουν με χαρτί και μολύβι, αλλά μπορούν να επιλυθούν διαφορετικά σε ένα DGS (Dynamic Geometry Systems) λογισμικό, πχ μια κατασκευαστική δραστηριότητα μπορεί να λυθεί στο DGS χρησιμοποιώντας ένα γεωμετρικό μετασχηματισμό ή το άθροισμα διανυσμάτων. Δραστηριότητες που δεν μπορούν να τεθούν χωρίς τη μεσολάβηση του DGE, πχ ανακατασκευάζοντας ένα δυναμικό διάγραμμα μέσω πειραματισμού με αυτό, ώστε να προσδιορισθούν οι ιδιότητές του. Ο δεύτερος τύπος δραστηριότητας μπορεί να χρησιμοποιηθεί ως ερευνητικό εργαλείο για διερεύνηση των ιδεών των μαθητών. Δρα ως παράθυρο στις αντιλήψεις και κατανοήσεις των μαθητών, όπως φαίνεται στην έρευνα των Arzarello et al. (2002). Περιγραφή σεναρίου Στα πλαίσια της επιμόρφωσης β-επιπέδου εκπονήθηκε το τρίωρο σενάριο που παρουσιάζεται σε αυτό το άρθρο. Οι δραστηριότητες που επιλέχθηκαν ανήκουν στη δεύτερη από τις κατηγορίες που αναφέρθηκαν παραπάνω, δηλαδή είναι δραστηριότητες που το ψηφιακό περιβάλλον δίνει μεγαλύτερη ευχέρεια για πειραματισμό και διερεύνηση.

3 Εξερευνώντας γεωμετρικές έννοιες 235 Οι δραστηριότητες του σεναρίου εφαρμόστηκαν σε ένα τμήμα της Γ Γυμνασίου του 1 ου Γυμνασίου Αμαρουσίου στο εργαστήρι των υπολογιστών του σχολείου με τη βοήθεια του λογισμικού geogebra και στη συνέχεια εφαρμόστηκαν σε ένα άλλο τμήμα της Γ Γυμνασίου στη σχολική τάξη με μολύβι και χαρτί. Το βασικό ερώτημα ήταν αν υπάρχουν και ποιες είναι οι διαφορές ανάμεσα στα δύο περιβάλλοντα μάθησης. Συγκεκριμένα αν ο δυναμικός χειρισμός γεωμετρικών αντικειμένων και σχέσεων που παρέχει το λογισμικό geogebra επιτρέπει στους μαθητές : α) να εκφράζουν μέσω αυτού μαθηματικές ιδέες και νοήματα και β) να αναπτύσσουν εικασίες και υποθέσεις μέσω της διερεύνησης και του πειραματισμού ψηφιακών φαινομένων. Η έρευνα (Arzarello et al., 2002) δείχνει πως στο περιβάλλον χαρτί-μολύβι η νοητική ικανότητα του μαθητή προχωρά τη γνωστική διαδικασία, ενώ στο περιβάλλον του λογισμικού τα εργαλεία του μπορούν να τη διαμεσολαβήσουν. Σύμφωνα με την ίδια έρευνα το σύρσιμο (dragging) είναι ένα τέτοιο εργαλείο και δίνει τη δυνατότητα για διαφορετικούς τύπους συρσίματος, τους οποίους χρησιμοποιούν οι μαθητές σύμφωνα με τους διαφορετικούς τους σκοπούς κατά τη διάρκεια της διαδικασίας επίλυσης ανοιχτών προβλημάτων. Ακολουθούν τύποι συρσίματος: - Wandering dragging (σύρσιμο περιπλάνησης): Μετακινώντας με τυχαίο τρόπο τα βασικά σημεία πάνω στην οθόνη, χωρίς κάποιο πλάνο. - Bound dragging (κατευθυνόμενο σύρσιμο): Μετακινώντας ένα σημείο ήδη συνδεδεμένο με ένα αντικείμενο. - Guided dragging (καθοδηγούμενο σύρσιμο): Σύροντας τα βασικά σημεία του σχήματος, ώστε να του δώσουν ένα συγκεκριμένο σχήμα. - Dummy locus dragging (σύρσιμο κρυφού ή τεχνητού (γεωμετρικού) τόπου): Μετακινώντας ένα βασικό σημείο ώστε το σχήμα να διατηρεί μια ιδιότητα που έχει ανακαλυφθεί. Το σημείο που μετακινείται ακολουθεί ένα μονοπάτι, ακόμα και αν οι χρήστες δεν το συνειδητοποιούν: ο τόπος δεν είναι ορατός και δεν μιλάει στους μαθητές, που δεν συνειδητοποιούν ότι σύρουν κατά μήκος ενός τόπου. - Line dragging (σύρσιμο γραμμής): Σχεδιάζοντας νέα σημεία κατά μήκος μιας γραμμής ώστε να διατηρήσουν την κανονικότητα του σχήματος. - Linked dragging (συνδεδεμένο σύρσιμο): Συνδέοντας ένα σημείο με ένα αντικείμενο και μετακινώντας το πάνω σε αυτό το αντικείμενο. - Dragging test: Μετακινώντας σημεία, ώστε να δουν αν το σχέδιο διατηρεί τις αρχικές του ιδιότητες. Στο παρόν σενάριο παρατηρήθηκε πως οι μαθητές αξιοποιούν αυτές τις διαφορετικές μορφές συρσίματος, ώστε να επιτύχουν διαφορετικούς στόχους, όπως το να εξερευνήσουν, να εικάσουν, να επικυρώσουν, να αιτιολογήσουν. Και στις δύο εφαρμογές χρησιμοποιήθηκε ομαδοσυνεργατική μέθοδος (Ζωγόπουλος, 2013). Στο εργαστήρι κάθε ομάδα αποτελούνταν από δύο ή τρεις μαθητές και της αντιστοιχούσε ένας υπολογιστής. Όλα τα μέλη της ομάδας έπρεπε να πειραματιστούν με το ποντίκι και κάθε 5 λεπτά να εναλλάσσονται στη χρήση του. Ένας μαθητής κάθε ομάδας ήταν

4 236 Α. Ρουμπή υπεύθυνος για τη συμπλήρωση στο φύλλο εργασίας των σκέψεων, εικασιών, σχημάτων και αποδείξεων που προέκυπταν. Στην τάξη δημιουργήθηκαν τετραμελείς ομάδες και σε κάθε μαθητή δόθηκε φύλλο εργασίας ώστε όλοι να έχουν την ευκαιρία να σχεδιάσουν και να προσεγγίσουν τις δραστηριότητες. Όμως τους ζητήθηκε στο τέλος να παραδώσουν ένα φύλλο εργασίας ανά ομάδα και να ορίσουν έναν γραμματέα που θα το συμπλήρωνε μετά από τη σύμφωνη γνώμη όλων των μελών της ομάδας. Οι οδηγίες που δόθηκαν και στα δύο περιβάλλοντα ήταν οι ίδιες. Αρχικά να μελετούν για δύο λεπτά ο καθένας μόνος του τη δραστηριότητα και μετά μέσα από συζήτηση και διαπραγμάτευση να ξεκινούν την κατασκευή που ζητά. Να μην απορρίπτουν αλλά ούτε να αποδέχονται καμία ιδέα παρά μόνο αν έχουν πειστεί από τον συμμαθητή τους. Έτσι να αναγκάζονται να εξηγούν τις ιδέες τους και με αυτόν τον τρόπο να κατακτούν καλύτερη κατανόηση των εννοιών. Όταν χρειάζεται να εξηγήσουμε τις ιδέες μας τότε ξεκαθαρίζουν μέσα μας και «συνειδητοποιούμε τι ξέρουμε» (μεταγνώση) (Kapa, 2001). Στη συνέχεια ζητήθηκε από τους μαθητές να προσπαθούν να διατυπώνουν εικασίες και μετά να τις ελέγχουν για την ορθότητά τους. Αν η εικασία ήταν λανθασμένη να επαναδιατυπώνουν και να την ξαναελέγχουν όσες φορές χρειαστεί έως ότου καταλήξουν στο επιθυμητό αποτέλεσμα. Με τον τρόπο αυτό γίνεται μια απλή προσομοίωση της επιστημονικής ανακαλυπτικής διαδικασίας. Στο τέλος κάθε φύλλου εργασίας υπήρχε πάντα απαίτηση μαθηματικής αιτιολόγησης ώστε να βεβαιώνονται όλοι για την ορθότητα της λύσης αλλά και για να τονίζεται η αναγκαιότητα της απόδειξης στα μαθηματικά. Σημειώνεται ότι οι μαθητές ήταν εξοικειωμένοι με τον ομαδοσυνεργατικό τρόπο εργασίας καθώς και με τη διαδικασία διατύπωσης εικασίας και ελέγχου διότι χρησιμοποιούνται συστηματικά στην καθημερινή διδασκαλία τους. Ο ρόλος του εκπαιδευτικού και στα δύο περιβάλλοντα ήταν ίδιος. Να εμψυχώνει και να ενθαρρύνει τους μαθητές να συνεχίσουν τη διερεύνησή τους. Περνούσε συνεχώς από τη μία ομάδα στην άλλη κυκλικά. Απέφευγε να δίνει απαντήσεις του τύπου «σωστό», «λάθος» αλλά επαναδιατύπωνε και με κατάλληλες κάθε φορά ερωτήσεις προσπαθούσε να στρέψει τους μαθητές στη μεταξύ τους συζήτηση και διαπραγμάτευση. Επίσης υπενθύμιζε τα εργαλεία του λογισμικού μέσα από τα οποία μπορούσαν να βρουν τις απαντήσεις που έψαχναν. 1 η Διδακτική ώρα στο εργαστήρι Η/Υ με geogebra Σχήμα 1. 1 η δραστηριότητα 1 ης διδακτικής ώρας σεναρίου στο εργαστήρι Η/Υ Σε αυτή την πρώτη ώρα οι μαθητές κλήθηκαν να μελετήσουν μία απλή αλλά βασική ιδέα της γεωμετρίας : ότι ανάμεσα σε δύο παράλληλες ευθείες μπορούν να κατασκευαστούν

5 Εξερευνώντας γεωμετρικές έννοιες 237 ισεμβαδικά τρίγωνα όταν έχουν κοινή βάση πάνω σε μία από τις δύο παράλληλες και την τρίτη κορυφή να κινείται ελεύθερα πάνω στην άλλη παράλληλη. Στο σχήμα που δόθηκε στο εργαστήρι Η/Υ (σχήμα 1) το κίτρινο τρίγωνο ΑΒΓ ήταν σταθερό ενώ το μπλε τρίγωνο ΑΒΔ είχε σταθερή βάση και η κορυφή Δ μπορούσε να κινείται προς όλες τις κατευθύνσεις. Αρχικά ζητήθηκε από τους μαθητές να προσεγγίσουν το ερώτημα διαισθητικά, να εικάσουν και η ερώτηση που ακολούθησε ήταν «πόσο σίγουρος είσαι;» και στην απάντηση πχ «είμαι 80% σίγουρος» ακολουθούσε «τι μπορείς να κάνεις για να γίνεις 100% σίγουρος;». Οι μαθητές ξεκίνησαν μετακινώντας με τυχαίο τρόπο το σημείο Δ πάνω στην οθόνη(wandering dragging, Arzarello et al., 2002), χωρίς κάποιο πλάνο, ώστε να παρατηρούν τις αλλαγές στα εμβαδά των σχημάτων που δίνονταν στο κάτω μέρος της οθόνης. Στη συνέχεια οι μαθητές διερεύνησαν πόσα τελικά τρίγωνα υπάρχουν με τις ζητούμενες ιδιότητες, δηλαδή με ίδια βάση και ίδιο εμβαδόν. Τους ζητήθηκε να κατασκευάσουν ένα τρίγωνο με τις δύο ιδιότητες μετά ένα άλλο, μετά όσα περισσότερα μπορούν και στο τέλος να απαντήσουν στην ερώτηση πόσα τελικά τέτοια τρίγωνα υπάρχουν. Το είδος του συρσίματος αυτή τη φορά ήταν α) το καθοδηγούμενο σύρσιμο (guided drugging) σύροντας τα βασικά σημεία του σχήματος, ώστε να του δώσουν το συγκεκριμένο σχήμα που ήθελαν και β) το σύρσιμο γραμμής(line dragging) σχεδιάζοντας νέα σημεία κατά μήκος μιας γραμμής ώστε να διατηρήσουν την κανονικότητα του σχήματος δηλαδή το εμβαδόν του τριγώνου σταθερό. Σε όλες τις ομάδες υπήρχε κάποιος που «έβλεπε» πως είναι άπειρα αλλά πάλι σε όλες τις ομάδες υπήρχαν και «δύσπιστοι» μαθητές οπότε γόνιμες συζητήσεις έλαβαν χώρα. Στην προσπάθειά τους να εξηγήσουν ο ένας στον άλλο προχωρούσαν σε βάθος στην κατανόηση των γεωμετρικών αντικειμένων της δραστηριότητας καθώς και των σχέσεών τους. Το εργαλείο του λογισμικού που χρησιμοποιήθηκε ήταν το συνδεδεμένο σύρσιμο (linked dragging) συνδέοντας την ελεύθερη κορυφή με τη μία παράλληλη και μετακινώντας την πάνω σε αυτήν. Με αυτόν τον τρόπο έκαναν επιβεβαίωση πως σε κάθε μετακίνηση της τρίτης κορυφής το εμβαδόν του τριγώνου έμενε αμετάβλητο. Η αξιοσημείωτη ιδιότητα της ελεύθερης κορυφής ειπώθηκε με ενδιαφέροντες τρόπους. Η πιο δημοφιλής απάντηση ήταν «οι κορυφές είναι όλες στο ίδιο ύψος». Η επόμενη πιο δημοφιλής ήταν «όλες οι κορυφές περνούν από την ίδια ευθεία». Δύο ομάδες έγραψαν «όλες οι κορυφές απέχουν ίσα από τη βάση» και τα ύψη όλων των τριγώνων είναι ίσα». Μια ομάδα υποψιάστηκε πως η ζητούμενη ιδιότητα της ελεύθερης κορυφής είναι πως «βλέπει» την κοινή βάση με ίση γωνία. Όταν τους ζητήθηκε να μετρήσουν αυτές τις γωνίες με το αντίστοιχο εργαλείο του geogebra κατερρίφθη η υποψία τους. Τέλος οι μαθητές έπρεπε να διατυπώσουν ένα μαθηματικό συμπέρασμα. Η διατύπωση είναι πάντα μία δύσκολη διαδικασία για τους μαθητές. Μία ομάδα δεν έγραψε κανένα συμπέρασμα και χρειάστηκαν ενθάρρυνση και καθοδήγηση. Οι υπόλοιπες έδωσαν ικανοποιητικές απαντήσεις. Συχνά οι διατυπώσεις παρουσιάζουν συντακτικά λάθη και ενώ αναμένεται το συμπέρασμα να έχει μορφή υποθετικού λόγου (αν υπόθεση τότε συμπέρασμα) τα παιδιά γράφουν μόνο το συμπέρασμα και δε θεωρούν απαραίτητο να σημειώσουν τα δεδομένα πάνω στα οποία πατήσανε για να εξάγουν το συμπέρασμα. Αξίζει να σημειωθεί πως μία ομάδα στο συμπέρασμα έγραψε ότι υπάρχουν δύο παράλληλες ευθείες πάνω στις οποίες μπορεί να βρίσκεται η ελεύθερη κορυφή. Έτσι

6 238 Α. Ρουμπή δόθηκε η ευκαιρία να συζητηθεί στην ολομέλεια και η έννοια της συμμετρίας ως προς άξονα. Η τελευταία δραστηριότητα της πρώτης διδακτικής ώρας αφορούσε στη σχέση εμβαδού και περιμέτρου όλων αυτών των άπειρων τριγώνων. Ζητήθηκε από τους μαθητές να περιγράψουν πώς μεταβάλλεται η περίμετρος αυτών των τριγώνων που βρίσκονται ανάμεσα στις δύο παράλληλες τη στιγμή που, όπως ήδη έχουν διατυπώσει, το εμβαδόν τους παραμένει σταθερό. Επάνω στην οθόνη υπήρχε ήδη εικονίδιο που μετρούσε και έδειχνε τη μεταβολή της περιμέτρου. Οι μαθητές απλώς κινώντας την τρίτη, ελεύθερη κορυφή έβλεπαν τις μεταβολές της περιμέτρου και εντυπωσιάστηκαν από το γεγονός ότι η περίμετρος συνεχώς μεγάλωνε και δυνητικά έφτανε στο άπειρο ενώ το εμβαδόν ήταν πάντα σταθερό. Η εξοικείωση με το άπειρο είναι βασική μαθηματική δεξιότητα και πάντα χρήσιμο να δίνονται ευκαιρίες για συζήτηση πάνω σε αυτό. 1 η Διδακτική ώρα στην παραδοσιακή τάξη με χαρτί και μολύβι Στο φύλλο εργασίας που δόθηκε στην τάξη υπήρχαν οι ίδιες δραστηριότητες αλλά στο σχήμα (σχήμα 2) υπήρχε μόνο ένα τρίγωνο ΑΒΓ σταθερό. Σχήμα 2. 1 η δραστηριότητα 1 ης διδακτικής ώρας σεναρίου στην τάξη Στο χαρτί δεν υπάρχει η δυνατότητα δυναμικού σχήματος και έτσι οι μαθητές ξεκίνησαν τη διερεύνησή τους με μετρήσεις μηκών και υπολογισμούς εμβαδών με τον τύπο. Με βάση τις μετρήσεις σχεδίασαν τρία ή τέσσερα το πολύ τρίγωνα. Αυτή ήταν μία από τις διαφορές στα δύο περιβάλλοντα μάθησης: σε όλες τις δραστηριότητες τα σχήματα που σχεδίαζαν στο χαρτί ήταν πάντα πολύ λιγότερα από αυτά που σχεδίαζαν στο geogebra. Τα αποτελέσματα στα οποία κατέληξαν οι μαθητές ήταν τα ίδια: ύπαρξη άπειρων τριγώνων με την επιθυμητή ιδιότητα, καθορισμός παράλληλης ευθείας πάνω στην οποία κείται η τρίτη κορυφή αυτών των τριγώνων, η έννοια της συμμετρίας ως προς άξονα και η μεταβολή της περιμέτρου. Η διατύπωση αποτέλεσε και πάλι μία απαιτητική διαδικασία με αρκετή συζήτηση στην ολομέλεια. Σε όλη τη διάρκεια της πρώτης διδακτικής ώρας στην τάξη οι μαθητές καταπιάστηκαν με μετρήσεις και κατασκευές με χαρτί και μολύβι που προσπαθούσαν να είναι ακριβείς και καλοσχεδιασμένες. Η διαδικασία είχε σίγουρα θετικό ισοζύγιο στην κατανόηση και έτσι «είδαν» τα άπειρα τρίγωνα παρόλο που δε σχεδίασαν περισσότερα από τρία ή τέσσερα κάθε φορά. Στα σχόλιά τους ανέφεραν «όταν μεγαλώνει το ύψος» και «η κορυφή Γ κινείται πάνω σε παράλληλη ευθεία» έχοντας, όμως, στατικά σχήματα. Επίσης όσες φορές χρειάστηκε να μετρήσουν μήκη για να υπολογίσουν εμβαδά πήρε πολλή ώρα και πάντα έπρεπε να αποφασίζουν για την ακρίβεια των μετρήσεων. Σε κάθε ομάδα ένας από τους μαθητές ήταν επιφορτισμένος με αυτήν την εργασία, δηλαδή με τους αριθμητικούς

7 Εξερευνώντας γεωμετρικές έννοιες 239 υπολογισμούς. Συγκριτικά με την εφαρμογή στο εργαστήρι θα λέγαμε πως χρειάστηκαν περισσότερο κόπο και χρόνο για να καταλήξουν στα ίδια συμπεράσματα. 2 η Διδακτική ώρα στο εργαστήρι Η/Υ με geogebra Σχήμα 3. Δραστηριότητα 2 ης διδακτικής ώρας Η δραστηριότητα της 2 ης διδακτικής ώρας ήταν κοινή και στα δύο περιβάλλοντα μάθησης. Σε αυτή τη δεύτερη διδακτική ώρα του σεναρίου οι μαθητές κλήθηκαν να αντιμετωπίσουν ένα πρόβλημα διαφορετικό από αυτά που συνήθως βρίσκουμε στο σχολικό βιβλίο. Έπρεπε να βρουν ένα δίκαιο τρόπο να μετακινήσουν τα σύνορα δύο χωρών (ΕΗ+ΗΖ) ώστε το νέο σύνορο να είναι ευθύγραμμο τμήμα.(σχήμα 3) Δύο είναι οι βασικές ιδέες: α) Να έρθουν αντιμέτωποι με κάτι εντελώς πρωτόγνωρο και να αναγκαστούν να χρησιμοποιήσουν τη φαντασία, και την αυτενέργειά τους, δηλαδή να εξασκηθούν στην επίλυση προβλήματος (problem solving) διότι στο σχολείο τις περισσότερες φορές εφαρμόζουν αλγορίθμους (βήματα) χωρίς πάντα να κατανοούν γιατί. β) Να εφαρμόσουν το συμπέρασμα της 1 ης ώρας εφαρμογής του σεναρίου, δηλαδή τα ισεμβαδικά τρίγωνα ανάμεσα σε παράλληλες ευθείες. Στο εργαστήρι Η/Υ οι μαθητές αφέθηκαν να πειραματιστούν χωρίς ιδιαίτερες οδηγίες για τη θέση του νέου συνόρου. Τους φάνηκε μάλλον δύσκολο να συνδυάσουν χώρες και τρίγωνα. Κάποιοι έκαναν μετρήσεις και κάποιοι άλλοι σχεδίαζαν με το χέρι ευθείες και τρίγωνα προσπαθώντας να πετύχουν ίσα εμβαδά. Στην πλειοψηφία τους δε χρησιμοποίησαν αμέσως τα εργαλεία του λογισμικού. Κάποιοι μάλιστα άργησαν να κατανοήσουν τι θα πει συνοριακή γραμμή και κατασκεύαζαν τρίγωνα μέσα σε μία από τις δύο χώρες, οπότε ίσως και να «προκαλούσαν πόλεμο» ανάμεσα στις δύο χώρες, αφού χωρίς να το καταλάβουν η μία από τις δύο χώρες θα έπαιρνε περισσότερα εδάφη! Στη συνέχεια δόθηκαν συγκεκριμένες οδηγίες κατασκευής παραλλήλων ώστε να οδηγηθούν στη χρησιμοποίηση του συμπεράσματος της προηγούμενης ώρας. Τα σχήματα που προέκυψαν είχαν ενδιαφέρον και μόνο λίγοι μαθητές συνέχισαν να προσπαθούν πρακτικά με μετρήσεις να επιτύχουν το ζητούμενο αποτέλεσμα χωρίς καμία μεθοδολογία, απλώς στην τύχη δοκιμάζοντας νέες θέσεις των συνόρων. Οι περισσότεροι μαθητές κατασκεύασαν παράλληλες σε διάφορες θέσεις ώστε να εφαρμόσουν το συμπέρασμα των ισεμβαδικών τριγώνων ανάμεσα σε παράλληλες ευθείες. Οι περισσότερες ομάδες κατασκεύασαν τις παράλληλες χρησιμοποιώντας το κατάλληλο εργαλείο του geogebra και όχι πρακτικά «με το μάτι». Έγιναν πολλές προσπάθειες και ακολουθούνταν πάντα από ζωηρές διαπραγματεύσεις ως προς την ορθότητά τους. Οι μορφές συρσίματος που χρησιμοποιήθηκαν από τους μαθητές ήταν το καθοδηγούμενο σύρσιμο και το σύρσιμο γραμμής στην αρχή, και αφού κατάφεραν να κατασκευάσουν την κατάλληλη παράλληλη

8 240 Α. Ρουμπή ευθεία, σύρσιμο κρυφού γεωμετρικού τόπου και σύρσιμο γραμμής για επιβεβαίωση των προβλέψεων. Οι μετρήσεις αποτέλεσαν χρήσιμο εργαλείο για έλεγχο των εικασιών αλλά πάντα στο τέλος η μαθηματική αιτιολόγηση ήταν απαραίτητη για να θεωρηθεί η λύση δεκτή. Μία από τις ομάδες πολύ γρήγορα έφτασε στην αναμενόμενη κατασκευή και εξήγηση σχετικά με τις δύο πιθανές θέσεις του νέου συνόρου. Ένας μαθητής από αυτή την ομάδα παρουσίασε στο τέλος της διδακτικής ώρας στην ολομέλεια τη λύση τους ώστε όλοι οι μαθητές να την έχουν στο φύλλο εργασίας τους. Σημειώνεται πως η ομάδα που έφτασε στη λύση δεν αποτελούνταν από αριστούχους μαθητές. 2 η Διδακτική ώρα στην παραδοσιακή τάξη με χαρτί και μολύβι Στην εφαρμογή στην τάξη παρατηρήθηκαν τα ίδια νοητικά βήματα. Αρχικά οι μαθητές δυσκολεύτηκαν να σκεφτούν «έξω από το κουτί» (think out of the box) αλλά τους άρεσε ο διαφορετικός τρόπος διατύπωσης της άσκησης. Σύντομα προχώρησαν σε μαθηματικές «κινήσεις» δηλαδή όπως έγραψαν στα φύλλα εργασίας : «Θα προεκτείνω», «θα βρω το μέσον», «θα δημιουργήσω ένα ευθύγραμμο τμήμα», «θα μετακινήσω το σημείο Η». Αυτή η τελευταία παρατήρηση στο χαρτί αντιστοιχούσε σε πολλά σχήματα που πήραν αρκετό χρόνο και διορθώσεις για να σχεδιαστούν. Και πάλι μετά τη συγκεκριμένη οδηγία να χρησιμοποιήσουν το προηγούμενο συμπέρασμα η δουλειά προχώρησε πιο γρήγορα αφού έψαχναν για παράλληλες ευθείες. Με εξαίρεση τρεις μαθητές που παρακολουθούσαν περισσότερο παρά συμμετείχαν οι υπόλοιποι σχεδίαζαν και έσβηναν και ξανασχεδίαζαν με πάθος. Ακόμα και όταν έπρεπε να σβήσουν δεν τους πείραζε, ένοιωθαν πως δημιουργούσαν και δεν πήγαινε χαμένος ο κόπος τους. Μία από τις ομάδες έφτασε μέσα στα χρονικά πλαίσια της διδακτικής ώρας σε αποδεκτή λύση και την παρουσίασε στον πίνακα. Η ομάδα που έφτασε σε λύση αποτελούνταν, όπως όλες οι ομάδες, από μαθητές με διαφορετικές μαθηματικές αποδόσεις. Την ιδέα, όμως, την είχε η μαθήτρια με την υψηλότερη βαθμολογία και αυτή καθοδήγησε την ομάδα της στην κατασκευή και στην αιτιολόγηση. 3 η Διδακτική ώρα στο εργαστήρι Η/Υ με geogebra Σχήμα 4. Δραστηριότητα 3 ης διδακτικής ώρας Στην τρίτη και τελευταία ώρα του σεναρίου δόθηκε ένα τυχαίο τετράπλευρο για να μετατραπεί σε τρίγωνο με ίσο εμβαδόν (σχήμα 4). Ακολουθούσε τυχαίο πεντάγωνο με την ίδια δραστηριότητα ώστε στο τέλος της ώρας να γίνει αναφορά στον τριγωνισμό όλων τον πολυγώνων. Θέμα ιδιαιτέρως ενδιαφέρον με πολλές ιστορικές αναφορές που δίνει πάντα αφορμή για περεταίρω εργασίες, τεχνικά ζητήματα, γεωδαισία, και σίγουρα συζήτηση για τον τετραγωνισμό του κύκλου.

9 Εξερευνώντας γεωμετρικές έννοιες 241 Στο εργαστήρι Η/Υ μετά τις δύο προηγούμενες ώρες πειραματισμού με διαφορετικού ύφους ασκήσεις ήταν πιο εύκολο να δουλέψουν και δοκίμασαν διάφορες προσεγγίσεις. Όλοι έφεραν παράλληλες ευθείες προσπαθώντας να χρησιμοποιήσουν προηγούμενο συμπέρασμα. Δεν ήταν όλες οι επιλογές επιτυχημένες αλλά η συζήτηση που ακολουθούσε πάντα βοηθούσε στην κατανόηση. Χρησιμοποιούσαν τα εργαλεία του λογισμικού αυθόρμητα και η δραστηριότητα κύλησε πιο γρήγορα. Οι παρεμβάσεις του εκπαιδευτικού ήταν απαραίτητες παρά μόνο σε ελάχιστες περιπτώσεις κι αυτές για να ακούσει τις ιδέες και τις προτάσεις τους. Δύο ομάδες αυτή τη φορά έφτασαν σε ολοκληρωμένη απάντηση. Παρουσιάστηκαν και οι δύο λύσεις, στην πραγματικότητα ήταν η ίδια ιδέα ξεκινώντας από διαφορετική κορυφή κάθε φορά. Γενικά στο περιβάλλον του εργαστηρίου Η/Υ οι περισσότεροι μαθητές, ακόμα και αυτοί που σε συνθήκες παραδοσιακής τάξης δείχνουν αδιάφοροι για το μάθημα, χρησιμοποίησαν το λογισμικό σαν εργαλείο για τη διατύπωση εικασιών. Ο δυναμικός χειρισμός των σχημάτων οδήγησε γρήγορα και με επιτυχία αρκετές ομάδες μαθητών στην επιβεβαίωση των υποθέσεών τους. 3 η Διδακτική ώρα στην παραδοσιακή τάξη με χαρτί και μολύβι Στο περιβάλλον της τάξης η διερεύνηση έγινε με παρόμοιο τρόπο όπως και την προηγούμενη διδακτική ώρα. Οι μαθητές σχεδίασαν διάφορες ευθείες, προεκτάσεις ή μη πλευρών, διαγώνιες και παράλληλες ευθείες από διάφορες κορυφές. Στη συνέχεια υπολόγισαν πολλά εμβαδά μετρώντας βάσεις και ύψη τριγώνων. Η διερεύνησή τους συνεχίστηκε περιστρέφοντας το φύλλο εργασίας και προσπαθώντας να αποκτήσουν μία άλλη οπτική του σχήματος και πιθανόν έτσι και της ζητούμενης δραστηριότητας. Φράσεις όπως: «θέλουμε η μία πλευρά να είναι συνέχεια της άλλης», «προεκτείνουμε μέχρι να συναντηθούν», «φέρνουμε παράλληλες και μετά από πολλές προσπάθειες και ιδέες συμφωνήσαμε σε ένα σχήμα», «στην αρχή σκεφτήκαμε μελετήσαμε μετρήσαμε για να σιγουρευτούμε και τώρα βρίσκουμε..» έγραψαν στα φύλλα εργασίας και περιγράφουν εύγλωττα τα μονοπάτια που ακολούθησε η σκέψη τους. Παρά, όμως τις προσπάθειές τους μόνο μία μαθήτρια, η ίδια που είχε απαντήσει και στη δραστηριότητα της δεύτερης διδακτικής ώρας, συνέλαβε την ιδέα και καθοδήγησε πάλι την ομάδα της για να σχεδιάσουν το σχήμα και να δώσουν τη μαθηματική εξήγηση. Συμπερασματικά κατά την εφαρμογή του τρίωρου σεναρίου, στο περιβάλλον τάξη (χαρτί και μολύβι), η νοητική ικανότητα του μαθητή ήταν αυτή που βοήθησε να προχωρήσει αποτελεσματικά να ολοκληρώσει, αιτιολογήσει και να παρουσιάσει τις δραστηριότητες που ζητήθηκαν. Το στατικό σχήμα και οι περιορισμοί που συνεπάγεται το χαρτί και το μολύβι δε διευκόλυναν τον έλεγχο εικασιών που είχαν διατυπωθεί.

10 242 Α. Ρουμπή Πίνακας 1. Εικόνες από τη δουλειά των μαθητών 1 η Δραστηριότητα στο εργαστήρι Η/Υ 1 η Δραστηριότητα στην τάξη 2 η Δραστηριότητα στο εργαστήρι Η/Υ 2 η Δραστηριότητα στην τάξη 3 η Δραστηριότητα στο εργαστήρι Η/Υ 3 η Δραστηριότητα στην τάξη Συμπεράσματα Η εφαρμογή αυτού του τρίωρου σεναρίου τόσο σε περιβάλλον σχολικού εργαστηρίου Η/Υ όσο και σε περιβάλλον σχολικής τάξης επιβεβαίωσε την υπάρχουσα έρευνα. Τα εργαλεία του λογισμικού διευκόλυναν τη νοητή δημιουργία εννοιών καθώς και την αναγνώριση σχέσεων και κανονικοτήτων. Ενώ στο παραδοσιακό μοντέλο οι περιορισμοί που επιβάλλει

11 Εξερευνώντας γεωμετρικές έννοιες 243 το χαρτί και το μολύβι εγκλώβισαν την πλειοψηφία των μαθητών σε αναποτελεσματικές προσπάθειες. Διατύπωσαν εικασίες αλλά το στατικό σχήμα δυσκόλευε τον πειραματισμό και τον έλεγχο των εικασιών. Η νοητική ικανότητα ήταν το βασικό «εργαλείο» που μπορούσαν να χρησιμοποιήσουν. Αντίθετα στο εργαστήρι Η/Υ οι μαθητές αξιοποίησαν τις δυνατότητες του λογισμικού geogebra κάνοντας πειράματα και διερευνήσεις, αναπτύσσοντας εικασίες και υποθέσεις και γενικά αξιοποιώντας τα ώστε να κατασκευάσουν οι ίδιοι τις μαθηματικές έννοιες. Αυτή ήταν η πρώτη φορά που ο εκπαιδευτικός και οι μαθητές έκαναν χρήση ηλεκτρονικών υπολογιστών στο μάθημα των Μαθηματικών. Την πρώτη διδακτική ώρα ξεκίνησαν να χρησιμοποιούν το λογισμικό όπως το χαρτί και το μολύβι δηλαδή σχεδιάζοντας ελεύθερα. Όσο περνούσε η ώρα, όμως, άρχισαν να αντιλαμβάνονται τις δυνατότητες του λογισμικού και να τις αξιοποιούν αβίαστα. Υπάρχουν ισχυρές ενδείξεις πως όταν η χρήση λογισμικών εμπεδωθεί στη σχολική κουλτούρα τότε τα λογισμικά θα χρησιμοποιηθούν με πιο παραγωγικό τρόπο, θα ενισχυθεί η μαθηματική σκέψη των μαθητών και η δημιουργία βιωματικής μάθησης μέσα από πειραματισμό και συλλογικές δράσεις. Αναφορές Arzarello,F., Olivero, F., Paola, D., Robutti, O.,(2002). A cognitive analysis of dragging practises in cabri environments Zentralblatt für Didaktik der Mathematik, June 2002, Volume 34, Issue 3, pp Kapa, E., (2001). A metacognitive support during the process of problem solving in a computerised environment, Educational Studies in Mathematics 47, Kaput, J., (1998). Technology as a Transformative force in education. What else is needed to make it work. Paper for the N.C.T.M 2000 technology working group in May Laborde C., Kynigos, C., Hollebrands, K., Strässer, R. (2006). Teaching and learning geometry with technology, Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future, Sense Publishers, In A. Gutiérrez, P. Boero (eds.), Noss, R.& Hoyles, C.,(1996). Windows on mathematical meanings learning cultures and computer, Holland: Kluwer. Ζωγόπουλος, Ε.,(2013). Η ομαδοσυνεργατική μέθοδος διδασκαλίας και η συμβολή των ΤΠΕ, Τα Εκπαιδευτικά, τεύχος ,σελ Κεΐσογλου, Σ.,(2006). Υπολογιστικοί Δυναμικοί μικρόκοσμοι κατασκευής και διερεύνησης ιστορικών καμπύλων. Περιοδικό Αστρολάβος Τεύχος 5 σελ Εκδόσεις Ε.Μ.Ε. Κυνηγός, Χ., Ψυχάρης, Γ., Γαβρίλης, Κ., Κείσογλου, Σ.,(2008). Επιμορφωτικό υλικό για την επιμόρφωση των εκπαιδευτικών στα Κέντρα Στήριξης Επιμόρφωσης, Τεύχος 4: Κλάδος ΠΕ03, EAITY.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Το ανοργάνωτο Parking

Το ανοργάνωτο Parking Δημοτικό Υπαίθριο Parking Περίληψη: Σε κάθε πόλη είναι σημαντικό η δημιουργία όσο το δυνατόν περισσότερων θέσεων parking, ειδικά στο κέντρο της, ώστε να διευκολύνονται οι πολίτες και η εμπορική αγορά.

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

Η χρήση γεωμετρικών μετασχηματισμών με DGS, ως μέθοδος επίλυσης προβλημάτων γεωμετρικών τόπων και κατασκευών

Η χρήση γεωμετρικών μετασχηματισμών με DGS, ως μέθοδος επίλυσης προβλημάτων γεωμετρικών τόπων και κατασκευών Η χρήση γεωμετρικών μετασχηματισμών με DGS, ως μέθοδος επίλυσης προβλημάτων γεωμετρικών τόπων και κατασκευών Ειρήνη Περυσινάκη peririni@hotmail.com Δρ. Πανεπιστημίου UCL Επιμορφώτρια Β Επιπέδου Πειραματικό

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά Χάρτινα χειροποίητα κουτιά Περίληψη: Στη δραστηριότητα αυτή οι μαθητές διερευνούν τη χωρητικότητα κουτιών σχήματος ορθογωνίου παραλληλεπιπέδου που προκύπτουν από ένα χαρτόνι συγκεκριμένων διαστάσεων. Οι

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου Κανέλλα Κούτση ΚΣΕ 7ο

Διαβάστε περισσότερα

Διδασκαλία των ιδιοτήτων του ορθικού τριγώνου με χρήση λογισμικού δυναμικής γεωμετρίας

Διδασκαλία των ιδιοτήτων του ορθικού τριγώνου με χρήση λογισμικού δυναμικής γεωμετρίας Έρκυνα, Επιθεώρηση Εκπαιδευτικών Επιστημονικών Θεμάτων, Τεύχος 3ο, 20-30, 2014 Διδασκαλία των ιδιοτήτων του ορθικού τριγώνου με χρήση λογισμικού δυναμικής γεωμετρίας Ανδρέας Κουλούρης akoulouris13@gmail.com

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

Εισαγωγή στην έννοια της συνάρτησης

Εισαγωγή στην έννοια της συνάρτησης Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

Αντιστρόφως ανάλογα ποσά

Αντιστρόφως ανάλογα ποσά Αντιστρόφως ανάλογα ποσά Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ (2007 2013) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Πρακτική Άσκηση Εκπαιδευομένων στα Πανεπιστημιακά Κέντρα Επιμόρφωσης

Διαβάστε περισσότερα

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΝΩ ΣΥΓΚΡΙΣΕΙΣ ΜΕ ΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΤΩΝ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΧΡΗΣΙΜΟΠΟΙΩΝΤΑΣ ΤΟ ΛΟΓΙΣΜΙΚΟ «SKETCHPADGR» Γιάννης Μόκιας ΜΑΘΑΙΝΩ ΓΙΑ ΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΤΟ ΕΜΒΑΔΟ

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΟΥ ΑΦΟΡΑ ΤΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ (ΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕΣΩ ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΡΕΥΝΗΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΣΜΟΥ)

ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΟΥ ΑΦΟΡΑ ΤΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ (ΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕΣΩ ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΡΕΥΝΗΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΣΜΟΥ) ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΟΥ ΑΦΟΡΑ ΤΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ (ΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕΣΩ ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΡΕΥΝΗΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΣΜΟΥ) Σπύρος Φερεντίνος, Σχολικός Σύμβουλος ΠΕ03 ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ

Διαβάστε περισσότερα

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΠΥΡΙΔΩΝ ΔΟΥΚΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Κιούφτη Ροϊδούλα 1 1 Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης, rkioufti@hotmail.com

Διαβάστε περισσότερα

Η ανοικτή αυτή πρακτική έχει διάρκεια 2 διδακτικών ωρών και λαμβάνει μέρος στο εργαστήριο πληροφορικής του σχολείου.

Η ανοικτή αυτή πρακτική έχει διάρκεια 2 διδακτικών ωρών και λαμβάνει μέρος στο εργαστήριο πληροφορικής του σχολείου. ΣΧΟΛΕΙΟ Η συγκεκριμένη εκπαιδευτική πρακτική υλοποιήθηκε από τους μαθητές της Ε τάξης δημοτικού κατά την διάρκεια των παρεμβάσεων «εφαρμογής στην τάξη» της 6ης περιόδου επιμόρφωσης Β επιπέδου ΤΠΕ, αξιοποιώντας

Διαβάστε περισσότερα

Ταυτότητα εκπαιδευτικού σεναρίου

Ταυτότητα εκπαιδευτικού σεναρίου Ταυτότητα εκπαιδευτικού σεναρίου Τίτλος: Συμβάντα και ενέργειες - Το πολύχρωμο σκαθάρι Σύντομη περιγραφή: Ένα εκπαιδευτικό σενάριο για την διδασκαλία των συμβάντων και ενεργειών στον προγραμματισμό, με

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738)

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Το μαθηματικό λογισμικό GeoGebra ως αρωγός για τη λύση προβλημάτων γεωμετρικών κατασκευών Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες 1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες Θέμα της δραστηριότητας Η δραστηριότητα αυτή είναι μια εισαγωγή στις άπειρες διαδικασίες. Η εισαγωγή αυτή επιτυγχάνεται με την εφαρμογή της μεθόδου

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών.

Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών. Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών. Α. Πέρδος 1, I. Σαράφης, Χ. Τίκβα 3 1 Ελληνογαλλική Σχολή Καλαμαρί perdos@kalamari.gr

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Η εισήγηση Η τεχνική του καταιγισμού ιδεών (Brainstorming). Η μελέτη περίπτωσης. Παίξιμο ρόλων-τα παιχνίδια προσομοίωσης, ρόλων,

Η εισήγηση Η τεχνική του καταιγισμού ιδεών (Brainstorming). Η μελέτη περίπτωσης. Παίξιμο ρόλων-τα παιχνίδια προσομοίωσης, ρόλων, Η εισήγηση Η τεχνική του καταιγισμού ιδεών (Brainstorming). Η μελέτη περίπτωσης. Παίξιμο ρόλων-τα παιχνίδια προσομοίωσης, ρόλων, αντιπαράθεσης απόψεων. Εννοιολογική χαρτογράφηση -Ο χάρτης εννοιών (concept

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

5.34 Αξιοποίηση κοινοτήτων μάθησης στο πλαίσιο προγράμματος προπτυχιακής εκπαίδευσης εν δυνάμει εκπαιδευτικών

5.34 Αξιοποίηση κοινοτήτων μάθησης στο πλαίσιο προγράμματος προπτυχιακής εκπαίδευσης εν δυνάμει εκπαιδευτικών 5.34 Αξιοποίηση κοινοτήτων μάθησης στο πλαίσιο προγράμματος προπτυχιακής εκπαίδευσης εν δυνάμει εκπαιδευτικών συντελεστές Σπυρίδων Δουκάκης sdoukakis@rhodes.aegean.gr ΠΤΔΕ Πανεπιστημίου Αιγαίου Μαρία Μοσκοφόγλου-

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com Επιμόρφωση Β Επιπέδου Κλάδος: ΠΕ03 Περίοδος: Δεκέμβριος 2010 Ιούνιος 2011 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΝΑΡΙΟΥ 1. Τίτλος σεναρίου: Μελέτη της εκθετικής

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΔΙΔΑΣΚΑΛΙΑΣ: ΠΕΡΙΓΡΑΦΗ ΔΙΔΑΣΚΑΛΙΑΣ:

ΠΛΑΙΣΙΟ ΔΙΔΑΣΚΑΛΙΑΣ: ΠΕΡΙΓΡΑΦΗ ΔΙΔΑΣΚΑΛΙΑΣ: Α) Διάταξη χώρου (γενικά): Β) Διάταξη χώρου (ως προς τις ΦΕ): Γ) Δυναμικό τάξης (αριθμός μαθητών, φύλο μαθητών, προνήπια-νήπια, κλπ): Δ) Διάρκεια διδασκαλίας: Ε) Ήταν προϊδεασμένοι οι μαθητές για το αντικείμενο

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Νόµος του HOOK- Μέτρηση δύναµης.

Νόµος του HOOK- Μέτρηση δύναµης. Σενάριο στη Φυσική Β Γυµνασίου. ΝΟΜΟΣ ΤΟΥ ΗΟΟΚ 1. Τίτλος Νόµος του HOOK- Μέτρηση δύναµης. 2. Εµπλεκόµενες γνωστικές περιοχές Φυσική Β Γυµνασίου. Ενότητα : υνάµεις. Σε αυτό εµπλέκονται γνωστικά αντικείµενα

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Λουμπαρδιά Αγγελική 1, Ναστάκου Μαρία 2 1 Καθηγήτρια Μαθηματικών, 2 o Γενικό Λύκειο Τρίπολης loumpardia@sch.gr 2 Διευθύντρια, ΙΕΚ Σπάρτης marynasta@sch.gr

Διαβάστε περισσότερα

ΑΝΑΣΤΟΧΑΣΜΟΣ 1ης ΔΙΔΑΚΤΙΚΗΣ ΠΑΡΕΜΒΑΣΗΣ

ΑΝΑΣΤΟΧΑΣΜΟΣ 1ης ΔΙΔΑΚΤΙΚΗΣ ΠΑΡΕΜΒΑΣΗΣ Αναστοχασμός ΑΝΑΣΤΟΧΑΣΜΟΣ 1ης ΔΙΔΑΚΤΙΚΗΣ ΠΑΡΕΜΒΑΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ(A): ΣΠΑΘΗΣ ΜΑΡΙΟΣ ΤΙΤΛΟΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ: ΑΝΑΚΑΛΥΠΤΟΝΤΑΣ ΤΥΠΟΥΣ ΗΜΕΡΟΜΗΝΙΑ ΠΡΑΓΜΑΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ: Τελικό στάδιο 19/12/2014

Διαβάστε περισσότερα

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία.

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία. Το πιλοτικό πρόγραμμα σπουδών στο γυμνάσιο: Μετασχηματισμοί Δημήτρης Διαμαντίδης 2 ο Πρότυπο Πειραματικό Γυμνάσιο Φιλήμονος 38 & Τσόχα, Αθήνα dimdiam@sch.gr Περίληψη Στο κείμενο περιγράφεται μια διδακτική

Διαβάστε περισσότερα

ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΠΕΙΡΑΜΑΤΙΣΜΟΣ ΜΕ ΜΑΘΗΤΗ ΔΗΜΟΤΙΚΟΥ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ

ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΠΕΙΡΑΜΑΤΙΣΜΟΣ ΜΕ ΜΑΘΗΤΗ ΔΗΜΟΤΙΚΟΥ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΑΘΗΜΑ: Υ404 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ( Β ΦΑΣΗ ΔΙ.ΜΕ.Π.Α.) ΔΙΔΑΣΚΩΝ: ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΕΠΙΜΕΛΕΙΑ ΕΡΓΑΣΙΑΣ: ΜΑΛΕΓΑΝΕΑ

Διαβάστε περισσότερα

Δρ Μιχάλης Τζούμας Σχολικός Σύμβουλος Μαθηματικών. Διδάσκοντας στην τάξη με το Geogebra

Δρ Μιχάλης Τζούμας Σχολικός Σύμβουλος Μαθηματικών. Διδάσκοντας στην τάξη με το Geogebra Δρ Μιχάλης Τζούμας Σχολικός Σύμβουλος Μαθηματικών Διδάσκοντας στην τάξη με το Geogebra Αγρίνιο, 2015 Διδάσκοντας στην τάξη με το Geogebra 3 Μιχάλης Τζούμας Αγρίνιο 2015 ISBN: 978-960-85583-7-3 Εκδόσεις:

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΓΕΝΕΤΙΚΗ: ΜΕΤΑΓΡΑΦΗ ΤΟΥ ΓΕΝΕΤΙΚΟΥ ΥΛΙΚΟΥ

ΜΟΡΙΑΚΗ ΓΕΝΕΤΙΚΗ: ΜΕΤΑΓΡΑΦΗ ΤΟΥ ΓΕΝΕΤΙΚΟΥ ΥΛΙΚΟΥ ΕΝΤΥΠΟ Β: ΟΡΓΑΝΩΣΗ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΜΟΡΙΑΚΗ ΓΕΝΕΤΙΚΗ: ΜΕΤΑΓΡΑΦΗ ΤΟΥ ΓΕΝΕΤΙΚΟΥ ΥΛΙΚΟΥ 1. ΕΙΣΑΓΩΓΗ 1.1 Τίτλος σεναρίου Μεταγραφή του γενετικού υλικού 1.2 Δημιουργός σεναρίου Δασκαλάκη Αικατερίνη, ΠΕ04.04

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Όλγα Κασσώτη Εργασία που κατατίθεται ως παραδοτέο της παρακολούθησης εκπαιδευτικού προγράμματος στο πλαίσιο υλοποίησης της Πράξης με τίτλο: «Επιμόρφωση των Εκπαιδευτικών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΜΙΚΡΟΙ ΑΡΧΙΤΕΚΤΟΝΕΣ. Το πρόβλημα. Δίνεται στους μαθητές το παρακάτω πρόβλημα:

ΜΙΚΡΟΙ ΑΡΧΙΤΕΚΤΟΝΕΣ. Το πρόβλημα. Δίνεται στους μαθητές το παρακάτω πρόβλημα: Περιγραφή ΜΙΚΡΟΙ ΑΡΧΙΤΕΚΤΟΝΕΣ Περίληψη Η κάτοψη μιας κατοικίας είναι ένα σύνθετο θέμα. Οι αρχιτέκτονες πρέπει να σχεδιάσουν μια σειρά παραμέτρων όπως ο τρόπος διανομής του χώρου η θέση των δωματίων του

Διαβάστε περισσότερα

Κρατική παρέμβαση στην αγορά - Επιβολή i) ανώτατων τιμών και ii) κατώτατων τιμών

Κρατική παρέμβαση στην αγορά - Επιβολή i) ανώτατων τιμών και ii) κατώτατων τιμών Κρατική παρέμβαση στην αγορά - Επιβολή i) ανώτατων τιμών και ii) κατώτατων τιμών Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Κοινωνικές - Πολιτικές επιστήμες Δημιουργός: Γιώργος Παπαβασιλείου ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ

Διαβάστε περισσότερα

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ «ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Διδάσκουσες:

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

ΜΟΡΦΕΣ ΔΙΔΑΣΚΑΛΙΑΣ. PDF created with pdffactory Pro trial version www.pdffactory.com

ΜΟΡΦΕΣ ΔΙΔΑΣΚΑΛΙΑΣ. PDF created with pdffactory Pro trial version www.pdffactory.com ΜΟΡΦΕΣ ΔΙΔΑΣΚΑΛΙΑΣ Αφηγηματική προσέγγιση: Αποτελεί τη βασική μορφή των δασκαλοκεντρικών μεθόδων διδασκαλίας. Ο δάσκαλος δίνει τις πληροφορίες, ενώ οι μαθητές του παρακολουθούν μένοντας αμέτοχοι και κρατώντας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 3 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση αριθμών Γ2.1 Oνομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες) με διάφορα

Διαβάστε περισσότερα

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες»

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΓΕΩΡΓΙΟΣ ΜΠΟΛΟΤΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

ΣΥΜΜΕΤΡΙΕΣ ΚΑΙ ΣΗΜΑΙΕΣ

ΣΥΜΜΕΤΡΙΕΣ ΚΑΙ ΣΗΜΑΙΕΣ ΣΥΜΜΕΤΡΙΕΣ ΚΑΙ ΣΗΜΑΙΕΣ Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: Νικόλαος Τερψιάδης ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το

Διαβάστε περισσότερα

Η LOGO ΩΣ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΚΥΚΛΟΥ

Η LOGO ΩΣ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΚΥΚΛΟΥ 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 677 Η LOGO ΩΣ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΚΥΚΛΟΥ Καρατράντου Ανθή Δρ. Πληροφορικής, Εκπαιδευτικός ΠΕ19 Ε-mail: a.karatrantou@eap.gr Αλιμήσης Δημήτρης

Διαβάστε περισσότερα

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων ΔΙΔΑΚΤΕΑ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ (version 22-10-2016) Τα παρακάτω προέρχονται (με δικές μου αλλαγές μορφοποίησης προσθήκες και σχολιασμό) από το έγγραφο (σελ.15 και μετά) με Αριθμό Πρωτοκόλλου 150652/Δ2, που

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo Εμπλεκόμενες έννοιες «Γραφή» και άμεση εκτέλεση εντολής. Αποτέλεσμα εκτέλεσης εντολής.

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΗΣ ΚΙΝΗΣΗΣ ΣΧΕΣΗ ΤΑΧΥΤΗΤΑΣ ΑΠΟΣΤΑΣΗΣ ΔΙΑΓΡΑΜΜΑ ΘΕΣΗΣ ΧΡΟΝΟΥ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΗΣ ΚΙΝΗΣΗΣ ΣΧΕΣΗ ΤΑΧΥΤΗΤΑΣ ΑΠΟΣΤΑΣΗΣ ΔΙΑΓΡΑΜΜΑ ΘΕΣΗΣ ΧΡΟΝΟΥ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΟ «MODELLUS» ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΗΣ ΚΙΝΗΣΗΣ ΣΧΕΣΗ ΤΑΧΥΤΗΤΑΣ ΑΠΟΣΤΑΣΗΣ ΔΙΑΓΡΑΜΜΑ ΘΕΣΗΣ ΧΡΟΝΟΥ ΕΝΤΥΠΟ Β: ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΕΝΤΥΠΑ Α: ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση

Εργαστηριακή εισήγηση Εργαστηριακή εισήγηση «Διδακτικό Σενάριο: Προσεγγίζοντας Κωνικές Τομές με τη βοήθεια της Μεσοκαθέτου στο Δυναμικό Περιβάλλον του Geometer s Sketchpad» Σάββας Πιπίνος 1, Σταύρος Κοκκαλίδης 2, Χρήστος Ηρακλείδης

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα