Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra."

Transcript

1 Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου προσδιορίζονται από την ευθύγραµµη κοίτη ενός ποταµού, τις κάθετες στην κοίτη σε απόσταση 5 µέτρων κάθετες σε αυτή και την τέταρτη πλευρά που είναι τµήµα της παραβολής ψ=κχ2+µ, όπως δείχνει το παρακάτω σχήµα. Μπορείτε να βρείτε µια µέθοδο µέτρησης του εµβαδού του για τις διάφορες τιµές των παραµέτρων κ και µ και για τις διάφορες θέσεις των Γ και στην καµπύλη; Εικόνα 31 Τεχνολογικά εργαλεία: To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σκεπτικό: Βασική ιδέα: Η έννοια του ολοκληρώµατος, όπως διδάσκεται σήµερα στο Λύκειο, έχει δυο πλευρές. Αφενός εµφανίζεται ως µια συνάρτηση αρχική µιας δοθείσας και αφετέρου ως εµβαδόν του χωρίου που ορίζεται από δοθείσα συνάρτηση, τον άξονα χχ' και τις ευθείες χ=α και χ=β. Αλλά για τους µαθητές οι δυο αυτές έννοιες, της αρχικής συνάρτησης και του εµβαδού δεν συνδέονται µε σαφή και κατανοητό τρόπο. Η προσπάθεια του βιβλίου να συνδέσει αυτά 1

2 µέσω ενός θεωρήµατος, που µάλιστα εισάγεται χωρίς αιτιολόγηση και απόδειξη, απαιτεί από τους µαθητές να έχουν κατανοήσει σε βάθος τις δυο έννοιες που συνιστούν το ολοκλήρωµα - εµβαδόν χωρίου και αρχική συνάρτηση - αλλά και να τις συνδέσουν µεταξύ τους. Το αποτέλεσµα της δυσκολίας αυτής είναι οι µαθητές που διδάσκονται µε αυτόν τον τρόπο τις παραπάνω έννοιες να καταφεύγουν στην παπαγαλία µεθόδων που τις εφαρµόζουν χωρίς να τις κατανοούν πλήρως. Με το προτεινόµενο σενάριο, οι µαθητές µπορούν να συνδέσουν αυτές τις δυο έννοιες µε ένα απτό και δυναµικά χειριζόµενο από τους ίδιους τρόπο. Καλούνται: Να ορίσουν το χωρίο, του οποίου θέλουν να µετρήσουν το εµβαδόν, και να το µετρήσουν µέσω της διαδικασίας εξάντλησης. Να βρουν τη συνάρτηση στην οποία ανήκει το σηµείο που έχει τετµηµένη το δεξί άκρο του χωρίου και τεταγµένη το εµβαδόν. Με την παραπάνω διαδικασία, οι µαθητές θα µάθουν ότι το σηµείο που ορίζεται από τις δυο συντεταγµένες ανήκει στην αρχική της δοθείσας συνάρτησης. Προστιθέµενη αξία. To προτεινόµενο εκπαιδευτικό σενάριο δεν αποτελεί µόνο µια καινοτοµία στο παραδοσιακό πλαίσιο της διδασκαλίας της συγκεκριµένης ενότητας των Μαθηµατικών αλλά φιλοδοξεί να έχει και ευρύτερες επιρροές. Συγκεκριµένα: Φιλοδοξεί να συµβάλει στην αλλαγή - βελτίωση της στάσης των µαθητών απέναντι στα Μαθηµατικά και στη διαδικασία προσέγγισής τους. Οι µαθητές αναµένεται να συνειδητοποιήσουν ότι τα Μαθηµατικά µπορούν να αποτελέσουν αντικείµενο διερεύνησης και µάλιστα κάθε µαθητής µπορεί να δοκιµάσει στο πλαίσιο αυτό τις δικές του ιδέες και να καταλήξει στα δικά του συµπεράσµατα τα οποία πρέπει να έχουν την ανάλογη κοινωνική αποδοχή (στο πλαίσιο της τάξης) και την επιστηµονική τεκµηρίωση. Η χρήση των τεχνολογικών εργαλείων αναµένεται να διευκολύνει σηµαντικά προς αυτή τη κατεύθυνση. Η εργασία των µαθητών σε οµάδες και η στενή, συνεχής και συγκροτηµένη συνεργασία µεταξύ των µαθητών της κάθε οµάδας προφανώς θα συµβάλει στην αλλαγή της στάσης τους απέναντι στη µάθηση. Ο εκπαιδευτικός που θα εντάξει στην διδασκαλία του το προτεινόµενο σενάριο θα έχει την ευκαιρία να δοκιµάσει σύγχρονες διδακτικές και παιδαγωγικές µεθόδους οι οποίες θα συµβάλουν στην βελτίωση της στάσης του απέναντι στη καθηµερινή σχολική διαδικασία. 2

3 Θα διδάξει σηµαντικές έννοιες των Μαθηµατικών στο πλαίσιο του σεναρίου το οποίο προβλέπει ατµόσφαιρα ερευνητικού εργαστηρίου. Η συµβολή του σ' αυτό απαιτεί αλλαγή του ρόλου του και από παραδοσιακός καθηγητής µετωπικών διδασκαλιών και αυθεντία της γνώσης, καλείται να γίνει συνεργάτης των µαθητών του, σηµείο αναφοράς της τάξης του ως προς την καθοδήγηση της έρευνας και την επιστηµονική εγκυρότητα των συµπερασµάτων των µαθητών αλλά και ερευνητής ο ίδιος. Σ' ένα σχολείο στο οποίο εφαρµόζονται εκπαιδευτικά σενάρια όπως το προτεινόµενο απαιτείται απ' όλη τη σχολική κοινότητα µια ευρύτερη αποδοχή της αλλαγής των ρόλων των µαθητών και των εκπαιδευτικών. Η διεύθυνση του σχολείου θα πρέπει να γνωρίζει ότι η εφαρµογή σύγχρονων µεθόδων διδασκαλίας µε την βοήθεια της Ψηφιακής Τεχνολογίας απαιτεί µια άλλη στάση απέναντι στη λειτουργία του σχολείου. Για παράδειγµα ίσως χρειαστεί µερικές οµάδες µαθητών να συναντηθούν και να εργαστούν στο σχολείο πέραν του κλασικού ωραρίου. Αυτό πρέπει κατά κάποιο τρόπο να διασφαλιστεί και οι µαθητές να ενθαρρυνθούν σε κάθε προσπάθεια χρήσης των τεχνολογικών µέσων προς την κατεύθυνση της µάθησης και της διδασκαλίας. Έτσι βελτιώνεται η σχολική ζωή και το σχολείο αποκτά ένα πιο συγκεκριµένο ρόλο στο πλαίσιο της κοινωνίας. Η εφαρµογή του προτεινόµενου εκπαιδευτικού σεναρίου αναµένεται να συµβάλει προς αυτή τη κατεύθυνση. Γνωστικά - διδακτικά προβλήµατα Είναι ερευνητικά διαπιστωµένο ότι οι µαθητές δυσκολεύονται να κατανοήσουν την έννοια του ορισµένου και του αόριστου ολοκληρώµατος και να τις συνδέουν µε σαφή τρόπο. Προς την κατεύθυνση αυτή το GeoGebra τους διευκολύνει να κατανοήσουν σταδιακά την έννοια του ορισµένου ολοκληρώµατος µέσω του χωρισµού σε όσο το δυνατόν περισσότερα ίσα τµήµατα και να ορίσουν την συνάρτηση στην οποία ανήκει το σηµείο που ορίζεται από το ένα άκρο του χωρίου και το εµβαδόν του. Επίσης στη διδασκαλία µε παραδοσιακά µέσα δεν είναι εύκολη η σύνδεση του ορισµένου ολοκληρώµατος µε το αόριστο (µόνο θεωρητικά) καθώς δεν δίνεται η δυνατότητα στους µαθητές να κάνουν πειράµατα µε τον προσδιορισµό του εµβαδού αλλά και τον προσδιορισµό της καµπύλης η οποία προσδιορίζει αυτό το εµβαδόν. Πλαίσιο εφαρµογής: Σε ποιους απευθύνεται: To σενάριο απευθύνεται στους µαθητές της Γ' Λυκείου. 3

4 Χρόνος υλοποίησης: Για την εφαρµογή του σεναρίου εκτιµάται ότι απαιτούνται 4-5 διδακτικές ώρες. Εναλλακτικά µπορεί να διατεθεί λιγότερος χρόνος αν επιλεγεί να γίνει παρουσίαση του σεναρίου στην τάξη µε τη χρήση βιντεοπροβολέα. Χώρος υλοποίησης: To σενάριο προτείνεται να διεξαχθεί εξ' ολοκλήρου στο εργαστήριο υπολογιστών. ;στόσο αν ο εκπαιδευτικός αποφασίσει να διδάξει ένα µέρος του στο εργαστήριο και το υπόλοιπο στην σχολική αίθουσα µε τη χρήση ενός υπολογιστή και βιντεοπροβολέα ή το υπόλοιπο να δοθεί υπό τη µορφή εργασίας στον ελεύθερο χρόνο θα πρέπει να προσαρµόσει ανάλογα τις δραστηριότητες και να εκπονήσει τα κατάλληλα φύλλα εργασίας. Προαπαιτούµενες γνώσεις: Οι µαθητές πρέπει να γνωρίζουν: Την έννοια του χωρίου κάτω από καµπύλη. Την τετραγωνική συνάρτηση. Τις απαιτούµενες λειτουργικότητες και χειρισµούς του προγράµµατος Geogebra. Απαιτούµενα βοηθητικά υλικά και εργαλεία: Τετράδιο (για να κρατούν σηµειώσεις για την πορεία της διερεύνησης και να καταγράφουν τα συµπεράσµατά τους). Βιβλίο (για να ανατρέχουν σε αυτό για ήδη διδαγµένες έννοιες). Φύλλα εργασίας τα οποία δίνονται από τον καθηγητή και έχουν ως στόχο να καθοδηγούν τους µαθητές στη διερεύνηση των διαφόρων ερωτηµάτων. Απλοποιηµένες οδηγίες χρήσης του χρησιµοποιούµενου λογισµικού που θα δοθούν από τον εκπαιδευτικό. Κοινωνική ενορχήστρωση της τάξης Οι µαθητές εργαζόµενοι σε οµάδες και καθοδηγούµενοι από φύλλο εργασίας, καλούνται να κατασκευάσουν και να εξερευνήσουν συγκεκριµένα σχήµατα και να απαντήσουν σε συγκεκριµένες ερωτήσεις. Εποµένως η διερεύνηση αυτή θα γίνει συνεργατικά. Για να υπάρχει κοινός στόχος και καλή συνεργασία οι µαθητές καλούνται να συµπληρώσουν ένα κοινό φύλλο εργασίας που περιέχει ερωτήσεις σχετικές µε το θέµα. Φυσικά το φύλλο εργασίας αυτό θα πρέπει να αφήνει µια αρκετά µεγάλη ελευθερία στους µαθητές ώστε να 4

5 θέτουν τα δικά τους ερωτήµατα και να απαντούν σ' αυτά. Στη διάρκεια της υλοποίησης του σεναρίου ο εκπαιδευτικός θα πρέπει να ελέγχει τα συµπεράσµατα των µαθητών, να συνεργάζεται µαζί τους, να τους καθοδηγεί ώστε να αντιλαµβάνονται καλύτερα τα αποτελέσµατά τους και να τους ενθαρρύνει να συνεχίσουν την διερεύνηση. Στόχοι: Οι προτεινόµενες δραστηριότητες σε συνδυασµό µε τις προβλεπόµενες µεθόδους διδακτικής που περιγράφονται παρακάτω έχουν ως στόχο να παρέχουν στους µαθητές τη δυνατότητα από µεν την πλευρά του γνωστικού αντικειµένου: Να κατανοήσουν την έννοια του ορισµένου ολοκληρώµατος και να το συνδέσουν µε την έννοια της αρχικής συνάρτησης. Να κατανοήσουν τον τρόπο µέτρησης του χωρίου που ορίζεται από την δεδοµένη συνάρτηση. Να κατανοήσουν τον τρόπο µε τον οποίο µεταβάλλεται το εµβαδόν καθώς µεταβάλλονται τα άκρα ορισµού του χωρίου. Να κατανοήσουν τον τρόπο συµµεταβολής των δυο µεγεθών - του δεξιού άκρου του χωρίου και του εµβαδού και να περιγράψουν αλγεβρικά την συµµεταβολή αυτή. Από δε την παιδαγωγική πλευρά: Να µάθουν να πειραµατίζονται µε τις περιεχόµενες µαθηµατικές έννοιες (εµβαδόν χωρίου, διαίρεση σε ίσα τµήµατα, προσέγγιση µέσω του πλήθους διαίρεσης, συµµεταβολή, συνάρτηση κτλ.) θέτοντας ερωτήµατα και κάνοντας διάφορες εικασίες Να τους δοθεί η ευκαιρία να οργανώσουν τα δεδοµένα τους από τη διερεύνηση ώστε να διευκολυνθούν στην εξαγωγή συµπερασµάτων. Να µάθουν να συνεργάζονται µε τα άλλα µέλη της οµάδας για να συζητήσουν τις παρατηρήσεις τους, να οργανώσουν τα συµπεράσµατά τους, να διατυπώσουν κανόνες, να καταχωρίσουν τα δεδοµένα τους, να κατασκευάσουν σχέσεις που συνδέουν µεγέθη, να παρουσιάσουν την εργασία τους στις άλλες οµάδες. Να οικοδοµήσουν κώδικες επικοινωνίας ώστε να γίνονται αντιληπτοί από τα άλλα µέλη της οµάδας, από όλους τους συµµαθητές τους και από τον καθηγητή τους. Ανάλυση του σεναρίου Ροή εφαρµογής των δραστηριοτήτων 5

6 Ο σχεδιασµός των δραστηριοτήτων µπορεί να διαχωριστεί σε δυο φάσεις: Η πρώτη φάση αφορά: στην ενηµέρωση των µαθητών για τις γενικές γραµµές του προβληµατισµού που πρόκειται να τους απασχολήσει, σεναρίου και του στην σχεδίαση της γραφικής παράστασης της συνάρτησης και του χωρίου του οποίου θα µετρηθεί το εµβαδόν, στην επιλογή του χωρισµού του ολοκληρώµατος σε ίσα τµήµατα µε τον χωρισµό της βάσης του, στη µέτρηση του εµβαδού των τµηµάτων στα οποία χωρίζεται το χωρίο. Προτείνεται οι µαθητές: Να σχεδιάσουν την γραφική παράσταση της παραµετρικής συνάρτησης f(x) = κ*χ Λ 2+µ επιλέγοντας οι παράµετροι να έχουν τιµές από -5 έως 5. Να σχεδιάσουν τις ευθείες µε τις οποίες θα σχεδιάσουν τα άκρα του χωρίου, χ=a και x=b Να σχεδιάσουν τον µεταβολέα για το πλήθος n των τµηµάτων στα οποία θα χωριστεί το χωρίο. Να κάνουν χρήση των εντολών UpperSum[f, x(a), x(b) και LowerSum[f, x(a), x(b), n] προκειµένου να ορίσουν τα τµήµατα στα οποία θα χωριστεί το χωρίο. Να ορίσουν τον τρόπο και το εύρος µεταβολής των µεταβλητών κ, µ και n. Να ορίσουν τις αναγκαίες τιµές των υπόλοιπων παραµέτρων εµφάνισης και µέτρησης του µικρόκοσµου. Στη συνέχεια οι µαθητές κάνουν πειράµατα µε τις τιµές της µεταβλητής n και παρατηρούν το εµβαδόν των τµηµάτων στα οποία χωρίζεται το χωρίο. Κάνουν εκτιµήσεις και εικασίες για το εµβαδόν του χωρίου. Η δεύτερη φάση αφορά στην κατασκευή του σηµείου που ορίζει το ένα άκρο και το εµβαδόν του χωρίου καθώς και στην σχεδίαση της καµπύλης στην οποία ανήκει το σηµείο αυτό, στο σχεδιασµό του γεωµετρικού τόπου του σηµείου αυτού τον προσδιορισµό της συνάρτησης στην οποία ανήκει το σηµείο στην εξαγωγή συµπερασµάτων για την συνάρτηση στην οποία ανήκει το σηµείο που προσδιορίζει του εµβαδόν. 6

7 Όπως προαναφέρθηκε στις στρατηγικές εφαρµογής, θεωρείται σκόπιµο στο τέλος κάθε φάσης, όλες οι οµάδες να κάνουν µία σύντοµη παρουσίαση των συµπερασµάτων τους. Προτείνεται οι µαθητές : Με τη βοήθεια των εντολών "Άνω Άθροισµα = " + Ss και "Κάτω άθροισµα = " + Si εµφανίζουν τα δυο αθροίσµατα στην επιφάνεια εργασίας. Να ορίσουν ένα σηµείο Μ µε τετµηµένη το ένα άκρο Μ του χωρίου και τεταγµένη ένα από τα δυο αθροίσµατα. Π.χ. Μ(x(B), Si) Να επιλέξουν την εντολή "trace on" για το σηµείο Μ. Να πληκτρολογήσουν την κατάλληλη συνάρτηση ώστε το σηµείο Β να ανήκει στην γραφική της παράσταση. Στη συνέχεια οι µαθητές κάνουν πειράµατα µε τις τιµές της µεταβλητής n και παρατηρούν τον γεωµετρικό τόπο του σηµείου Β όταν µεταβάλλουν το ένα άκρο του χωρίου. Κάνουν εκτιµήσεις και εικασίες για το εµβαδόν του χωρίου. Τα εργαλεία που θα χρησιµοποιηθούν To προτεινόµενο λογισµικό Geogebra επελέγη µε κριτήριο την εξυπηρέτηση των αναγκών των προτεινόµενων δραστηριοτήτων και ανταποκρίνεται στις δεσµεύσεις που απορρέουν από τα ερευνητικά ευρήµατα. To GeoGebra δίνει τη δυνατότητα στους µαθητές: Να επιλέγουν την συνάρτηση της οποίας θα µελετήσουν τον εµβαδόν του χωρίου. Να ορίζουν το χωρίου επιλέγοντας τα άκρα του. Να ορίζουν το πλήθος των τµηµάτων στα οποία θα χωρίζουν το χωρίου και θα µετρούν το εµβαδόν τους. Θα ορίζουν το σηµείο µε συντεταγµένες το ένα άκρο του χωρίου (το δεξιό) και το εµβαδόν του χωρίου και να παρατηρούν την καµπύλη στην οποία ανήκει. Να εκφράζουν την συνάρτηση στην οποία ανήκει το εν λόγω σηµείο. Επέκταση: Ως προς την επέκταση των παραπάνω οι µαθητές µπορούν να µετρήσουν τα εµβαδά διαφόρων χωρίων που ορίζονται από διάφορες συναρτήσεις καθώς και εµβαδά που ορίζονται µεταξύ δυο συναρτήσεων. Αξιολόγηση µετά την εφαρµογή: 7

8 Ως προς τις επιδιώξεις του σεναρίου: Ο εκπαιδευτικός ελέγχει κατά πόσο επιτεύχθηκαν οι στόχοι του σεναρίου και εξετάζει του λόγους για τους οποίους κάποιοι δεν επιτεύχθηκαν ώστε να παρέµβει ανάλογα στο σενάριο. Ως προς τα εργαλεία: Ο εκπαιδευτικός ελέγχει την ευκολία µε την οποία οι µαθητές αξιοποίησαν τα εργαλεία του προτεινόµενου λογισµικού σε συνδυασµό µε την σαφήνεια των οδηγιών του και των περιγραφών των φύλλων εργασίας. Αφού αξιολογήσει τα δεδοµένα του επεµβαίνει ανάλογα στο σενάριο για την επόµενη εφαρµογή. Ως προς την διαδικασία υλοποίησης Ο εκπαιδευτικός αξιολογεί την διαδικασία υλοποίησης του σεναρίου αξιολογώντας τα στοιχεία που δεν δούλεψαν καλά και προσαρµόζει το σενάριο. Ως προς την προσαρµογή και επεκτασιµότητα Η δυνατότητα επέκτασης του σεναρίου και η ευκολία προσαρµογής σε ένα σχολικό περιβάλλον ή στην διδακτική ατζέντα ενός εκπαιδευτικού ή στην κουλτούρα µιας σχολικής τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους του θα έχει δεδοµένα µε τα οποία θα µπορεί να κάνει ουσιαστικές προσαρµογές. 8

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra. 9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα.

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα. 9.1.3 Σενάριο 3. Διερεύνηση των κανονικών πολυγώνων σε περιβάλλον που αξιοποιεί λογισμικό συμβολικής έκφρασης, την κοινωνική δικτύωση και τη συλλογική διαπραγμάτευση. Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου.

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com Επιμόρφωση Β Επιπέδου Κλάδος: ΠΕ03 Περίοδος: Δεκέμβριος 2010 Ιούνιος 2011 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΝΑΡΙΟΥ 1. Τίτλος σεναρίου: Μελέτη της εκθετικής

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

Εισαγωγή στην έννοια της συνάρτησης

Εισαγωγή στην έννοια της συνάρτησης Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης.

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης. Τίτλος σεναρίου : Η συνάρτηση f (x)=α ημ(ωx)+ β Γνωστική περιοχή : Θέμα : Τεχνολογικά εργαλεία : Πλαίσιο εφαρμογής Σε ποιους απευθύνεται : Διδάσκων : Χρόνος υλοποίησης : Χώρος υλοποίησης : 1 Σκεπτικό Βασική

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. Σενάριο 2: Ο ερευνητής και οι χελώνες ΚΑΡΕΤΑ_ΚΑΡΕΤΑ Συγγραφέας: Καλλιόπη Αρδαβάνη, Επιμορφώτρια Μαθηματικών (Β επιπέδου). Γνωστική περιοχή: Άλγεβρα Ανεξάρτητη και εξαρτημένη μεταβλητή. Πεδίο ορισμού και

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος)

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος) Σενάριο 1 Σκιτσάροντας µε παραλληλόγραµµα (χρήση λογισµικού Χελωνόκοσµος) Βασική ιδέα του σεναρίου Οι µαθητές σκιτσάρουν παραλληλόγραµµα και τα «ζωντανεύουν» κινώντας τα δυναµικά µε χρήση της Logo. Με

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση

9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση 9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου. Η έννοια του εμβαδού επίπεδων

Διαβάστε περισσότερα

Αντιστρόφως ανάλογα ποσά

Αντιστρόφως ανάλογα ποσά Αντιστρόφως ανάλογα ποσά Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους

Διαβάστε περισσότερα

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες»

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΓΕΩΡΓΙΟΣ ΜΠΟΛΟΤΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics»

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» ΣΧΟΛΕΙΟ Π.Π.Λ.Π.Π. ΤΑΞΗ: Α ΜΑΘΗΜΑ: Β Νόµος του Νεύτωνα ΚΑΘΗΓΗΤΗΣ: Σφαέλος Ιωάννης Συνοπτική Παρουσίαση

Διαβάστε περισσότερα

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan)

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) On-the-fly feedback, Upper Secondary Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) Τάξη: Β Λυκείου Διάρκεια ενότητας Μάθημα: Φυσική Θέμα: Ταλαντώσεις (αριθμός Χ διάρκεια μαθήματος): 6X90

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού»

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» «Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» Ματοσσιάν Αλμπέρ-Ντικράν 1, Κουτσκουδής Παναγιώτης 2 1 Καθηγητής Μαθηματικών, Πρότυπο Πειραματικό Γενικό Λύκειο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αναπνευστικό σύστηµα» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο 6 η ΣΥΝΕΔΡΙΑ Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο ΣΤΟΧΟΙ Οι επιμορφούμενοι μετά το πέρας της Συνεδρίας θα πρέπει: να γνωρίζουν τις δυνατότητες που τους προσφέρει το Φωτόδεντρο.

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

(http://www.statistics.gr, Στατιστικά στοιχεία -> Απογραφή -> Απογραφές >

(http://www.statistics.gr, Στατιστικά στοιχεία -> Απογραφή -> Απογραφές > Σενάριο 9. Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα Γνωστική περιοχή: Στατιστική. Θέµα: Η χώρα µας όπως πολλές άλλες έχει δεχτεί τα τελευταία χρόνια µεγάλο αριθµό µεταναστών από διαφορετικές χώρες.

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

Τα διδακτικά σενάρια

Τα διδακτικά σενάρια 2.2.4.1 Τα διδακτικά σενάρια Το ζήτηµα της διδακτικής αξιοποίησης του λογισµικού αποτελεί σηµείο προβληµατισµού ερευνητών και εκπαιδευτικών που ασχολούνται µε την ένταξη των ΤΠΕ στην εκπαιδευτική διαδικασία

Διαβάστε περισσότερα

Να εξοικειωθούν µε την εύρεση, αξιολόγηση και αξιοποίηση πληροφοριών µέσω του διαδικτύου. Να ενηµερωθούν για τα µέρη από τα οποία αποτελείται ο σκελετ

Να εξοικειωθούν µε την εύρεση, αξιολόγηση και αξιοποίηση πληροφοριών µέσω του διαδικτύου. Να ενηµερωθούν για τα µέρη από τα οποία αποτελείται ο σκελετ Τίτλος διδακτικού σεναρίου Τα οστά Πώς κινούµαστε Εµπλεκόµενες γνωστικές περιοχές Μελέτη Περιβάλλοντος Τάξεις στις οποίες απευθύνεται ηµοτικού Συµβατότητα µε το αναλυτικό πρόγραµµα Το σενάριο είναι συµβατό

Διαβάστε περισσότερα

Η αξιοποίηση των μαθηματικών εκπαιδευτικών λογισμικών στη διδασκαλία των συναρτήσεων στην δευτεροβάθμια εκπαίδευση

Η αξιοποίηση των μαθηματικών εκπαιδευτικών λογισμικών στη διδασκαλία των συναρτήσεων στην δευτεροβάθμια εκπαίδευση Η αξιοποίηση των μαθηματικών εκπαιδευτικών λογισμικών στη διδασκαλία των συναρτήσεων στην δευτεροβάθμια εκπαίδευση Αργύρη Παναγιώτα Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σμύρνης, argiry@gmail.com Περίληψη

Διαβάστε περισσότερα

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE Θέµα ιερεύνησης: Σχεδιασµός γραµµάτων Μπορώ να φτιάξω το δικό µου επεξεργαστή κειµένου; Στη διερεύνηση αυτή οι µαθητές καλούνται να κατασκευάσουν µια γραµµατοσειρά µε όλα τα κεφαλαία γράµµατα του ελληνικού

Διαβάστε περισσότερα

Το ανοργάνωτο Parking

Το ανοργάνωτο Parking Δημοτικό Υπαίθριο Parking Περίληψη: Σε κάθε πόλη είναι σημαντικό η δημιουργία όσο το δυνατόν περισσότερων θέσεων parking, ειδικά στο κέντρο της, ώστε να διευκολύνονται οι πολίτες και η εμπορική αγορά.

Διαβάστε περισσότερα

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Κιούφτη Ροϊδούλα 1 1 Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης, rkioufti@hotmail.com

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

Πιο αναλυτικά, δημιουργήθηκε, μια ιστοσελίδα τύπου wiki όπου προστέθηκαν οι ανάλογες αναφορές σε δραστηριότητες από το Φωτόδεντρο.

Πιο αναλυτικά, δημιουργήθηκε, μια ιστοσελίδα τύπου wiki όπου προστέθηκαν οι ανάλογες αναφορές σε δραστηριότητες από το Φωτόδεντρο. ΣΧΟΛΕΙΟ Στα πλαίσια της ευέλικτης ζώνης, με θέμα την διατροφή, οι μαθητές με την χρήση των Τ.Π.Ε, εξερευνούν, πειραματίζονται και δοκιμάζουν τις γνώσεις τους σε μια σειρά από ψηφιακές δραστηριότητες. Οι

Διαβάστε περισσότερα

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14 Μιχαηλίδου Αγγελική Λάλας Γεώργιος Περιγραφή Πλαισίου Σχολείο: 2 ο Πρότυπο Πειραματικό Γυμνάσιο Αθηνών Τμήμα: Β 3 Υπεύθυνος καθηγητής: Δημήτριος Διαμαντίδης Συνοδός: Δημήτριος Πρωτοπαπάς

Διαβάστε περισσότερα

Κατασκευή δυναµικής γραµµατοσειράς

Κατασκευή δυναµικής γραµµατοσειράς Κατασκευή δυναµικής γραµµατοσειράς Γνωστική περιοχή: Γεωµετρία. Θέµα: Η διερεύνηση της αυξοµείωσης γεωµετρικών κατασκευών µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών αντικειµένων.

Διαβάστε περισσότερα

E

E ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ του Βιτσαξή Μιχάλη Γυµνάσιο µε Λυκειακές Τάξεις Βιλλίων Λύκειο Νέας Περάµου E mail:fermatmike@yahoo.gr Καθηγητής /θµιας Εκπαίδευσης Επιµορφούµενος στο ΚΣΕ: 4 ο ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός

ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός 1 ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός 1 Ταυτότητα του σεναρίου Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΒΑΣΙΛΗΣ ΦΑΓΟΓΕΝΗΣ ΣΧΟΛΕΙΟ 5 ο ΓΕΛ ΚΕΡΚΥΡΑΣ ΚΕΡΚΥΡΑ 25.6.2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Με χρήση του λογισμικού

Διαβάστε περισσότερα

Νόµος του HOOK- Μέτρηση δύναµης.

Νόµος του HOOK- Μέτρηση δύναµης. Σενάριο στη Φυσική Β Γυµνασίου. ΝΟΜΟΣ ΤΟΥ ΗΟΟΚ 1. Τίτλος Νόµος του HOOK- Μέτρηση δύναµης. 2. Εµπλεκόµενες γνωστικές περιοχές Φυσική Β Γυµνασίου. Ενότητα : υνάµεις. Σε αυτό εµπλέκονται γνωστικά αντικείµενα

Διαβάστε περισσότερα

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα:

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.

Διαβάστε περισσότερα

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά Χάρτινα χειροποίητα κουτιά Περίληψη: Στη δραστηριότητα αυτή οι μαθητές διερευνούν τη χωρητικότητα κουτιών σχήματος ορθογωνίου παραλληλεπιπέδου που προκύπτουν από ένα χαρτόνι συγκεκριμένων διαστάσεων. Οι

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

Τεχνολογικά εργαλεία To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Χελωνόκοσµος.

Τεχνολογικά εργαλεία To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Χελωνόκοσµος. Σενάριο 2. Κατασκευή δυναµικής γραµµατοσειράς Γνωστική περιοχή: Γεωµετρία. Θέµα: Η διερεύνηση της αυξοµείωσης γεωµετρικών κατασκευών µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

Μεσοκάθετος ευθυγράμμου τμήματος

Μεσοκάθετος ευθυγράμμου τμήματος Μεσοκάθετος ευθυγράμμου τμήματος Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση

Διαβάστε περισσότερα

Μεταγραφή γενετικού υλικού

Μεταγραφή γενετικού υλικού Μεταγραφή γενετικού υλικού Επαρκές Σενάριο Γνωστικό αντικείμενο: Βιολογία Δημιουργός: Αικατερίνη Δασκαλάκη ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν

Διαβάστε περισσότερα

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ: Οι κλασματικές μονάδες και οι απλοί κλασματικοί αριθμοί ΕΠΙΜΟΡΦOYMENH:

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04)

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04) «Επιµόρφωση εκπαιδευτικών στη χρήση και αξιοποίηση των ΤΠΕ στην εκπαιδευτική διδακτική διαδικασία» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.1, Ενέργεια 2.1.1, Κατηγορία Πράξεων 2.1.1 θ) Αναλυτικό Πρόγραµµα Σπουδών για

Διαβάστε περισσότερα

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.

Διαβάστε περισσότερα

ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί)

ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί) ΕΥΡΩΠΑΪΚΟ ΑΠΟΛΥΤΗΡΙΟ 2007 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί) ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ : 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΥΛΙΚΑ : Ευρωπαϊκό τυπολόγιο Υπολογιστής τσέπης απλός (χωρίς δυνατότητα

Διαβάστε περισσότερα

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού.

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. 1.ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Συγγραφέας: Μποζονέλου Κωνσταντίνα 1.1.Τίτλος διδακτικού σεναρίου Οι τέσσερις

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα