ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ
|
|
- Ἡρωδίωνν Ανδρέου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 / Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.ppt, και octave_matlab_tutorial_v1.ppt που βρίσκονται στον υποφάκελο ΟΣΣ2 του study.eap.gr κι έχει επιπλέον παραδείγματα)
2 Βασικά θέματα 2 ης ΟΣΣ Εισαγωγή στα Σήματα Περιοδικότητα Σημάτων ΜΣ Fourier Εισαγωγή στο OCTAVE/MATLAB Εισαγωγή στα Συστήματα - Φίλτρα Γραμμικές Διαμορφώσεις ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
3 Στάδια Επεξεργασίας σημάτων Πηγή πληροφορίας Σημα πληροφοριας Εκτιμηση του σηματος πληροφοριας Προορισμός Πληροφορίας Κωδικοποιητής πηγής Αποκωδικοποιητής Πηγής Λεξη κώδικα πηγής Κωδικοποιητής Καναλιού Αποκωδικοποιητης Καναλιου Λέξη κώδικα καναλιού Διαμορφωτής Αποδιαμορφωτης Εκπεμπομενη κυματομορφη Λαμβανομενο σημα Κανάλι ΠΛΗ22 : Βασικά Ζητήματα Δικτύων Η/Υ 3 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
4 Εισαγωγή στα Σήματα Ημιτονοειδή Σήματα Ορθογώνιος Παλμός Τριγωνικός Παλμός Κρουστικά Σήματα Σήμα Βήματος (παραπομπή στο PLH22_OSS2_diafaneies_v1.ppt διαφάνειες 7-19 (ορισμοί) & (παραδείγματα - εφαρμογές) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
5 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
6 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
7 Ιδιότητες ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
8 Example ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η 8 ΟΣΣ/ /Ν.Δημητρίου
9 Περιοδικότητα σημάτων ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
10 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
11 Παράδειγμα ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
12 Hz Examples1a,1b ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
13 Γραφική απεικόνιση της προηγούμενης άσκησης στο OCTAVE Παραπομπή: Για την εισαγωγή στο OCTAVE δείτε τις διαφάνειες octave_matlab_tutorial_v1.ppt ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
14 Example 1a figure; % figure creation Ts=1./50; % sample duration (sampling frequency=50hz) t=0:ts:10000.*ts; %create time samples x1=cos(5.*pi.*t); % 1 st signal with frequency 2.5Hz x2=cos(pi.*t./2); % 2 nd signal with frequency 0.25Hz plot(t,x1,'b'); %plot 1 st signal b is for blue line xlabel('time (sec)'); % label of x- axis ylabel('amplitude (Volt)'); % label of y-axis hold; %hold the first plot plot(t,x2,'r'); % plot the 2 nd signal r is for red line legend('x1(t)','x2(t)'); % show which plot corresponds to which signal grid; % show a rectangular grid axis([ ]); %adjust axis scaling : x axis between [0,16] and y axis between [-3,3] figure; % figure creation plot(t,x1+x2,'k'); plot the sum of x1(t) and x2(t) xlabel('time (sec)'); % label of x- axis ylabel('amplitude (Volt)'); % label of y-axis legend('x1(t)+x2(t)'); % show to which signal the plot corresponds axis([ ]); %adjust axis scaling : x axis between [0,16] and y axis between [-3,3] grid % show a rectangular grid ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
15 Example 1a Περίοδος x1(t) Περίοδος x2(t) Ο κάθε κύκλος του x1(t) χωράει ακέραιες φορές (10) στον κύκλο του x2(t) T2=10 x T1 (Γενικότερα, θα πρέπει ακέραιοι κύκλοι του ενός σήματος να χωράνε σε ακέραιους κύκλους του άλλου σήματος m x T2=n x T1 ) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
16 Example 1a Περίοδος x1(t)+x2(t) Το αποτέλεσμα του αθροίσματος x1(t)+x2(t) είναι ένα περιοδικό σήμα ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
17 Παραλλαγή Διαφοροποίηση cos(5t) cos(5t) sec π/10 Άρρητος άρα το σήμα είναι μη περιοδικό ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
18 Example 1b figure; % figure creation Ts=1./50; % sample duration (sampling frequency=50hz) t=0:ts:10000.*ts; %create time samples x1=cos(5.*t); % 1 st signal with frequency 2.5/pi Hz Διαφοροποίηση σε σχέση με το example 1a x2=cos(pi.*t./2); % 2 nd signal with frequency 0.25Hz plot(t,x1,'b'); %plot 1 st signal b is for blue line xlabel('time (sec)'); % label of x- axis ylabel('amplitude (Volt)'); % label of y-axis hold; %hold the first plot plot(t,x2,'r'); % plot the 2 nd signal r is for red line legend('x1(t)','x2(t)'); % show which plot corresponds to which signal grid; % show a rectangular grid axis([ ]); %adjust axis scaling : x axis between [0,16] and y axis between [-3,3] figure; % figure creation plot(t,x1+x2,'k'); plot the sum of x1(t) and x2(t) xlabel('time (sec)'); % label of x- axis ylabel('amplitude (Volt)'); % label of y-axis legend('x1(t)+x2(t)'); % show to which signal the plot corresponds axis([ ]); %adjust axis scaling : x axis between [0,16] and y axis between [-3,3] grid % show a rectangular grid ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
19 Example 1b Περίοδος x1(t) Περίοδος x2(t) Ο κάθε κύκλος του x1(t) ΔΕΝ χωράει ακέραιες φορές στον κύκλο του x2(t) T2=(10/π) x T1 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
20 Example 1b Το αποτέλεσμα του αθροίσματος x1(t)+x2(t) ΔΕΝ είναι περιοδικό σήμα ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
21 Περιγραφή σημάτων στα πεδία χρόνουσυχνοτήτων (παραπομπή στο PLH22_OSS2_diafaneies_v1.ppt διαφάνειες 37-47) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
22 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
23 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
24 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
25 Από το μονόπλευρο στο αμφίπλευρο φάσμα πλάτους εισαγωγή στους μιγαδικούς αριθμούς (i) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
26 Από το μονόπλευρο στο αμφίπλευρο φάσμα πλάτους εισαγωγή στους μιγαδικούς αριθμούς (ii) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
27 Από το μονόπλευρο στο αμφίπλευρο φάσμα πλάτους εισαγωγή στους μιγαδικούς αριθμούς (iii) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
28 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου (συνέχεια από τη διαφάνεια 24)
29 βλ. διαφάνεια 47 για τις σχέσεις Euler ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
30 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
31 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
32 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
33 Βασικοί Κανόνες περιοδικότητας στα πεδία χρόνουσυχνοτήτων: Θεμελιώδης Ορισμός: Στο πεδίο του χρόνου: Η έκφραση του σήματος αποτελείται από άθροισμα περιοδικών σημάτων με περιόδους που ικανοποιούν τη σχέση Στο πεδίο των συχνοτήτων: Το φάσμα πλάτους αποτελείται από διακριτούς παλμούς σε συχνότητες που ικανοποιούν τη σχέση f=k 1 f 1 =k 2 f 2 = =k N f N, k 1,k 2 k N ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
34 Μετασχηματισμοί Fourier Βασικών σημάτων tri(t) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
35 Βασικές Ιδιότητες ΜΣ Fourier ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
36 Παραδείγματα Ιδιότητα αλλαγής κλίμακας rect t F sinc f F j 10 2 f 10 sinc rect t e f Ιδιότητα χρονικής μετατόπισης F 1 cos 2 10t f f Ιδιότητα δυϊσμού 1 F t 10 t 10 cos 2 10 f cos 2 10 f 2 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
37 Συστήματα - Συνέλιξη (παραπομπή στο PLH22_OSS2_diafaneies_v1.ppt διαφάνειες 33-35, 52-56) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
38 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
39 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
40 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
41 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
42 Ο μετασχηματισμός Fourier της κρουστικής απόκρισης F h t H f αντιστοιχεί στη συνάρτηση μεταφοράς του συστήματος οπότε ισχύει: * y t x t h t F F F Y f X f H f ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
43 Γραμμικές Διαμορφώσεις (παραπομπή στο PLH22_OSS2_diafaneies_v1.ppt διαφάνειες 66-81) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
44 Διαμορφώσεις Πλάτους-Βασικές αρχές Βασίζονται στην ιδιότητα μετατόπισης φάσματος Αν F x t X f Τότε 1 x t f t X f f X f f 2 F cos 2 c c c Είδη διαμορφώσεων πλάτους Double Side Band (DSB) xdsb t x t Ac cos 2 fct Single Side Band (SSB) Προκύπτει από την DSB με κατάλληλο φιλτράρισμα μιας πλευρικής ζώνης ΑΜ xam t 1 x t Ac cos 2 fct Σήμα πληροφορίας Φέρον σήμα ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
45 Διαμόρφωση ΑΜ (πεδίο συχνοτήτων) ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
46 Διαμορφώσεις DSB/SSB (πεδίο συχνοτήτων) DSΒ: περιλαμβάνει και τις 2 πλευρικές ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
47 Παραδείγματα ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
48 ΓΕ1/0809/Θ4 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
49 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
50 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
51 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
52 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
53 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
54 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
55 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
56 ΓΕ1/0405 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
57 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
58 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
59 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
60 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
61 ΓΕ1/1314 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
62 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
63 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
64 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
65 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
66 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
67 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
68 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
69 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
70 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/2η ΟΣΣ/ /Ν.Δημητρίου
ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ
www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 /05.12.2015 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.0.ppt, και octave_matlab_tutorial_v1.0.ppt
ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ
www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ Ελληνικό Ανοικτό Πανεπιστήμιο Πρόγραμμα, «Πληροφορική» Εισαγωγή στις Ψηφιακές Επικοινωνίες 1 η ΟΣΣ Τμήμα ΑΘΗ.2 09/12/2017 Νίκος Δημητρίου Σημείωση:
ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ
www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ Ελληνικό Ανοικτό Πανεπιστήμιο Πρόγραμμα, «Πληροφορική» Νίκος Δημητρίου ΣΕΠ ΘΕ ΠΛΗ-22/ΑΘΗ.3 Εισαγωγή στις Ψηφιακές Επικοινωνίες 2016 Σημείωση:
ΕΑΠ/ΠΛΗ-22/ΑΘΗ.3 1 η τηλεδιάσκεψη 03/11/2013. επικαιροποιημένη έκδοση Ν.Δημητρίου
ΕΑΠ/ΠΛΗ-/ΑΘΗ.3 1 η τηλεδιάσκεψη 03/11/013 επικαιροποιημένη έκδοση Ν.Δημητρίου Συμπληρωματικές υποδείξεις Octave Εκκίνηση με την εντολή octave -i --line-editing Μετατροπή γραφήματος σε name.jpg print -djpg
Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ
Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Στόχος της άσκησης είναι η εξοικείωση με γραφικές παραστάσεις βασικών σημάτων και πράξεις, καθώς και τον υπολογισμό ΜΣ Fourier βασικών σημάτων με τη χρήση
ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ
www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 1 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.3 /19.10.2013 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή βασίζεται στα αρχεία PLH22_1stOSS_final.pdf, plh22_1stoss_octave_matlab.pdf
Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία
Θ.Ε. ΠΛΗ22 (2012-13) 2η Γραπτή Εργασία Στόχος: Η 2 η εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233
ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ιωάννης Γ. Τίγκελης και Δημήτριος Ι. Φραντζεσκάκης
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #8: Διπλοπλευρική διαμόρφωση (DSB) Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης
ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER
ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Ο μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:
Άσκηση 1 Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: i. Προσδιορίστε το σήμα πληροφορίας και το φέρον. ii. Βρείτε το δείκτη διαμόρφωσης. iii. Υπολογίστε το λόγο της ισχύος στις πλευρικές ζώνες
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 1η Γραπτή Εργασία
Θ.Ε. ΠΛΗ22 (2012-13) 1η Γραπτή Εργασία ΕΚΦΩΝΗΣΕΙΣ (έκδοση v2 με διόρθωση του ερωτήματος 4δ) Στόχος: Βασικό στόχο της 1 ης εργασίας αποτελεί η εξοικείωση με τις διαφορετικές κατηγορίες σημάτων, η περιγραφή
Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος
Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 6: Διαμόρφωση Πλάτους (2/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση Απλής Πλευρικής Ζώνης (SSB) Διαμόρφωση Υπολειπόμενης Πλευρικής Ζώνης (VSB)
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 5: Διαμόρφωση Πλάτους (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορισμοί Είδη Διαμόρφωσης Διαμόρφωση Διπλής Πλευρικής Ζώνης (DSB) Κανονική (συνήθης)
Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
Επικοινωνίες στη Ναυτιλία
Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,
Διαμόρφωση Παλμών. Pulse Modulation
Διαμόρφωση Παλμών Pulse Modulation Συστήματα διαμόρφωσης παλμών Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM)
Θεώρημα δειγματοληψίας
Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία
Θ.Ε. ΠΛΗ 0-3 η Γραπτή Εργασία Στόχος: Η η ΑΠΑΝΤΗΣΕΙΣ εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα
Τι είναι σήμα; Σεραφείμ Καραμπογιάς Ως σήμα ορίζεται ένα φυσικό μέγεθος το οποίο μεταβάλλεται σε σχέση με το χρόνο ή το χώρο ή με οποιαδήποτε άλλη ανεξάρτητη μεταβλητή ή μεταβλητές. Παραδείγματα: Σήμα
Ο μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
Διαμόρφωση Παλμών. Pulse Modulation
Διαμόρφωση Παλμών Pulse Modulation Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις
Εφαρμογή στις ψηφιακές επικοινωνίες
Δειγματοληψία Εφαρμογή στις ψηφιακές επικοινωνίες Γεννήτρια σήματος RF, (up converter Ενισχυτής) Προενισχυτής down-converter Ψηφιοποιητής σήματος RF Μονάδα ψηφ. επεξεργασίας Μονάδα ψηφ. επεξεργασίας 100
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»
Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Κεφάλαιο 7 ο Ταξινόμηση Συστημάτων Κρουστική Απόκριση Κεφάλαιο
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #9: Μονοπλευρική διαμόρφωση (SSB) Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το
Τηλεπικοινωνίες. Ενότητα 1: Εισαγωγή. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τηλεπικοινωνίες Ενότητα 1: Εισαγωγή Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #5 Στόχος Βασικό στόχο της 5 ης εργασίας αποτελεί η εξοικείωση με τις έννοιες και τα μέτρα επικοινωνιακών καναλιών (Κεφάλαιο 3), καθώς και με έννοιες και τεχνικές της
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους Ασκήσεις 3.6, 3.7, 3.9, 3.14, 3.18 καθ. Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr www.netmode.ntua.gr
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο ο : Διαμόρφωση ΑΜ Βασική Θεωρία Εισαγωγή
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 3 ο : Διαμόρφωση ΑΜ-DSBSC/SSB Βασική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες
Εισαγωγή στην Επεξεργασία Σήματος. Νόκας Γιώργος
Εισαγωγή στην Επεξεργασία Σήματος Νόκας Γιώργος Βιβλιογραφία στον εύδοξο 1. Γ. Β. Μουστακίδης, Βασικές Τεχνικές Ψηφιακής Επεξεργασίας Σημάτων και Συστημάτων, εκδόσεις Α. Τζιόλα & Υιοί Ο.Ε., Θεσσαλονίκη,
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 1: Εισαγωγή στη διαμόρφωση πλάτους (ΑΜ) Προσομοίωση σε Η/Υ Δρ.
Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή
ΕΑΠ/ΠΛΗ22/ΑΘΗ-3. 3 η ΟΣΣ
ΕΑΠ/ΠΛΗ22/ΑΘΗ-3 3 η ΟΣΣ 04.02.207 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (oss3_plh22_digicomms_207,
ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ
ΕΑΠ/ΠΛΗ22/ΑΘΗ-4 3 η ΟΣΣ 06.02.2016 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (PLH22_3rdOSS_2015_16,
ΕΑΠ/ΠΛΗ22/ΑΘΗ.3. 2 η Τηλεδιάσκεψη 01/12/13 Νίκος Δημητρίου
ΕΑΠ/ΠΛΗ22/ΑΘΗ.3 2 η Τηλεδιάσκεψη 01/12/13 Νίκος Δημητρίου 1 Γενικά Σχόλια Επειδή το study.eap.gr παρουσίασε κάποια προβλήματα στην διαχείριση υποβολής πολλαπλών εργασιών καλό θα είναι να υποβάλλετε ένα
3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές
ΗΜΥ 429 9. Γρήγορος Μετασχηματισμός Fourier Εφαρμογές 1 Ζεύγη σημάτων Συνάρτηση δέλτα: ΔΜΦ δ[ n] u[ n] u[ n 0.5] (συχνότητα 0-0.5) Figure από Scientist s and engineer s guide to DSP. 2 Figure από Scientist
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 1, Μέρος 2ο: ΠΕΡΙ ΣΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier 2 Αθανάσιος
Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.
Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Παραδείγµατα: Σήµα οµιλίας Πίεση P() Σήµα εικόνας y I
Εισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Πλάτους (AΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 1, Μέρος 2ο: ΠΕΡΙ ΣΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού
Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ. xt A t A t A t t
Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ Θεωρήστε ένα σήµα συνεχούς χρόνου το οποίο είναι άθροισµα συνηµιτονικών όρων της µορφής () = cos( ω + ϕ ) + cos
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμορφώσεις γωνίας Διαμόρφωση Συχνότητας Στενής Ζώνης + Περιεχόμενα n Διαμορφώσεις γωνίας n Διαμόρφωση φάσης PM n Διαμόρφωση
H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες
H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ στις τηλεπικοινωνίες Διάταξη συστήματος ψηφιακής επικοινωνίας Γεννήτρια σήματος RF, (up-coverter Ενισχυτής Προενισχυτής- dow-coverter- Ψηφιοποιητής σήματος RF Μονάδα ψηφ.
Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος
Γιατί Διαμόρφωση; Μετάδοση ενός σήματος χαμηλών συχνοτήτων μέσω ενός ζωνοπερατού καναλιού Παράλληλη μετάδοση πολλαπλών σημάτων πάνω από το ίδιο κανάλι - Διαχωρισμός συχνότητας (Frequency Division Multiplexing)
Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ διακριτές σήματα και συστήματα διακριτού χρόνου χρονοσειρές (time series)
Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ Είναι σύνηθες να μελετάμε διάφορα φαινόμενα σε διακριτές (και όχι συνεχείς) τιμές της μεταβλητής του χρόνου, οπότε, μιλάμε για για σήματα και συστήματα διακριτού χρόνου. Τα σήματα διακριτού
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #4 Η ιδιότητα της συνέλιξης Απόκριση Συχνότητας ΓΧΑ Συστημάτν Απόκριση συχνότητας ΓΧΑ Συστημάτν που περιγράφονται από Διαφορικές Εξισώσεις Η ιδιότητα πολλαπλασιασμού
Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό
HMY 220: Σήματα και Συστήματα Ι
HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Εισαγωγή στην Έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Η ανάγκη για διαμόρφωση 2. Είδη διαμόρφωσης 3. Διαμόρφωση με ημιτονοειδές
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα ομιλίας Είδη /Κατηγορίες Σημάτων Στοιχειώδη Σήματα Χαρακτηριστικές Τιμές Σημάτων Τεχνικές
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Εισαγωγή Δειγματοληψία + Περιεχόμενα n Εισαγωγή n αναλογικό η ψηφιακό σήμα; n ψηφιακά συστήματα επικοινωνιών n Δειγματοληψία
HMY 220: Σήματα και Συστήματα Ι
HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Σκοπός του µαθήµατος Η Συστηµατική Περιγραφή: των Σηµάτων και των Συστηµάτων Τι είναι Σήµα; Ένα πρότυπο µεταβολών µιας ποσότητας που µπορεί να: επεξεργαστεί αποθηκευθεί
Συναρτήσεις Συσχέτισης
Συναρτήσεις Συσχέτισης Για ένα σήµα ενέργειας ορίζεται η συνάρτηση αυτοσυσχέτισης R + ( τ = ( τ ( τ = ( ( τ d = ( + τ + ( d Για ένα σήµα ισχύος ορίζεται η µέση χρονική συνάρτηση αυτοσυσχέτισης R ( τ =
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το
Ενότητα 4: Δειγματοληψία - Αναδίπλωση
Ενότητα 4: Δειγματοληψία - Αναδίπλωση Σήματα και Συστήματα Τα συστήματα επεξεργάζονται ένα ή περισσότερα σήματα: Το παραπάνω σύστημα μετατρέπει το σήμα x(t) σε y(t). π.χ. Σε ένα σήμα ήχου μπορεί να ενισχύσει
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 4 : Σήματα Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα ομιλίας Είδη /Κατηγορίες Σημάτων Στοιχειώδη
Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 3: Εισαγωγή στη διαμόρφωση συχνότητας (FΜ) Προσομοίωση σε Η/Υ Δρ.
Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι
Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των
Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2 3.4: Πολυπλεξία Ορθογωνικών Φερόντων (Quadrature Amplitude Modulation, QAM) 3.5: Μέθοδοι Διαμόρφωσης
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 8 ο : Διαμόρφωση Γωνίας Βασική Θεωρία
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος
Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών
Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών Ηλεκτρονική ΗΥ231 Εισαγωγή στην Ηλεκτρονική Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Σήµατα Ένα αυθαίρετο σήµα τάσης v s (t) 2 Φάσµα συχνοτήτων των σηµάτων
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2017-18 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης :
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 3 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603)
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 12: Βασικές Αρχές και Έννοιες Ψηφιακών Επικοινωνιών Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Παράγοντες που επηρεάζουν τη σχεδίαση τηλεπικοινωνιακών
x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)
Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την
8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ Ορισμoί Εμπλεκόμενα σήματα
8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ 8.1. Ορισμoί Ως διαμόρφωση (modulation) χαρακτηρίζεται η μεταβολή μιας παραμέτρου (π.χ. πλάτους, συχνότητας, φάσης κλπ.) ενός σήματος που λέγεται φέρον εξαιτίας της επενέργειας
Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων
Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής
HMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο της Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες
Άσκηση Να υπολογιστεί ο δείκτης διαμόρφωσης των συστημάτων ΑΜ και FM. Αναλογικές Τηλεπικοινωνίες Γ. Κ. Καραγιαννίδης Αν. Καθηγητής 14/1/2014
Άσκηση 4.16 Ένα ημιτνοειδές σήμα πληροφορίας με συχνότητα διαμορφώνεται κατά ΑΜ και Κατά FM. Το πλάτος του φέροντος είναι το ίδιο και στα δύο συστήματα. Η μέγιστη απόκλιση Συχνότητας στο FM είναι ίση με
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Κεφάλαιο 7 ο Ταξινόμηση Συστημάτων Κρουστική Απόκριση Κεφάλαιο
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail: