Γενικά Μαθηματικά ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γενικά Μαθηματικά ΙΙ"

Transcript

1 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 11 η : Μζγιςτα και Ελάχιςτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ

2 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ, που υπόκειται ςε άλλου τφπου άδειασ χριςθσ, θ άδεια χριςθσ αναφζρεται ρθτϊσ. 2

3 Χρηματοδότηςη Το παρόν εκπαιδευτικό υλικό ζχει αναπτυχκεί ςτα πλαίςια του εκπαιδευτικοφ ζργου του διδάςκοντα. Το ζργο «Ανοικτά Ακαδθμαϊκά Μακιματα ςτο Αριςτοτζλειο Πανεπιςτιμιο Θεςςαλονίκθσ» ζχει χρθματοδοτιςει μόνο τθ αναδιαμόρφωςθ του εκπαιδευτικοφ υλικοφ. Το ζργο υλοποιείται ςτο πλαίςιο του Επιχειρθςιακοφ Προγράμματοσ «Εκπαίδευςθ και Δια Βίου Μάκθςθ» και ςυγχρθματοδοτείται από τθν Ευρωπαϊκι Ζνωςθ (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εκνικοφσ πόρουσ. 3

4 κοποί ενότητασ Η αναηιτθςθ των άκρων τιμϊν και ο χαρακτθριςμόσ τουσ ςε μζγιςτα, ελάχιςτα ι ςαγματικά ςθμεία είναι το αντικείμενο τθσ ενότθτασ αυτισ. Παράλλθλα μελετάμε τα δεςμευμζνα ακρότατα και ςυηθτάμε τθ χριςθ των πολλαπλαςιαςτϊν Lagrange. Είναι πολφ ςθμαντικό οι ενδιαφερόμενοι για το μάκθμα αυτό να εργαςτοφν ςτισ εφαρμογζσ των ακροτάτων ςτθ φυςικι. 4

5 Περιεχόμενα ενότητασ 1. Αναγκαίεσ ςυνκικεσ για ακρότατα 2. Ικανι ςυνκικθ για ακρότατεσ τιμζσ 3. Ακρότατα ςυναρτιςεων τριϊν μεταβλθτϊν 4. Ακρότατα πεπλεγμζνων ςυναρτιςεων 5. Ακρότατα υπό ςυνκικθ 5

6 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ Αναγκαίεσ ςυνθήκεσ για ακρότατα

7 Ειςαγωγή Ο υπολογιςμόσ των ακροτάτων τιμϊν μιασ ςυνάρτθςθσ αποτελεί μία από τισ πιο χριςιμεσ εφαρμογζσ του διαφορικοφ λογιςμοφ. Θα ξεκινιςουμε με τθ μελζτθ των ςυναρτιςεων δφο μεταβλθτϊν, z = f(x, y). Θα μελετιςουμε τισ αναγκαίεσ ςυνκικεσ για να ζχει θ ςυνάρτθςθ f ακρότατα ςτο πεδίο οριςμοφ τθσ. Εαν f(x, y) είναι μια αρικμθτικι ςυνάρτθςθ πραγματικϊν μεταβλθτϊν οριςμζνθ ςτον τόπο D R 2 και M 0 (x 0, y 0 ) ζνα ςθμείο του τόπου D τότε ορίηουμε το ςχετικό ή τοπικό μζγιςτο ι ελάχιςτο ωσ εξισ: ΟΡΙΜΟ 7.1: Αν υπάρχει περιοχή π (M 0, δ ), για όλα τα ςημεία τησ οποίασ f(x, y) f(x 0, y 0 ), τότε λζμε ότι η f ζχει ςχετικό μζγιςτο, αντίθετα αν f(x, y) f(x 0, y 0 ) λζμε ότι, η f ζχει ςχετικό ελάχιςτο. 7

8 Θεώρημα Αν θ ςυνάρτθςθ f : D R, όπου D R 2, είναι οριςμζνθ και διαφορίςιμθ ςτον τόπο D, τότε μία αναγκαία ςυνκικθ για να ζχει θ ςυνάρτθςθ αυτι ακρότατο ςτο ςθμείο M 0 D είναι να μθδενίηονται όλεσ οι μερικζσ παράγωγοι πρϊτθσ τάξθσ ςτο ςθμείο αυτό. Η απόδειξθ του κεωριματοσ είναι εφκολο να γίνει γεωμετρικά. Ζχουμε ιδθ ςυηθτιςει ότι, το εφαπτόμενο επίπεδο ςτο ςθμείο M 0 τθσ ςυνάρτθςθσ z = f(x, y) περιγράφεται από τθ ςχζςθ. z z ο = f x 0 x x ο + f y 0 y y ο (1) 8

9 υνζχεια Θεωρήματοσ Αν το ( f/ x) 0 = ( f/ y) 0 = 0, τότε z = z 0, που ςθμαίνει ότι το εφαπτόμενο επίπεδο είναι παράλλθλο ςτο επίπεδο (x, y) και όλα τα ςθμεία ςτθν περιοχι του (x 0, y 0 ) βρίςκονται πάνω ι κάτω από το z = z 0 9

10 Κρίςιμα ημεία Είναι φανερό ότι, θ ςυνκικθ είναι αναγκαία, αλλά όχι ικανι για τθν φπαρξθ ακρότατου μιασ ςυνάρτθςθσ. Τα ακρότατα πρζπει να τα αναηθτιςουμε μεταξφ των λφςεων του ςυςτιματοσ. f x 0 = 0 και f y 0 = 0 (2) αλλά κάκε λφςθ του ςυςτιματοσ δεν είναι και ακρότατο τθσ ςυνάρτθςθσ f ςτο ςθμείο M 0. ϋενασ άλλοσ τρόποσ παρουςίαςθσ των εξιςϊςεων (2) είναι ( f) 0 = 0. Τα ςθμεία μιασ επιφάνειασ z = f(x, y) που αποτελοφν λφςθ του ςυςτιματοσ των εξ. (2) λζγονται κρίςιμα ςημεία ι ςημεία ςτάςεωσ. Άρα τα ακρότατα μιασ ςυνάρτθςθσ f(x, y) είναι κρίςιμα ςθμεία τθσ επιφάνειασ z = f(x, y). 10

11 Γενίκευςη Μποροφμε να γενικεφςουμε όλα τα παραπάνω και ςε περιςςότερεσ ςυντεταγμζνεσ. Ζτςι θ ςυνκικθ (2) παίρνει τθ μορφι f x 0 = 0, f y αν θ ςυνάρτθςθ f(x, y, z), κ.ο.κ. 0 = 0 και f z 0 = 0 (3) 11

12 Παράδειγμα 1 Να βρεκοφν τα ακρότατα τθσ ςυνάρτθςθσ f(x,y)=x 4 +16y 4-2(x-2y) 2. Απάντηςη: Ζχουμε Και f f x 0 = 4x x 2y = 0 x 2y = x 3 y 0 = 64y 3 8 x 2y x 2y = 8y 3 Λφνοντασ το ςφςτθμα προκφπτουν οτι τα ακρότατα ςθμεία τθσ ςυνάρτθςθσ f είναι τα (0,0), (- 2, 2 2 ), ( 2, )

13 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ Ικανή υνθήκη για ακρότατεσ τιμζσ

14 υνθήκη Η ςυνκικθ f x 0 = f y 0 = 0 αν ιςχφει ςτο ςθμείο M 0 του πεδίου οριςμοφ τθσ ςυνάρτθςθσ f(x, y), εξαςφαλίηει ότι θ ςυνάρτθςθ κα ζχει ζνα τουλάχιςτον κρίςιμο ςθμείο, αλλά δεν κακορίηει το είδοσ του δθλαδι, αν είναι μζγιςτο, ελάχιςτο ι ςαγματικό. Είναι φανερό ότι, για να κακορίςουμε το είδοσ του κριςίμου ςθμείου ςτο M 0 χρειάηεται περιςςότερθ διερεφνθςθ. 14

15 Ικανή υνθήκη για ακρότατεσ τιμζσ 1/5 Αναπτφςςοντασ τθ ςυνάρτθςθ f(x, y) ςε ςειρά Taylor ςτθ γειτονιά του (x 0, y 0 ) ζχουμε f(x 0 + h, y 0 + k) = f(x 0, y 0 ) ! h f x + k f y f h + f k+ x 0 y 0 2 f xo, y o + Q 3 όπου το Q 3 ςυμβολίηει όρουσ ανϊτερθσ τάξθσ. Το Q 3 είναι αμελθτζα αν τα h, k << 1, γιατί είναι άκροιςμα πολυϊνυμων τρίτθσ ι ανϊτερθσ τάξθσ. 15

16 Ικανή υνθήκη για ακρότατεσ τιμζσ 2/5 Είναι φανερό ότι, για να κακορίςουμε τθ φφςθ του κρίςιμου ςθμείου, αρκεί να προςδιορίςουμε το πρόςθμο τθσ διαφοράσ = 1 2! h 2 f = f(x 0 + h, y 0 + k) f(x 0, y 0 ) = f + 2hk 2 f + k 2 f. x 0 x y 0 x 0 Το πρόςθμο τθσ ποςότθτασ μζςα ςτθν αγκφλθ κακορίηει τθν τιμι του Δf. 16

17 Ικανή υνθήκη για ακρότατεσ τιμζσ 3/5 Αν ορίςουμε τισ ςτακερζσ A = ( 2 f/ x 2 ) 0 B = ( 2 f/ x y) 0 Γ = ( 2 f/ y 2 ) 0 και Δ = B 2 AΓ ι ιςοδφναμα f xy Δ = f xx = (f f xy f xy ) 2 f xx f yy yy τότε θ ςχζςθ (7.4) παίρνει τθ μορφι Δf = (1/2)k 2 [AW 2 + 2BW + Γ ] όπου W = (h/k). 17

18 Ικανή υνθήκη για ακρότατεσ τιμζσ 4/5 Ζτςι το πρόςθμο τθσ f κα είναι το ίδιο με το πρόςθμο τθσ ζκφραςθσ Ɗ = AW 2 + 2BW + Γ =Α W 2 + 2W B A + Γ Α =Α W 2 + 2W B A + B A 2 B A 2 + ΓΑ Α 2 =Α W + B A 2 Δ A 2 18

19 Ικανή υνθήκη για ακρότατεσ τιμζσ 5/5 Διακρίνουμε τρεισ περιπτϊςεισ: 1. Δ < 0. Το πρόςθμο του Α κακορίηει το πρόςθμο του Δf. Αν το Α είναι κετικό ζχουμε ελάχιςτο ςτο M 0 ενϊ ςτθν αντίκετθ περίπτωςθ ζχουμε μζγιςτο. (Λόγω ςυμμετρίασ τθ κζςθ του Α μπορεί να πάρει το Γ.) 2. Δ > 0, το τριϊνυμο Ɗ = 0 ζχει δφο πραγματικζσ και άνιςεσ ρίηεσ. Η τιμι Δf εξαρτάται από το W, άρα θ f δεν ζχει οφτε μζγιςτο οφτε ελάχιςτο. Σο ςημείο αυτό είναι ςαγματικό. 3. Δ = 0, το τριϊνυμο Ɗ = 0, ζχει μία πραγματικι ρίηα ( B/A), οπότε μπορεί να μετατραπεί ςτο γινόμενο A(W + B/A) 2. ϋαρα αν W ( B/A), το Ɗ παίρνει τθν τιμι του Α. Για W = B/A το Ɗ μθδενίηεται, άρα πρζπει να διερευνιςουμε το πρόςθμο του Q 3 για τθν τιμι αυτι του W. 19

20 Διαδικαςία Εφρεςησ Ακροτάτων Συνοψίηοντασ τα παραπάνω καταλιγουμε ςε μια ςχετικά απλι διαδικαςία εφρεςθσ των τοπικϊν ακροτάτων. ❶Λφνουμε το ςφςτθμα {f x = 0, f y = 0} και βρίςκουμε τα ςτάςιμα ι κρίςιμα ςθμεία M i (x i, y i ) τθσ ςυνάρτθςθσ. ❷Για κάκε κρίςιμο ςθμείο χωριςτά υπολογίηουμε τισ παραςτάςεισ Δ=f 2 xy(x i, y i ) f xx (x i, y i )f yy (x i, y i ) και A = f xx (x i, y i ) (ι Γ = f yy (x i, y i )). ϋετςι ςτα κρίςιμα ςθμεία θ ςυνάρτθςθ μπορεί να παρουςιάηει: Σχετικό ελάχιςτο αν το Δ < 0 και A > 0 (Γ > 0), Σχετικο μζγιςτο αν το Δ < 0 και A < 0 (Γ < 0), Δεν παρουςιάηει ακρότατο αν το Δ > 0 (το ςθμείο M(x 0, y 0 ) λζγεται ςαγματικό), Χρειάηεται περιςςότερθ διερεφνθςθ αν το Δ= 0. Προςπακοφμε να βροφμε το πρόςθμο τισ διαφοράσ f(x, y) f(x 0, y 0 ) ςτθ περιοχι του ςθμείου M 0 ❸Αντικακιςτϊντασ τισ τιμζσ των κρίςιμων ςθμείων ςτθ ςυνάρτθςθ βρίςκουμε τισ ακρότατεσ τιμζσ τθσ. 20

21 αγματικά ημεία Εκτόσ από τα μζγιςτα και ελάχιςτα ςυναντοφμε ςυχνά και τα ςαγματικά ςημεία. Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ ςτθν περιοχι του ςαγματικοφ ςθμείου κυμίηει το γνωςτό μασ ςαμάρι (βλζπε Σχιμα). Στθ περιοχι του ςαγματικοφ ςθμείου M 0 (x 0, y 0 ) θ ςυνάρτθςθ f(x, y 0 ) παρουςιάηει μζγιςτο (ι ελάχιςτο) ενϊ θ ςυνάρτθςθ f(x 0, y) παρουςιάηει ελάχιςτο (ι μζγιςτο). 21

22 Παράδειγμα 2 Να χαρακτθριςτοφν τα ακρότατα τθσ f(x,y)=x 4 +16y 4-2(x-2y) 2. Απάντηςη: Όπωσ είχαμε υπολογίςει, τα ακρότατα ςθμεία τθσ ςυνάρτθςθσ f είναι τα Μ 1 (0,0), Μ 2 (- 2, 2 ), Μ 2 3( 2, 2 ). Στθ ςυνζχεια, υπολογίηουμε 2 τθν ζκφραςθ Δ για κάκε ζνα από τα ςθμεία.προκφπτει οτι: το Μ 1 (0,0) χρειάηεται περιςςότερθ διευρεφνθςθ αφου Δ=0, το Μ 2 (- 2, 2 ) ελάχιςτο αφοφ Δ<0 και A > 0 (Γ > 0), 2 το Μ 3 ( 2, 2 ) ελάχιςτο αφοφ Δ<0 και A > 0 (Γ > 0). 2 22

23 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ Ακρότατα ςυναρτήςεων τριών μεταβλητών

24 Ακρότατα ςυναρτήςεων τριών μεταβλητών 1/2 Ο χαρακτθριςμόσ των κριςίμων ςθμείων ςε μζγιςτα ι ελάχιςτα για ςυναρτιςεισ τριϊν μεταβλθτϊν είναι δυςκολότεροσ. Αν ζχουμε ιδθ εξαςφαλίςει ότι το ςθμείο M 0 επαλθκεφει το ςφςτθμα των εξιςϊςεων (f x = 0, f y = 0, f z = 0), τότε υπολογίηουμε τα πρόςθμα των οριηουςϊν Δ 1 = f xx f xy f xz f yx f yy f yz f zx f zy f zz Δ 2 = f xx f xy f xy f yy 24

25 Ακρότατα ςυναρτήςεων τριών μεταβλητών 2/2 ❶Δ 1 (x 0, y 0, z 0 ) > 0, Δ 2 (x 0, y 0, z 0 ) > 0, A > 0, τότε θ f(x 0, y 0, z 0 ) παρουςιάηει ςτο ςθμείο M0 τοπικό ελάχιςτο το f(x 0, y 0, z 0 ). ❷Δ 1 (x 0, y 0, z 0 ) < 0, Δ 2 (x 0, y 0, z 0 ) > 0, A < 0 τότε θ f(x 0, y 0, z 0 ) παρουςιάηει ςτο ςθμείο M0 τοπικό μζγιςτο το f(x 0, y 0, z 0 ). ❸Αν όλεσ οι παραςτάςεισ A, Δ 1, Δ 2 είναι διάφορεσ του μθδενόσ και δεν ιςχφουν οι προθγοφμενεσ ςυνκικεσ τότε θ f(x, y, z) δεν παρουςιάηει ακρότατο. ❹Αν Δ 1 ι Δ 2 είναι μθδζν προςπακοφμε να βγάλουμε ςυμπζραςμα κάνοντασ εκτίμθςθ άμεςα του προςιμου τθσ διαφοράσ f = f(x, y, z) f(x 0, y 0, z 0 ) 25

26 Ακρότατα πεπλεγμζνων ςυναρτήςεων Η μελζτθ των ακροτάτων τθσ ςυνάρτθςθσ z(x, y) που ορίηεται πεπλεγμζνα από τθν εξίςωςθ F(x, y, z(x, y)) = 0 ξεκινά από τθν εφρεςθ των λφςεων του ςυςτιματοσ z x = z y = 0 και ςτθ ςυνζχεια με τθ βοικεια των παραγϊγων ανϊτερθσ τάξθσ μποροφμε να διερευνιςουμε το χαρακτιρα των κριςίμων ςθμείων. 26

27 Διαδικαςία Εφρεςησ Ακροτάτων ςε πεπλεγμζνεσ ςυναρτήςεισ 1/2 Για τθν μελζτθ των άκρων τιμϊν τθσ ςυνάρτθςθσ z(x, y) που ορίηεται από τθν εξίςωςθ F(x, y, z) = 0 ακολουκοφμε τθν παρακάτω διαδικαςία. Υποκζτουμε ότι θ ςυνάρτθςθ F ζχει ςυνεχείσ μερικζσ παραγϊγουσ πρϊτθσ και δεφτερθσ τάξθσ. Λφνουμε το ςφςτθμα {F x = 0, F y = 0, F(x, y, z) = 0} και προςδιορίηουμε, αν υπάρχουν, τισ λφςεισ. Αν M 0 (x 0, y 0, z 0 ) ειναι μία λφςθ του ςυςτιματοσ που ςυγχρόνωσ επαλθκεφει τθ ςχζςθ F z (x 0, y 0, z 0 ) 0 τότε, με βάςθ το κεϊρθμα των πεπλεγμζνων ςυναρτιςεων, ορίηεται θ ςυνάρτθςθ z(x, y). 27

28 Παράδειγμα 3 Να βρεκοφν τα ακρότατα τθσ πεπλεγμζνθσ ςυνάρτθςθσ z(x,y) ςτθν ζκφραςθ F=x 2 +2y 2 +3z 2-2xy-2yz-2=0. Απάντηςη: Αρχικά κα εξετάςουμε εάν F z 0 ςτα πικανά ακρότατα ςθμεία Μ j (x o,y o,z o ). Στθν ςυνζχεια, υπολογίηουμε τθν ορίηουςα Δ για να καταλιξουμε ςτο είδοσ των ακροτάτων. Άρα, y x 2x + 6zz x 2y 2yz x = 0 z x = 3z y Ομοίωσ για το z y.τα ςθμεία που προκφπτουν είναι Μ 1(1,1,1) και Μ 2 (- 1,-1,-1). Για το ςθμείο Μ 1 : z xx =-1/2, z yy =-1, z xy =1/2 άρα Δ<0 & Α>0 μζγιςτο Για το ςθμείο Μ 2 : z xx =1/2, z yy =1, z xy =-1/2 άρα Δ<0 & Α<0 ελάχιςτο 28

29 Διαδικαςία Εφρεςησ Ακροτάτων ςε Αν το ςθμείο (x 0, y 0 ) βρίςκεται ςτο εςωτερικό του πεδίου οριςμοφ τθσ ςυνάρτθςθσ z(x, y) τότε θ μελζτθ του χαρακτιρα (μζγιςτο ι ελάχιςτο) των άκρων τιμϊν ςτθρίηεται ςτισ ακόλουκεσ ςχζςεισ: Αν F z (x 0, y 0, z 0 )F xx (x 0, y 0, z 0 ) < 0 και το F xx (x 0, y 0, z 0 )F yy (x 0, y 0, z 0 ) F xy (x 0, y 0, z 0 ) 2 < 0 τότε το ςθμείο (x 0, y 0 ) είναι κζςθ τοπικου ελαχίςτου που είναι το z(x 0, y 0 ) = z 0. Αν F z (x 0, y 0, z 0 )F xx (x 0, y 0, z 0 ) > 0 και το F xx (x 0, y 0, z 0 )F yy (x 0, y 0, z 0 ) F xy (x 0, y 0, z 0 ) 2 < 0 τότε το ςθμείο (x 0, y 0 ) είναι κζςθ τοπικου μεγίςτου που είναι το z(x 0, y 0 ) = z 0. Αν πεπλεγμζνεσ ςυναρτήςεισ 2/2 F z (x 0, y 0, z 0 )F xx (x 0, y 0, z 0 ) = 0 δεν βγάηουμε ςυμπζραςμα με τθ μζκοδο αυτι. 29

30 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ Ακρότατα υπό ςυνθήκη

31 Ειςαγωγή Σε πολλά φυςικά ςυςτιματα, ηθτάμε τα ακρότατα μιασ ςυνάρτθςθσ z = f(x, y), όταν τα x, y δεν είναι ανεξάρτθτα μεταξφ τουσ, δθλαδι όταν υπόκεινται ςε μια επιπλζον ςυνκικθ φ(x, y) = 0. Για παράδειγμα, μπορεί να ηθτάμε τθ μζγιςτθ τιμι του δυναμικοφ U = U(x, y) πάνω ςτο κφκλο x 2 + y 2 = α 2. Στθν περίπτωςθ αυτι κα λζμε ότι ψάχνουμε τθν ακρότατθ τιμι τθσ ςυνάρτθςθσ f(x, y) υπό τη ςυνθήκη φ(x, y) = 0, δθλαδι κα μελετιςουμε τθ ςυνάρτθςθ f(x, y(x)) τθσ μιάσ μεταβλθτισ. ϋομοια αν αναηθτοφμε τα ακρότατα τθσ ςυνάρτθςθσ f(x, y, z) οταν οι μεταβλθτζσ (x, y, z) ςυνδζονται μεταξφ τουσ με το δεςμό φ(x, y, z) = 0. Αν είναι εφκολο να λφςουμε τθν εξίςωςθ φ(x, y, z) = 0 ωσ προσ μία από τισ μεταβλθτζσ τισ π.χ. z(x, y) και ςτθ ςυνζχεια τθν αντικαταςτιςουμε ςτθ ςυνάρτθςθ f(x, y, z(x, y)) τότε μετατρζπεται ςε ςυνάρτθςθ δφο μεταβλθτϊν και αναλφεται με τθ μζκοδο που ιδθ μελετιςαμε. 31

32 Πολλαπλαςιαςτζσ Lagrange Στθν πράξθ παρουςιάηονται προβλιματα ςτα οποία θ λφςθ y = φ(x) δεν είναι εφκολθ. Στισ περιπτϊςεισ αυτζσ καταφεφγουμε ςτθν παρακάτω μζκοδο των πολλαπλαςιαςτϊν Lagrange. Αν ηθτάμε τα ακρότατα τθσ ςυνάρτθςθσ f(x, y) με δεδομζνθ τθ ςυνκικθ φ(x, y) = 0, τότε μποροφμε να ορίςουμε μια νζα ςυνάρτθςθ F(x, y) = f(x, y) + λ φ(x, y) όπου ο λ κα ονομάηεται ο πολλαπλαςιαςτήσ Lagrange. 32

33 υνθήκη Τπαρξησ Κρίςιμου ημείου Για να υπάρχει κρίςιμο ςθμείο κα πρζπει να ιςχφουν ταυτόχρονα οι ςχζςεισ, F = 0 = f + λ φ (5) x x x F = 0 = f + λ φ (6) y y y και F x = 0 = φ(x, y) (7) Οι εξιςϊςεισ (5) - (7) μποροφν επίςθσ να γραφοφν με τθ μορφι f + λ φ = 0. Η λφςθ του ςυςτιματοσ των εξιςϊςεων (5)-(7) κα δϊςει τα κρίςιμα ςθμεία. Τα ακρότατα, αν υπάρχουν, κα βρίςκονται μεταξφ των λφςεων του ςυςτιματοσ. 33

34 τάςιμα ημεία 1/2 Εάν μία ςυνάρτθςθ τριϊν μεταβλθτϊν f(x, y, z) είναι οριςμζνθ ςτο R 3, ζχει ςυνεχείσ παραγϊγουσ και υπόκεινται ςε δφο περιοριςμοφσ φ 1 (x, y, z) = 0, φ 2 (x, y, z) = 0, τότε θ ςυνάρτθςθ που πρζπει να μελετθκεί είναι θ F(x, y, z, φ 1, φ 2 ) = f(x, y, z) + λ 1 φ 1 (x, y, z) + λ 2 φ 2 (x, y, z). Τα ςτάςιμα ςθμεία βρίςκονται από τθ λφςθ των εξιςϊςεων F x = 0, F y = 0, F z = 0, F λ1 = 0, F λ2 = 0. Ο χαρακτθριςμόσ των ςτάςιμων ςθμείων αν δεν προκφπτει εφκολα από τη γεωμετρική ανάλυςη τησ ςυνάρτηςησ κα πρζπει να γίνει με βάςθ τθν ορίηουςα. 34

35 τάςιμα ημεία 2/2 Δ = F xx F xy F yx F yy F yz φ 1y φ 2y F xz φ 1x φ 2x F zx F zy F zz φ 1z φ 2z φ 1x φ 1y φ 1z 0 0 φ 2x φ 2y φ 2z 0 0 Αν θ Δ (x 0, y 0, z 0, λ 1, λ 2 ) > 0 ζχουμε ελάχιςτο, ενϊ αν Δ < 0 μζγιςτο. 35

36 Ακρότατα ημεία Αν μασ ενδιαφζρει να μελετιςουμε τα ακρότατα τθσ ςυνάρτθςθσ f(x, y, z), θ οποία είναι οριςμζνθ ςτο R 3, ζχει ςυνεχείσ παραγϊγουσ και υπόκειται ςτο δεςμό φ(x, y, z) = 0 τότε λφνουμε το ςφςτθμα των εξιςϊςεων F x = 0, F y = 0, F z = 0, F λ = 0. Αν το ςθμείο M(x 0, y 0, z 0, ) είναι κρίςιμο ςθμείο, υπολογίηουμε τισ ορίηουςεσ ςτο M 0 Δ 1 = F xx F xy F yz φ y F yx F yy F xz φ x F zx F zy F zz φ z φ x φ y φ z 0 F yy F yz φ y Δ 2 = F zy F zz φ z φ y φ z 0 Αν Δ 1 < 0 και Δ 2 < 0, τότε θ f παρουςιάηει ελάχιςτο ςτο ςθμείο M, ενϊ αν Δ 1 < 0 και Δ 2 > 0 παρουςιάηει μζγιςτο. 36

37 Παράδειγμα 4 Να βρεκοφν τα ακρότατα τθσ εξίςωςθσ f(x,y)=x 2 +y 2 όταν αυτά είναι ςθμεία του κφκλου (x-1) 2 +(y-1) 2 =1/4. Απάντηςη: Εφόςον, τα μζγιςτα και ελάχιςτα τθσ εξίςωςθσ υπόκεινται ςε ςυνκικθ, ςφμφωνα με τον Lagrange μποροφμε να δθμιουργιςουμε μια νζα εξίςωςθ και να αναηθτιςουμε τα ακρότατα εκείνθσ τθσ ςυνάρτθςθσ. Άρα, F(x,y)= x 2 +y 2 +λ[(x-1) 2 +(y-1) 2-1/4] Για να υπάρχει κρίςιμο ςθμείο κα πρζπει να ιςχφουν ταυτόχρονα οι ςχζςεισ,(5),(6) και (7). Οι λφςεισ του ςυςτιματοσ που προκφπτει δίνουν τα ςθμεία (1 2, ) και (1 +, )

38 Βιβλιογραφία 1. Βλάχοσ Λ., Διαφορικόσ Λογιςμόσ Πολλών Μεταβλητών με ςύντομη ειςαγωγή ςτο Mathematica, Εκδ. Τηίολα, Κεφ Finney R. L., Giordano F. R., Weir M. D., Απειροςτικόσ Λογιςμόσ (Ενιαίοσ τόμοσ), Πανεπιςτθμιακζσ Εκδόςεισ Κριτθσ, Κεφ

39 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Σζλοσ Ενότητασ Επεξεργαςία: Φίλιογλου Μαρία Θεςςαλονίκθ, 2014

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 10 η : Εφαρμογζσ Διανυςματικών Συναρτιςεων Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 4 η : Όρια και Συνζχεια Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μακθματικά ΙΙ

Γενικά Μακθματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Ενότθτα 8 θ : Σειρζσ Taylor και Πεπλεγμζνεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 7 η : Σφνκετεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία) ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων:

Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Πανεπιςτιμιο Κφπρου ΟΙΚ 3: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Φάμπιο Αντωνίου τοιχεία Επικοινωνίασ: email: fantoniou@aueb.gr ; fabio@ucy.ac.cy Σθλ:893683 Προςωπικι Ιςτοςελίδα: fantoniou.wordpress.com

Διαβάστε περισσότερα

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ

Διαβάστε περισσότερα

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ Πρόλογοσ το άρκρο αυτό κα δοφμε πωσ διαμορφϊνονται κάποιεσ ζννοιεσ όπωσ το εςωτερικό γινόμενο διανυςμάτων, οι ςυνκικεσ κακετότθτασ και παραλλθλίασ διανυςμάτων και ευκειϊν, ο ςυντελεςτισ διευκφνςεωσ διανφςματοσ

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα

Γενικά Μακθματικά ΙΙ

Γενικά Μακθματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Ενότθτα 1 θ : Μακθματικά και Φυςικι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 10

Aντιπτζριςη (ΕΠ027) Ενότητα 10 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 10: Σακτικι Απλοφ τεπάν-αρκίσ Παρτεμιάν Σμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότθτα 3: Κοινωνικζσ ικανότθτεσ και «ευ αγωνίηεςκαι» Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ Ενότητα 6:

Διαβάστε περισσότερα

ΘΕΜΟΔΥΝΑΜΙΚΘ Ι. Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ

ΘΕΜΟΔΥΝΑΜΙΚΘ Ι. Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ ΘΕΜΟΔΥΝΑΜΙΚΘ Ι Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν Σκοποί ενότθτασ Σκοπόσ

Διαβάστε περισσότερα

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ

Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ Ενότητα 7:

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Ι. Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Ι Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ,

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότθτα 1: Οργάνωςθ μακιματοσ Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ

Διαβάστε περισσότερα

lim x και lim f(β) f(β). (β > 0)

lim x και lim f(β) f(β). (β > 0) . Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα

Διαβάστε περισσότερα

Ειςαγωγή ςτη διδακτική των γλωςςών

Ειςαγωγή ςτη διδακτική των γλωςςών ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 5: Μζκοδοι διδαςκαλίασ IV Άννα Μουτι, Α.Π.Θ & Πανεπιςτιμιο Θεςςαλίασ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα

Διαβάστε περισσότερα

Aντιπτζριςθ (ΕΠ027) Ενότθτα 12

Aντιπτζριςθ (ΕΠ027) Ενότθτα 12 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςθ (ΕΠ027) Ενότθτα 12: Σακτικι διπλοφ μικτοφ τεπάν-αρκίσ Παρτεμιάν Σμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 15: Εξόρυξη Δεδομζνων (Data Mining) Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 6 η : Η Μζθοδοσ Μ και η Μζθοδοσ των Δφο Φάςεων Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 5

Aντιπτζριςη (ΕΠ027) Ενότητα 5 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 5: Lift Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ Το παρόν

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 4: Στόχοι τθσ εκπαίδευςθσ Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ

Διαβάστε περισσότερα

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό. ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΝΑ ΒΡΙΚΟΤΜΕ ΣΟ ΠΕΔΙΟ ΟΡΙΜΟΤ ΤΝΑΡΣΗΗ Για να οριςκεί μια ςυνάρτθςθ πρζπει να δοκοφν δφο ςτοιχεία : Σο πεδίο οριςμοφ τθσ Α και Η τιμι τθσ f() για κάκε Α. Οριςμζνεσ φορζσ μασ δίνουν μόνο τον

Διαβάστε περισσότερα

Διαγλωςςική Επικοινωνία

Διαγλωςςική Επικοινωνία ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Διαγλωςςική Επικοινωνία Ενότητα 6 : Μετάφραςθ και εκδόςεισ Ελζνθ Καςάπθ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 6

Aντιπτζριςη (ΕΠ027) Ενότητα 6 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 6: Backhand Overhead Clear Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ

Διαβάστε περισσότερα

EMUNI A.U.Th. SUMMER SCHOOL

EMUNI A.U.Th. SUMMER SCHOOL ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ EMUNI A.U.Th. SUMMER SCHOOL - 2014 6 η Διάλεξη: Τα ταξίδια των πολιτιςμικών αντικειμζνων Η περιγραφι των εκκεςιακών αντικειμζνων μιασ ζκκεςθσ.

Διαβάστε περισσότερα

ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ. Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ. Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν

ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ. Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ. Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν ΘΕΜΟΔΥΝΑΜΙΚΗ IΙ Ενότθτα 1: Μερικζσ Γραμμομοριακζσ Ιδιότθτεσ Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ αυτισ είναι θ ανάπτυξθ μακθματικϊν ςχζςεων μεταξφ

Διαβάστε περισσότερα

Αγροτική - Κοινοτική Ανάπτυξη

Αγροτική - Κοινοτική Ανάπτυξη ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Αγροτική - Κοινοτική Ανάπτυξη Ενότητα 7 η : Σφγχρονα προβλιματα Τοπικισ Ανάπτυξθσ Όλγα Ιακωβίδου, Μαρία Παρταλίδου, Ελζνθ Δθμθτριάδου Άδειεσ

Διαβάστε περισσότερα

Ειςαγωγή ςτη διδακτική των γλωςςών

Ειςαγωγή ςτη διδακτική των γλωςςών ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 6: Μζκοδοι διδαςκαλίασ V Τψθλάντθσ Γεϊργιοσ, αναπλθρωτισ κακθγθτισ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Η αυτεπαγωγή ενός δακτυλίου

Η αυτεπαγωγή ενός δακτυλίου Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα

Διαβάστε περισσότερα

ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν

ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν 1 υναρτιςεισ Περιςςοτζρων Μεταβλθτϊν Παράδειγμα.(E.F. Dbois S =επιφάνεια ςϊματοσ W =βάροσ ςϊματοσ H =φψοσ ςϊματοσ

Διαβάστε περισσότερα

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α. ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ

Διαβάστε περισσότερα

Διάδοση θερμότητας σε μία διάσταση

Διάδοση θερμότητας σε μία διάσταση Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια

ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 11: Μεταπτϊςεισ πρϊτθσ και δεφτερθσ τάξθσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 11: Μεταπτϊςεισ πρϊτθσ και δεφτερθσ τάξθσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 11: Μεταπτϊςεισ πρϊτθσ και δεφτερθσ τάξθσ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ ειςαγωγι του παράγοντα τθσ «τάξθσ»

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 10: Ψυχοκινθτικι Αγωγι Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ

Διαβάστε περισσότερα

Κοινωνική Δημογραφία

Κοινωνική Δημογραφία ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Κοινωνική Δημογραφία Ενότητα 4 η : Ο πλθκυςμόσ τθσ Ελλάδασ από το 1951 ζωσ το 2001 Όλγα Ιακωβίδου Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ

ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ Γιώργος Ν. Μαγούλιος, Κακθγθτις Τμιμα Λογιστικής & Χρηματοοικονομικής Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative

Διαβάστε περισσότερα

Αγροτικι - Κοινοτικι Ανάπτυξθ

Αγροτικι - Κοινοτικι Ανάπτυξθ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Αγροτικι - Κοινοτικι Ανάπτυξθ Ενότθτα 3 θ : Προςεγγίςεισ και ιςτορικι εξζλιξθ τθσ ανάπτυξθσ Όλγα Ιακωβίδου, Μαρία Παρταλίδου, Ελζνθ Δθμθτριάδου

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ

ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΚΑΜΠΤΛΕ ΕΛΕΤΘΕΡΗ ΜΟΡΦΗ Χριςιμεσ για τθν περιγραφι ομαλών και ελεφκερων ςχθμάτων Αμάξωμα αυτοκινιτου, πτερφγια αεροςκαφών, ςκελετόσ πλοίου χιματα χαρακτιρων κινουμζνων ςχεδίων Περιγραφι

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 8: Διά βίου άκλθςθ για υγεία (ευκαμψία) Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ

Διαβάστε περισσότερα

Ειςαγωγή ςτη διδακτική των γλωςςών

Ειςαγωγή ςτη διδακτική των γλωςςών ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 2: Μζκοδοι διδαςκαλίασ I Άννα Μουτι, Α.Π.Θ & Πανεπιςτιμιο Θεςςαλίασ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 7: Φιλολογικζσ και Λογοτεχνικζσ Εξαρτιςεισ / Το Παράδειγμα των Παραβολών Αικατερίνθ Τςαλαμποφνθ

Διαβάστε περισσότερα

Ανάλυςη κλειςτϊν δικτφων

Ανάλυςη κλειςτϊν δικτφων Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά k 2 9 9 10 Nm 2 1. Δφο ακίνθτα ςθμειακά θλεκτρικά φορτία q 1 = - 2 μq και q 2 = + 3 μq, βρίςκονται

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 9

Aντιπτζριςη (ΕΠ027) Ενότητα 9 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 9: Drive shots Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ

Διαβάστε περισσότερα

Εκκλθςιαςτικό Δίκαιο ΙΙΙ (Μεταπτυχιακό)

Εκκλθςιαςτικό Δίκαιο ΙΙΙ (Μεταπτυχιακό) ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Εκκλθςιαςτικό Δίκαιο ΙΙΙ (Μεταπτυχιακό) Ενότθτα 1θ: Συςτιματα χωριςμοφ κράτουσ - κρθςκευμάτων Κυριάκοσ Κυριαηόπουλοσ Άδειεσ Χριςθσ Το παρόν

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 7: Ειςαγωγι ςτο Δυναμικό Προγραμματιςμό Κακθγθτισ Γιάννθσ Γιαννίκοσ Σχολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Τμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Σφνολα και Σχζςεισ Πράξεισ Συνόλων Κατθγορίεσ Σχζςεων Σχζςεισ Ιςοδυναμίασ, Διάταςθσ, Συμβατότθτασ Συναρτιςεισ

Διαβάστε περισσότερα

ΘΕΜΑΣΑ ΕΞΕΣΑΕΩΝ

ΘΕΜΑΣΑ ΕΞΕΣΑΕΩΝ ΠΕΡΙΒΑΛΛΟΝΣΙΚΗ ΠΟΛΙΣΙΚΗ Τομζασ Ανκρωπιςτικϊν Κοινωνικϊν Επιςτθμϊν και Δικαίου Σχολι Εφαρμοςμζνων Μακθματικϊν και Φυςικϊν Επιςτθμϊν 2012-2013 Διδάσκοντες: Παναγιώτα Ράπτη, Κώστας Θεολόγου ΑΔΕΙΑ ΧΡΗΗ Το

Διαβάστε περισσότερα

Κλαςικι Ηλεκτροδυναμικι

Κλαςικι Ηλεκτροδυναμικι Κλαςικι Ηλεκτροδυναμικι Ενότθτα 21: Διάδοςθ θλεκτρομαγνθτικών κυμάτων Ανδρζασ Τερηισ Σχολι Θετικών Επιςτθμών Τμιμα Φυςικισ Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ είναι να ςυνεχίςει τθν μελζτθ που αφορά τθν

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και και

Διαβάστε περισσότερα

Επιχειρηςιακή Έρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Έρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Έρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 10 η : Ακζραιοσ Προγραμματιςμόσ Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ Σχολι

Διαβάστε περισσότερα

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι

Διαβάστε περισσότερα

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε)

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Σεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνασ Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ενδεικτική επίλυςη άςκηςησ 1 Δρ. Θωμάσ Π. Μαηαράκοσ Τμιμα Ναυπθγϊν Μθχανικϊν ΤΕ Το

Διαβάστε περισσότερα

Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου

Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑIΟΤ & ΑΕΙ ΠΕΙΡΑΙΑ Σ.Σ. Σμήματα Ναυτιλίας και Επιχειρηματικών Τπηρεσιών & Μηχ. Αυτοματισμού ΣΕ Π.Μ.. «Νέες Σεχνολογίες στη Ναυτιλία και τις Μεταφορές» Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 4: Πρϊτοσ Θερμοδυναμικόσ Νόμοσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 4: Πρϊτοσ Θερμοδυναμικόσ Νόμοσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 4: Πρϊτοσ Θερμοδυναμικόσ Νόμοσ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και των κεμελιωδϊν

Διαβάστε περισσότερα

Διαγλωςςική Επικοινωνία

Διαγλωςςική Επικοινωνία ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Διαγλωςςική Επικοινωνία Ενότητα 7 : Εγκυρότθτα κειμζνου πθγι και αξιολόγθςθ πολλαπλών μεταφράςεων Ελζνθ Καςάπθ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Αγροτικι - Κοινοτικι Ανάπτυξθ

Αγροτικι - Κοινοτικι Ανάπτυξθ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Αγροτικι - Κοινοτικι Ανάπτυξθ Ενότθτα 2 θ : Ραγκοςμιοποίθςθ και Τοπικι Ανάπτυξθ Πλγα Ιακωβίδου, Μαρία Ραρταλίδου, Ελζνθ Δθμθτριάδου Άδειεσ

Διαβάστε περισσότερα

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ ΜΑ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο -, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Μαρτίου, Διάρκεια: ώρεσ ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλημα. Θεωροφμε τα διανφςματα u =,,,, v =,,,4, w =,,,, (α) Υπολογίςτε

Διαβάστε περισσότερα

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 7: Χριςτολογία του κατά Λουκάν Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών

Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Απολφμανςθ Η εκροι που προζρχεται από πρωτοβάκμια, δευτεροβάκμια ι τριτοβάκμια

Διαβάστε περισσότερα

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ

ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 6: Παφλοσ. Ευαγγζλιο και Νόμοσ Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 9: Διαδικαςία φνκεςθσ Φϊτιοσ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότθτα 11: SQL-Ερωτιματα Ομαδοποίθςθσ με υνζνωςθ Πινάκων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικϊν Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Ι. Ενότθτα 11: SQL-Ερωτιματα Ομαδοποίθςθσ με υνζνωςθ Πινάκων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικϊν Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Ι Ενότθτα 11: SQL-Ερωτιματα Ομαδοποίθςθσ με υνζνωςθ Πινάκων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ. Μιςθρλισ Δθμιτριοσ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑ ΣΕ

ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ. Μιςθρλισ Δθμιτριοσ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑ ΣΕ ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ Μιςθρλισ Δθμιτριοσ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑ ΣΕ 1 Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 3: Μθδενικόσ Νόμοσ - Ζργο. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 3: Μθδενικόσ Νόμοσ - Ζργο. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 3: Μθδενικόσ Νόμοσ - Ζργο ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και των κεμελιωδϊν εννοιϊν

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 2

Aντιπτζριςη (ΕΠ027) Ενότητα 2 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 2: Λαβι ρακζτασ Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

Ειςαγωγι ςτισ Μεταφραςτικζσ Σπουδζσ

Ειςαγωγι ςτισ Μεταφραςτικζσ Σπουδζσ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγι ςτισ Μεταφραςτικζσ Σπουδζσ Ενότθτα 6 : Θεωρία τθσ μετάφραςθσ Ελζνθ Καςάπθ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Λ Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ

Διαβάστε περισσότερα

ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ. Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών

ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ. Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι o οριςμόσ του ιδανικοφ διαλφματοσ με βάςθ

Διαβάστε περισσότερα

ΕΙΑΓΩΓΗ ΣΗ ΦΙΛΟΟΦΙΑ ΕΝΟΣΗΣΑ 6. ΕΠΙΧΕΙΡΗΜΑΣΟΛΟΓΙΑ ΚΑΙ ΛΟΓΙΚΗ

ΕΙΑΓΩΓΗ ΣΗ ΦΙΛΟΟΦΙΑ ΕΝΟΣΗΣΑ 6. ΕΠΙΧΕΙΡΗΜΑΣΟΛΟΓΙΑ ΚΑΙ ΛΟΓΙΚΗ ΕΙΑΓΩΓΗ ΣΗ ΦΙΛΟΟΦΙΑ Σομέας Ανθρωπιστικών Κοινωνικών Επιστημών και Δικαίου χολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΕΝΟΣΗΣΑ 6. ΕΠΙΧΕΙΡΗΜΑΣΟΛΟΓΙΑ ΚΑΙ ΛΟΓΙΚΗ Κώστας Θεολόγου ΑΔΕΙΑ ΧΡΗΗ Το παρόν

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Κεφάλαιο 4 Αςαφείσ Συνεπαγωγέσ

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Κεφάλαιο 4 Αςαφείσ Συνεπαγωγέσ ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Κεφάλαιο 4 Αςαφείσ Συνεπαγωγέσ Επιμέλεια: Πέτροσ Π. Γρουμπόσ, Κακθγθτισ Βάια Κ. Γκουντρουμάνη, Υπ. Διδάκτωρ Τμιμα Ηλεκτρολόγων Μθχανικϊν & Τεχνολογίασ Υπολογιςτϊν Άδειεσ Χριςθσ Το παρόν

Διαβάστε περισσότερα

ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ

ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ Ενότητα 9: Διδαςκαλία ακλοπαιδιϊν ςτο ςχολείο Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q

ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 9: Το ιδιαίτερο υλικό του Μτ και Λκ Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο

Διαβάστε περισσότερα