Μάθημα 4ο: Boxing System
|
|
- Σκύλλα Δραγούμης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 7 Απριλίου 2020 Εργαστήριο Οφθαλμικών Φακών Ι Μάθημα 4ο: Boxing System Το boxing system είναι ένα σύστημα μέτρησης σκελετών. Υπάρχουν και άλλα συστήματα μέτρησης, αυτό όμως είναι το πλέον αξιόπιστο, καθώς αποτελεί παράλληλα σύστημα συμμετρίας του σκελετού. Αυτό σημαίνει πως, εάν γυρίσουμε τους δακτυλίους του σκελετού με τέτοιο τρόπο, ώστε να «πέσει» ο ένας επάνω στον άλλον, τότε θα πρέπει να ταυτιστούν. Επιπλέον, το boxing system μας βοηθά να σχεδιάσουμε το σκελετό και να κόψουμε φόρμες του σκελετού ώστε να μπορέσουμε έπειτα να κόψουμε το φακό, βάσει των στοιχείων του διοπτροφόρου. Σχεδιασμός boxing system Τα υλικά που απαιτούνται για να κάνουμε boxing system σε ένα σκελετό είναι τα παρακάτω: 1. ένας σκελετός γυαλιών χωρίς τα demo lenses 2. ένα κομμάτι χαρτόνι 3. μολύβι 4. ψαλίδι 5. χάρακας Η διαδικασία που θα ακολουθήσουμε είναι η εξής: Βήμα 1 ο : Παίρνουμε τον σκελετό (χωρίς τα demo lenses) και τον τοποθετούμε στο χαρτόνι με τέτοιον τρόπο, ώστε το πρόσθιο τμήμα του να ακουμπάει πάνω σε αυτό. Βήμα 2 ο : Με το μολύβι σχεδιάζουμε τους δακτυλίους του σκελετού στο χαρτόνι, ακολουθώντας προσεκτικά και με λεπτομέρεια το σχήμα της εσωτερικής πλευράς τους. Έχουμε λοιπόν στο χαρτόνι το σχεδιάγραμμα των δυο δακτυλίων. Ο δακτύλιος που βρίσκεται δεξιά αντιστοιχεί στο δεξιό δακτύλιο και ο άλλος στον αριστερό. Αντίστοιχα, όταν εμείς κοιτάμε τον σκελετό από την πρόσθια επιφάνειά του, οι δακτύλιοι είναι
2 ακριβώς αντίθετοι. Επομένως, για να προσδιορίσουμε τον δεξιό και τον αριστερό, αρκεί να προσποιούμαστε ότι φοράμε το σκελετό. Βήμα 3 ο : Με τη βοήθεια του χάρακα χαράζουμε τις εφαπτόμενες στην κάθετη και στην οριζόντια πλευρά του κάθε δακτυλίου. Στο τέλος, φαίνεται σαν να έχουμε βάλει τους δακτυλίους σε ένα τετράγωνο ή παραλληλόγραμμο ανάλογα με το σχήμα του σκελετού. Βήμα 4 ο : Στο σχήμα που φτιάξαμε σχεδιάζουμε με τη βοήθεια του χάρακα και τις διαγώνιες. Το σημείο τομής των διαγώνιων αποτελεί και το γεωμετρικό κέντρο του κάθε δακτυλίου, που είναι επίσης και το κέντρο ισορροπίας του. Βήμα 5 ο : Με σημείο αναφοράς το γεωμετρικό κέντρο φέρνουμε οριζόντια γραμμή, παράλληλη στις οριζόντιες εφαπτόμενες του σχήματος. Η γραμμή αυτή λέγεται γραμμή αναφοράς. Η παραπάνω διαδικασία μας δίνει τη φόρμα των δακτυλίων του σκελετού που απεικονίζεται στο σχήμα 1. Σχήμα 1: Το boxing system
3 Στο παραπάνω σχήμα, όπου απεικονίζονται τα στάδια του boxing system, παρατηρούμε ότι: Η οριζόντια γραμμή του σχήματος και κατά συνέπεια η οριζόντια διάσταση του σκελετού σε κάθε δακτύλιο λέγεται διάσταση Α. Η κάθετη γραμμή του σχήματος και κατά συνέπεια η κάθετη διάσταση του σκελετού σε κάθε δακτύλιο λέγεται διάσταση Β. Η μικρότερη απόσταση ανάμεσα στους δύο δακτυλίους (που είναι η γέφυρα του σκελετού) λέγεται DBL (Distance Between Lenses). Η απόσταση των δύο γεωμετρικών κέντρων των δακτυλίων ορίζεται ως κορική απόσταση σκελετού (ΚΑΣ) και προκύπτει από τη μισή διάσταση Α του δεξιού δακτυλίου + τη μισή διάσταση Α του αριστερού δακτυλίου + τη γέφυρα. Α 2 + Α 2 + DBL = ΚΑΣ Η κορική απόσταση του σκελετού μπορεί επίσης να βρεθεί από τα στοιχεία που είναι τυπωμένα στο εσωτερικό μέρος του βραχίονα του σκελετού, όπως αναφέρθηκε στο 2ο μάθημα. Οι δυο αριθμοί που ενίοτε έχουν ένα τετράγωνο ανάμεσά τους πχ. 46_18 αφορούν στα στοιχεία του boxing system: το 46 αφορά στη διάσταση Α και το 18 στο DBL, επομένως η ΚΑΣ είναι (46+18=) 64mm. Εναλλακτικός τρόπος εύρεσης της κορικής απόστασης του σκελετού είναι ο ακόλουθος: Με ένα χάρακα μετράμε την απόσταση ανάμεσα στην εξωτερική κάθετη πλευρά του ενός δακτυλίου, έως την εσωτερική κάθετη του άλλου δακτυλίου του σκελετού. Το παραπάνω αποτελεί πρακτική εφαρμογή της σχέσης Α + DBL = ΚΑΣ Εισαγωγή των στοιχείων του διοπτροφόρου Αφού έχουμε φτιάξει τις φόρμες των δακτυλίων (boxing system) στο σκελετό του διοπτροφόρου, στη συνέχεια πρέπει να εισάγουμε τα στοιχεία του. Η διαδικασία που ακολουθούμε είναι η παρακάτω: Βήμα 1 ο : Με τον τρόπο που έχουμε ήδη δείξει στο προηγούμενο μάθημα, μετράμε και καταγράφουμε την μακρινή κορική απόσταση και το ύψος του διοπτροφόρου. Παράδειγμα: Έστω ότι η κορική του διοπτροφόρου είναι 60mm, το ύψος του 20mm και η κορική του σκελετού είναι 70mm.
4 Προσοχή: Για να είναι σωστός ο σκελετός στο πρόσωπο του διοπτροφόρου, η κορική του σκελετού πρέπει πάντα να είναι μεγαλύτερη ή ίση με αυτήν του διοπτροφόρου. Εάν είναι μικρότερη, ο σκελετός θα είναι μικρός στο πρόσωπο του. Βήμα 2 ο : Για να βάλουμε τα σωστά σημεία (κέντρα) πάνω στη φόρμα, βάσει της κορικής του διοπτροφόρου, θα πρέπει να αφαιρέσουμε την κορική του από την κορική του σκελετού και να διαιρέσουμε το αποτέλεσμα δια δύο (για τους δακτυλίους). Έτσι στο παράδειγμα μας: 70mm 60mm = 10mm 10mm 2 = 5mm Πρέπει, λοιπόν, να μετατοπίσω το γεωμετρικό κέντρο του κάθε δακτυλίου 5mm προς τα μέσα (δλδ προς τη μύτη), μένοντας σταθερά πάνω στη γραμμή αναφοράς. Με αυτόν τον τρόπο, έχω βρει το οπτικό κέντρο του διοπτροφόρου που αντιστοιχεί στο κέντρο της κόρης του (σχήμα 2). Σχήμα 2: Μεταφορά στοιχείων διοπτροφόρου στη φόρμα Βήμα 3 ο : Σημειώνω τα δύο νέα σημεία πάνω στη γραμμή αναφοράς. Παίρνοντας ως νέο κέντρο κάθε ένα από αυτά τα δύο σημεία, φέρνω μια κάθετη γραμμή πάνω στη γραμμή αναφοράς, που είναι παράλληλη στην κάθετη πλευρά του κάθε δακτυλίου.
5 Βήμα 4 ο : Πάνω στην καθεμία κάθετη γραμμή, θα τοποθετήσω τη μέτρηση του ύψους του διοπτροφόρου. Αυτό γίνεται ως εξής: Μετράω την απόσταση από το σημείο τομής της κάθετης με τη γραμμή αναφοράς, μέχρι το έσω σημείο του κάτω μέρους του σκελετού. Στην περίπτωση που αυτή η απόσταση είναι ίση με το ύψος του διοπτροφόρου, τότε το σημείο τομής της κάθετης με τη γραμμή αναφοράς είναι το ύψος του διοπτροφόρου. Στην περίπτωση που η απόσταση μέχρι το έσω σημείο του κάτω μέρους του σκελετού είναι μεγαλύτερη από το ύψος του διοπτροφόρου, τότε μεταφέρω το σημείο προς τα κάτω (προς το κάτω μέρος του σκελετού). Η αριθμητική διαφορά ανάμεσα στις δυο τιμές, μου δείχνει την ακριβή τιμή του ύψους του διοπτροφόρου. Στην περίπτωση που η απόσταση είναι μικρότερη από το ύψος του διοπτροφόρου, τότε μεταφέρω το σημείο προς τα πάνω (προς την γραμμή αναφοράς). Η αριθμητική διαφορά ανάμεσα στις δυο τιμές, μου δείχνει την ακριβή τιμή. Παράδειγμα: Έστω ότι το ύψος του διοπτροφόρου είναι 17mm και το ύψος του σκελετού είναι 20mm. Σύμφωνα με τα παραπάνω, μεταφέρω το σημείο τομής της κάθετης με τη γραμμή αναφοράς 3mm προς τα κάτω, επειδή το ύψος του σκελετού είναι μεγαλύτερο από το ύψος του διοπτροφόρου (βλ. σχήμα 3, τη μαύρη γραμμή). Παράδειγμα: Έστω ότι το ύψος του διοπτροφόρου είναι 23mm και το ύψος του σκελετού είναι 20mm. Σύμφωνα με τα παραπάνω, μεταφέρω το σημείο τομής της κάθετης με τη γραμμή αναφοράς 3mm προς τα πάνω, επειδή το ύψος του σκελετού είναι μικρότερο από το ύψος του διοπτροφόρου (βλ. σχήμα 3, την κόκκινη γραμμή). Από το καινούριο σημείο του κάθε δακτυλίου, φέρνω καινούρια οριζόντια γραμμή, που αποτελεί τη νέα γραμμή αναφοράς. Στο σχήμα 3 που ακολουθεί απεικονίζονται τα παραπάνω παραδείγματα.
6 Σχήμα 3: Τοποθέτηση ύψους Ολοκληρώνοντας την παραπάνω διαδικασία, έχω τοποθετήσει τα στοιχεία του διοπτροφόρου που με ενδιαφέρουν πάνω στη φόρμα του σκελετού που έχει επιλέξει και έτσι μπορώ να τα μεταφέρω στους φακούς που έχω παραγγείλει, με άξονα τη συνταγή του. Βήμα 5 ο : Χρησιμοποιώντας το ψαλίδι, κόβω με προσοχή τους σχεδιασμένους δακτυλίους και τους τοποθετώ στο σκελετό, στη θέση των φακών. Προσοχή! Κόβω τους δακτυλίους 1-2mm μεγαλύτερους, ώστε να εφαρμόσουν σωστά στο σκελετό. Αυτό είναι απαραίτητο γιατί ο σκελετός γύρω γύρω στη εσωτερική του πλευρά έχει ένα αυλάκι, που λέγεται πατούρα, και εκεί στηρίζεται ο φακός.
8. Σύνθεση και ανάλυση δυνάμεων
8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα
Διδακτική των Μαθηματικών
Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα
Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου
Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου Περιεχόμενα 1. Στόχος του εργαστηρίου... 3 2. ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ... 3 2.1 Εξοπλισμός σχεδίασης... 3 2.1.1 Μολύβια... 3 2.1.2. Επιφάνεια
1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)
20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή
Μελέτη της συνάρτησης ψ = α χ 2
Μελέτη της συνάρτησης ψ = α χ Η γραφική της παράσταση είναι μια καμπύλη που λέγεται παραβολή. Ανάλογα με το πρόσημο του α έχω και τα αντίστοιχα συμπεράσματα. αν α > 0 1) Η γραφική της παράσταση είναι πάνω
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street
Υλικά που χρειαζόμαστε
Πώς αλλιώς ανάβει το λαμπάκι;... και άλλα πειράματα με απλά ηλεκτρικά κυκλώματα Τα παιδιά της διπλανής φωτογραφίας ετοιμάζονται να φτιάξουν απλά ηλεκτρικά κυκλώματα με λαμπάκια και μπαταρίες. Δεν έχουν
Υλικά που χρειαζόμαστε
Θέρμανση νερού σε ηλιακό συλλέκτη και κατασκευή ενός ηλιακού θερμοσίφωνα Η Ελλάδα έχει περίπου το 1/4 των ηλιακών θερμοσιφώνων από τις χώρες της Ευρωπαϊκής Ένωσης. Αυτό το διαπιστώνουμε εύκολα αν κοιτάξουμε
Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση.
5Η ΕΝΟΤΗΤΑ ΑΣΚΗΣΕΩΝ 5.1 Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση. Α. Οι κύκλοι είναι διπλάσιοι σε αριθμό από τα τετράγωνα. Β.
2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ
ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του
6 Γεωμετρικές κατασκευές
6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά
Πρόγραμμα: «Πηγές Ενέργειας - Πηγές Ζωής»
1 Πρόγραμμα: «Πηγές Ενέργειας - Πηγές Ζωής» Κατασκευή μοντέλου ηλιακού αυτοκινήτου Υλικά: Μακετόχαρτο 1 φωτοβολταϊκό στοιχείο 1 Ηλεκτρικός κινητήρας 2 Άξονες 2 Πλαστικά γρανάζια 4 Πλαστικές θήκες αξόνων
ήγαινε στο x : y : κατέβασε πένα σήκωσε πένα
Παραδείγματα Ας δούμε τώρα πρακτικά πως μπορούμε να συνδυάσουμε την εντολή κίνησης πήγαινε στο x: y: με τις κατέβασε πένα, σήκωσε πένα για να δημιουργήσουμε ένα τετράγωνο. Έστω ότι θέλουμε να το δημιουργήσουμε
Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα
Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το
Ενότητα 5: ΜΕΤΑΒΛΗΤΕΣ
Ενότητα 5: ΜΕΤΑΒΛΗΤΕΣ Οι Μεταβλητές στον Προγραμματισμό Οι μεταβλητές είναι θέσεις μνήμης που έχουν κάποιο όνομα. Όταν δίνω τιμή σε μία μεταβλητή, ουσιαστικά, αποθηκεύουμε στη μνήμη αυτή τον αριθμό που
Μεθοδολογία Παραβολής
Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.
Ονοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος»
ο Γενικό Λύκειο Χανίων ΣΧΟΛ. ΕΤΟΣ - Τάξη ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙ Τα θέματα ΔΕΝ θα μεταφερθούν στο καθαρό. Να απαντήσετε σε όλα τα θέματα Οι απαντήσεις να γραφούν στο καθαρό
Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο
Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα
Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
II. Συναρτήσεις. math-gr
II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική
ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί
ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει
1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?
ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών
ΟΔΗΓΊΕΣ https://www.youtube.com/watch?v=z88rgotjrwe
ΟΔΗΓΊΕΣ Στην παρουσίαση των εικόνων, βλέπουμε ένα φωτιστικό μεγάλου μεγέθους που δημιουργεί μια πολύ όμορφη ατμόσφαιρα στο χώρο. Η κατασκευή του, δεν είναι πολύπλοκη παρά το μέγεθός του. Για να το κατασκευάσω,
Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα:
Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Α τάξη Β τάξη Γ τάξη Παρατηρούν μετατοπίσεις και στροφές (90 ο, 180 ο, 360 ο ) και μπορούν αν προβλέψουν το αποτέλεσμα. Αναγνωρίζουν συμμετρικά
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα
5. ΚΕΝΤΡΟ ΒΑΡΟΥΣ 5.1 Η
5. ΚΕΝΤΡΟ ΒΑΡΟΥΣ 5. Η έννοια του κέντρου βάρους Έστω ότι ένα σώμα αποτελείται από δύο ή περισσότερα μέρη,... με απλό σχήμα, και ότι τα βάρη των μερών του είναι Β, Β.... Οι δυνάμεις Β, Β... θα ενεργούν
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Βασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: 1. Να σχεδιάζει γεωμετρικές καμπύλες (ελλειψοειδή, ωοειδή, παραβολή, υπερβολή, έλικα, σπείρα) εφαρμόζοντας τους
ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά
ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε
Ενότητα 2: Εντολές Επανάληψης
Ενότητα 2: Εντολές Επανάληψης Όταν κάποια εντολή ή ολόκληρη ομάδα εντολών επαναλαμβάνεται τότε δεν είναι απαραίτητο να τις γράψουμε πολλές φορές αλλά χρησιμοποιούμε την εντολή ΕΠΑΝΑΛΑΒΕ Συντάσσεται ως
ΣΥΝΘΕΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΥΝΑΜΕΩΝ
ΣΥΝΘΕΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΥΝΑΜΕΩΝ Συνισταμένη δυο ή περισσοτέρων δυνάμεων οι οποίες ενεργούν ταυτόχρονα σε ένα σώμα λέγεται η δύναμη που επιέρει τα ίδια μηχανικά αποτελέσματα που επιέρουν όλες μαζί Τις δυνάμεις,f,...
ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.
ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου
Σχεδίαση τομών Συνήθη σφάλματα και Παραδείγματα. Πότε;
Σχεδίαση τομών... Πότε;...Συνήθη σφάλματα και Παραδείγματα Οταν 5 η Διάλεξη οι οψεις Τομές δημιουργουν συγχυση και δεν εμφανιζουν αμεσα το εσωτερικο των αντικειμένων Ι.Ν. ΑΓ. ΔΗΜΗΤΡΙΟΥ, ΗΠΕΙΡΟΣ Διαδικασία
Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1
Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ. Εξετάζουμε ενδεικτικά ορισμένες περιπτώσεις: 1 ο 2 ο. 3 ο 4 ο
ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ Δίνεται ορθογώνιο παραλληλόγραμμο διάστασης m n όπου m,n φυσικοί αριθμοί, το οποίο είναι διαιρεμένο σε τετράγωνα που το καθένα ισούται με την μονάδα μέτρησης του εμβαδού του. Να βρεθεί
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε
Επίδραση της βαρύτητας στο απλό εκκρεμές. Δύο λάθη ένα σωστό!
Υποστηρικτικό υλικό για την εργασία Επίδραση της βαρύτητας στο απλό εκκρεμές. Δύο λάθη ένα σωστό! του Νίκου Σκουλίδη Η εργασία δημοσιεύτηκε στο 10ο τεύχος του περιοδικού Φυσικές Επιστήμες στην Εκπαίδευση,
Chess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης
Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης Παρατήρηση: Μόνο σε αυτό το μάθημα όταν λέμε κομμάτι εννοούμε κομμάτι ή πιόνι και όταν λέμε κομμάτια εννοούμε κομμάτια
ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς
Αναγκαιότητα τοποθέτησης διαστάσεων 29/10/2015 Πολύζος Θωμάς 1 Αναγκαιότητα τοποθέτησης διαστάσεων Σφάλμα μέτρησης που οφείλεται: Σε υποκειμενικό λάθος εκείνου που κάνει την μέτρηση. Σε σφάλμα του οργάνου
Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.
2. τα ρωμαϊκά, που το λούκι έχει μετασχηματιστεί σε επίπεδο και έχει ενσωματωθεί στο καπάκι
Οι αριθμοί αντιμετωπίζονται με τον ίδιο τρόπο, αλλά είναι σημαντικό να μελετήσουμε τον τρόπο που σημειώνονται οι αριθμοί που αποδίδουν στα σχέδια τις διαστάσεις του αντικειμένου. Οι γραμμές διαστάσεων
αξιοποίηση των ΤΠΕ: Η logo στη διδακτική διδακτική πράξη
Παιδαγωγική αξιοποίηση Δρ. Ι. Μπέλλου, Σχ αξιοποίηση των ΤΠΕ: Η logo στη διδακτική διδακτική πράξη Μια προσέγγιση για τη Γ Γυμνασίου Σχ. Σύμβουλος ΠΕ19 Δρ. Ιωάννα Μπέλλου Σχ. Σύμβουλος ΠΕ19 Μια διδακτική
ΔΗΜΙΟΥΡΓΙΑ ΣΧΗΜΑΤΩΝ. 1) Προβολή Γραμμές εργαλείων Σχεδίαση. ΜΑΘΗΜΑ 5 ο : ΣΧΗΜΑΤΑ-ΕΙΚΟΝΕΣ-ΕΞΙΣΩΣΕΙΣ 1
ΣΧΗΜΑΤΑ-ΕΙΚΟΝΕΣ-ΕΞΙΣΩΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΣΧΗΜΑΤΩΝ Για τη δημιουργία σχημάτων στο WORD χρησιμοποιείται η γραμμή εργαλείων της σχεδίασης. Τα βήματα που μπορεί να ακολουθήσετε για να εμφανίσετε τη γραμμή εργαλείων
ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.
Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),
Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία
Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία) Σχεδίαση ευθείας θί με σάρωση (παρουσίαση προβλήματος) σχεδίαση ευθείας AB, με σάρωση, όπου A=(0,1) και B=(5,4) ποιο είναι το επόμενο pixel
ΠΡΟΒΛΗΜΑ 1. Αν x=-3, με τι ισούται το -3x; Α. -9 Β. -6 Γ. -1 Δ. 1 Ε. 9 ΠΡΟΒΛΗΜΑ 2
ΠΡΟΒΛΗΜΑ 1 Αν x=-3, με τι ισούται το -3x; Α. -9 Β. -6 Γ. -1 Δ. 1 Ε. 9 ΠΡΟΒΛΗΜΑ 2 Τα αντικείμενα της παρακάτω ζυγαριάς ισορροπούν τέλεια. Στην αριστερή πλευρά υπάρχει ένα δοχείο 1 κιλού και μισό τούβλο.
1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες
. Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την
Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας
Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης
Ενότητα 1: Απλές εντολές γραφικών
Ενότητα 1: Απλές εντολές γραφικών ΣΤΚ: Στυλό Κάτω ΣΒΓ: Σβήσε Γραφικά (Σβήνει όλα τα σχέδια και φέρνει τη χελώνα στην αρχή με το κεφάλι προς τα πάνω) Εντολές Κίνησης: Εντολές Παραδείγματα σύνταξης Εντολή
1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης
Ερωτήσεις ανάπτυξης. ** Η γραφική παράσταση της συνάρτησης f είναι αυτή που φαίνεται στο διπλανό σχήμα. Να βρεθούν τα παρακάτω όρια: α) γ) ε) ζ) - f () β) f () δ) f () f () στ) - - - f () f () f () - y
Κεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ
Κεφάλαιο ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Σε προηγούμενες τάξεις γνωρίσαμε την έννοια της συνάρτησης και μελετήσαμε ορισμένες βασικές συναρτήσεις. Στο κεφάλαιο αυτό θα μελετήσουμε στη γενική τους μορφή ιδιότητες
ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα
ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ (μάθημα κατεύθυνσης) Τι είναι η δομή και η σύνθεση ενός εικαστικού έργου. Είναι η οργάνωση όλων των στοιχείων ενός έργου σε ένα ενιαίο σύνολο με στόχο να εκφράσουν κάποια
Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1
ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα
ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕΔΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕΔΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Σε πολλές από τις εργαστηριακές ασκήσεις θα ζητηθεί στην έκθεσή σας να περιλάβετε μια ή περισσότερες γραφικές παραστάσεις. Οι γραφικές παραστάσεις μπορεί
ΟΔΗΓΊΕΣ Μακρυά τα παιδιά από τέτοιες εργασίες!!!!!.
ΟΔΗΓΊΕΣ Ξεκινώντας τα υλικά που θα χρειαστούμε είναι σανίδες από κρεβάτι οι οποίες έχουν πλάτος συνήθως 10 εκατοστά και πάχος περίπου 2 εκατοστά, επέλεξα αυτό το υλικό γιατί είναι εύκολο να το βρείτε καθώς
3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Μια συνάρτηση με πεδίο ορισμού το σύνολο Α, λέγεται περιοδική, όταν υπάρχει πραγματικός αριθμός Τ>0 τέτοιος, ώστε για κάθε να ισχύει ότι και ( ) και ( ). Ο αριθμός Τ
Μαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.
Αυτό το βιβλίο ανήκει στ : Εδώ γράψε το όνομά σου. Κάθε γράμμα μπορεί να έχει ένα από τα χρώματα της ίριδας. (βλ. σελίδα 36)
Αυτό το βιβλίο ανήκει στ : Εδώ γράψε το όνομά σου. Κάθε γράμμα μπορεί να έχει ένα από τα χρώματα της ίριδας. (βλ. σελίδα 36) ΠΕΡΙΕΧΟΜΕΝΑ 6 Εισαγωγή 8 Τα σύνεργά Σου 10 Μια παλάμη 12 Πλούσια πέταλα 14 Ζεσταθήκαμε;
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον
ΣΧΕ ΙΑΣΜΟΥ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΚΛΙΜΑΚΙΟ ΣΧΕ ΙΑΣΜΟΥ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ στο Σχεδιασμό και Τεχνολογία Α Β ΠΕΡΙΕΡΓΑ...... ΜΑΤΑΚΙΑ Εισαγωγή: Αφόρμηση Πρόβλημα Στόχοι Πορεία ραστηριότητες Ιδέες Λύσεις Επέκταση Φύλλα εργασίας
Σταυρούλα Πατσιομίτου
Αριστοτέλους Μεταφυσικά 1078 α 30 Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Σ υνδέονται τα Μαθηματικά με την Αισθητική, με την Τέχνη, με την Τεχνολογία. Πόσο σημαντικό είναι να γνωρίζουμε την Ιστορία τους;
Κεφάλαιο 1 Εισαγωγή. Φυσική Β Γυμνασίου
Κεφάλαιο 1 Εισαγωγή Φυσική Β Γυμνασίου Απαντήσεις ερωτήσεων σχολικού βιβλίου σχ. βιβλίο (σ.σ. 18-19) Γυμνάσιο: 9.000 μαθήματα με βίντεο-διδασκαλία για όλο το σχολικό έτος μόνο με 150 ευρώ! Μελέτη όπου,
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό
ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΣΧΕ ΙΟ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑ: εξιότητες κοψίματος Σβούρες ΤΑΞΗ: Α-Β
ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΣΧΕ ΙΟ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑ: εξιότητες κοψίματος Σβούρες ΤΑΞΗ: Α-Β ΗΜ/ΝΙΑ ΠΟΡΕΙΑ ΕΡΓΑΣΙΑ ΡΑΣΤΗΡΙΟΤΗΤΕΣ Σεπτέμβριος Αφόρμηση: ίνω στα παιδιά σε χαρτόνι φωτοτυπημένη μια σβούρα και τους
Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή
Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το αεροσκάφος κάθετης απογείωσης Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται
Σχεδιαζόμενη Απόδειξη Πληρωμής
Σχεδιαζόμενη Απόδειξη Πληρωμής Το συγκεκριμένο εγχειρίδιο δημιουργήθηκε για να βοηθήσει την κατανόηση της Διαδικασίας Σχεδιαζόμενης Απόδειξης Πληρωμής. Παρακάτω προτείνεται μια αλληλουχία ενεργειών την
1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα
1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1. Σύστημα Συντεταγμένων Το σύστημα συντεταγμένων που έχουμε συνηθίσει από το σχολείο τοποθετούσε το σημείο (0,0) στο σημείο τομής των δυο αξόνων Χ και Υ.
Ας μετονομάσουμε τη γάτα που εμφανίζεται μόλις ανοίγουμε το Scratch. Επιλέγουμε το εικονίδιο Μορφή1 που βρίσκεται στη λίστα αντικειμένων.
Σχεδιάζοντας αντικείμενα Εισαγωγή στο περιβάλλον των αντικειμένων Όπως συζητήσαμε και στο προηγούμενο κεφάλαιο, τα αντικείμενα στο Scratch αποτελούν τους πρωταγωνιστές των έργων μας. Το πρώτο βήμα κατά
ΚΕΦΑΛΑΙΟ 2. Φύλλο Εργασίας Καλυπτόμενες ενότητες: 2.4 Κάνοντας τις πρώτες δοκιμές με τη χελώνα
Γυμνάσιο Ιτέας Σχολικό Έτος : 2016-2017 Τάξη : Γ Μάθημα : ΠΛΗΡΟΦΟΡΙΚΗ Διδάσκων : Χρήστος Ρέτσας Ηλ/κη τάξη (e-class) : tiny.cc/ggym ΚΕΦΑΛΑΙΟ 2 Φύλλο Εργασίας 2.4.1 Καλυπτόμενες ενότητες: 2.4 Κάνοντας τις
Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός
Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ. Ονοματεπώνυμο:.. Ημερομηνία:..
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ Ονοματεπώνυμο:.. Ημερομηνία:.. ΘΕΜΑ Α Α. Α1) Σε σώμα που κινείται ευθύγραμμα και ομαλά επενεργεί δύναμη με τις ιδιότητες της αριστερής στήλης. Αντιστοιχίστε τις ιδιότητες των
5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 27 34) Πηγή πληροφόρησης: e-selides ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤA MΑΘΗΜΑΤΙΚΑ Δ' 5 η επανάληψη Μαθήματα 27-34
Ημερομηνία: Κυριακή 29 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Ημερομηνία: Κυριακή 9 Οκτωβρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1 Να δώσετε τους ορισμούς των: α) Ολικό μέγιστο συνάρτησης β) Γνησίως
Περιοχή εργασίας. Τμ. Γραφιστικής (Γραφιστική με Η/Υ - In Design) 2
Περιοχή εργασίας A. Παράθυρο εγγράφου B. Συγκέντρωση πινάκων συμπτυγμένων σε εικονίδια Γ. Γραμμή τίτλου πίνακα Δ. Γραμμή μενού E. Γραμμή επιλογών Στ. Παλέτα εργαλείων Ζ. Κουμπί σύμπτυξης σε εικονίδια Η.
Word 3: Δημιουργία πίνακα
Word 3: Δημιουργία πίνακα Θα ολοκληρώσουμε την πρακτική μας άσκηση πάνω στο περιβάλλον του Microsoft Word 2013 πειραματιζόμενοι με την καταχώρηση ενός πίνακα στο εσωτερικό ενός εγγράφου. Πολλές φορές απαιτείται
ΔΙΑΧΩΡΙΣΜΟΣ ΜΙΓΜΑΤΩΝ (4 η εργαστηριακή άσκηση Β Γυμνασίου)
2 ο ΕΚΦΕ ΗΡΑΚΛΕΙΟΥ Επιμέλεια: Ορφανάκη Πόπη Χημικός Φωτογραφίες: Κωτίτσας Αριστοτέλης Βιολόγος ΔΙΑΧΩΡΙΣΜΟΣ ΜΙΓΜΑΤΩΝ (4 η εργαστηριακή άσκηση Β Γυμνασίου) 1. Διαχωρισμός μίγματος με διήθηση Με τη μέθοδο
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
ΣΧΕΔΙΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ
Α. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΧΕΔΙΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΘΕΜΑ: ΣΥΜΜΕΤΡΙΚΟ ΣΗΜΕΙΟΥ-ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ ΚΑΙ ΟΡΘΟΓΩΝΙΟΥ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ ΩΣ ΠΡΟΣ ΟΡΙΖΟΝΤΙΟ ΑΞΟΝΑ 1. Ανοίξτε το πρόγραμμα Revelation Natural Art-νεανικό. Εμφανίζεται
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά
Περί σφαλμάτων και γραφικών παραστάσεων
Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις
ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ ΠΑΡΑΔΕΙΓΜΑ. Δίνεται ο παρακάτω γεωλογικός χάρτης και ζητείται να κατασκευαστεί η γεωλογική τομή Α-Β.
ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ ΠΑΡΑΔΕΙΓΜΑ Δίνεται ο παρακάτω γεωλογικός χάρτης και ζητείται να κατασκευαστεί η γεωλογική τομή Α-Β. Προσοχή! Ο παραπάνω χάρτης για εκπαιδευτικούς λόγους έχει από πριν
Στο θέατρο των Γιτάνων
Εφορεία Αρχαιοτήτων Θεσπρωτίας τετράδιο για τον μαθητή Στο θέατρο των Γιτάνων εκπαιδευτική περιήγηση Εφορεία Αρχαιοτήτων Θεσπρωτίας Κύπρου 68, 461 00 Ηγουμενίτσα, e-mail: efathe@culture.gr, amig@culture.gr
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
ΑΝΤΙΓΡΑΦΗ ΑΡΧΕΙΟΥ ΣΕ ΔΙΣΚΕΤΑ ΑΝΤΙΓΡΑΦΗ ΑΡΧΕΙΟΥ ΑΠΟ ΔΙΣΚΕΤΑ. Από τον κατάλογο που εμφανίζεται επιλέγω: Αποστολή προς Δισκέτα (3,5)
ΑΝΤΙΓΡΑΦΗ ΑΡΧΕΙΟΥ ΣΕ ΔΙΣΚΕΤΑ ΑΝΤΙΓΡΑΦΗ ΑΡΧΕΙΟΥ ΑΠΟ ΔΙΣΚΕΤΑ Τοποθετώ μια δισκέτα στον οδηγό τη δισκέτας του υπολογιστή. Τοποθετώ τη δισκέτα που έχει το αρχείο μου στον οδηγό τη δισκέτας του υπολογιστή.
ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Ροπή Δύναμης Θα έχετε παρατηρήσει πως κλείνετε ευκολότερα μια πόρτα, αν την σπρώξετε σε μια θέση που βρίσκεται σχετικά μακρύτερα από τον άξονα περιστροφής της (τους μεντεσέδες
Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i
Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ
ΕΡΑΣΤΗΡΙ ΕΦΑΡΜΣΜΕΝΗΣ ΠΤΙΚΗΣ Άσκηση 1: Λεπτοί φακοί Εξεταζόμενες γνώσεις. Εξίσωση κατασκευαστών των φακών. Συστήματα φακών. Διαγράμματα κύριων ακτινών. Είδωλα και μεγέθυνση σε λεπτούς φακούς. Α. Λεπτοί
ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ
ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε
x 2 + y 2 x y
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή
Τεχνολογία Α! Τάξης. Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ
Τεχνολογία Α! Τάξης Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ Μελέτη Πριν από κάθε κατασκευή προηγούνται : 1. Μελέτη 2. Σχεδίαση *Τι σχήμα να τις δώσω; *Τι μέγεθος θα έχει (διαστάσεις); Σχεδίαση * Ποιοι είναι οι κανόνες
Offset Link.
Offset Link Το φυλλάδιο οδηγιών που κρατάτε στα χέρια σας βρίσκεται και σε ηλεκτρονική μορφή (αρχείο Acrobatpdf) στον φάκελο PDF του υπολογιστή (υπάρχει η σχετική συντόμευση την επιφάνεια εργασίας). Για
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από