ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν."

Transcript

1 ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε σειρά αριθμών που συνδέονται μεταξύ τους με τα σύμβολα των πράξεων. Η προτεραιότητα των πράξεων είναι η παρακάτω: α. Υπολογισμός δυνάμεων β. Εκτέλεση πολλαπλασιασμών και διαιρέσεων και γ. Εκτέλεση προσθέσεων και αφαιρέσεων. Αν υπάρχουν παρενθέσεις, ξεκινάμε τις πράξεις μέσα από τις παρενθέσεις με την ίδια σειρά. 2. Ποια σχέση συνδέει τον Διαιρετέο (Δ) με το διαιρέτη (δ), το πηλίκο (π) και το υπόλοιπο (υ) σε μια διαίρεση φυσικών αριθμών και πως λέγεται αυτή; Πότε μια διαίρεση χαρακτηρίζεται τέλεια; Η σχέση που τους συνδέει είναι:, ό. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. 3. Να γράψετε τα συμπεράσματά σας σε κάθε ένα από τα παρακάτω ενδεχόμενα σε μια Ευκλείδεια διαίρεση: α. Αν ο διαιρετέος είναι ίσος με το διαιρέτη β. Αν Δ=0 γ. Αν δ=1 α. Αφού Δ=δ, είναι π=1 και υ=0 β. Αν Δ=0, τότε π=0 και υ=0. γ. Αν δ=1, τότε Δ=π και υ=0. 4. Τι ονομάζουμε πολλαπλάσιο ενός φυσικού αριθμού και τι είναι το ΕΚΠ και ο ΜΚΔ; Πολλαπλάσιο ενός φυσικού αριθμού α, είναι κάθε αριθμός που προκύπτει από τον πολλαπλασιασμό του α με οποιονδήποτε φυσικό αριθμό, για παράδειγμα: 0,2,3, 4,...,20,.... Ελάχιστο κοινό πολλαπλάσιο δύο ή περισσότερων φυσικών αριθμών, είναι το μικρότερο από τα κοινά τους πολλαπλάσια. Μέγιστος κοινός διαιρέτης δύο ή περισσότερων φυσικών αριθμών, είναι ο μεγαλύτερος από τους κοινούς διαιρέτες των αριθμών. 5. Ποιος αριθμός λέγεται πρώτος και ποιος σύνθετος; Πότε δύο αριθμοί λέγονται πρώτοι μεταξύ τους; Να γράψετε όλους τους πρώτους αριθμούς ανάμεσα στο 40 και το 50, καθώς και τρεις αριθμούς που να είναι πρώτοι με το 36. Πρώτος ονομάζεται ένας αριθμός ο οποίος διαιρείται μόνο με τον εαυτό του και τη μονάδα. Ο αριθμός 1 εξαιρείται, δηλαδή δεν είναι πρώτος. Σύνθετος είναι ένας αριθμός που δεν είναι πρώτος, δηλαδή έχει εκτός από τον εαυτό του και τη μονάδα και ένα τουλάχιστον διαιρέτη ακόμα. Δύο αριθμοί που έχουν ΜΚΔ =1 είναι πρώτοι μεταξύ τους. Οι πρώτοι αριθμοί μεταξύ 40 και 50 είναι οι : 41, 43 και 47. Ο αριθμός 36, είναι πρώτος με καθένα από τους : 5, 7, 11, 13, 17,19, 23, 29, 35. Βασίλης Μπακούρος 1

2 6. Να γράψετε τα κριτήρια διαιρετότητας των φυσικών αριθμών. Με το 2: Ο αριθμός πρέπει να έχει τελευταίο ψηφίο του κάποιον από τους 0,2,4,6,8. Με το 5: Ο αριθμός πρέπει να έχει τελευταίο ψηφίο του κάποιον από τους 0, 5. Με το 3: Το άθροισμα των ψηφίων του να είναι πολλαπλάσιο του 3. Με το 9: Το άθροισμα των ψηφίων του να είναι πολλαπλάσιο του 9. Με το 4: Πρέπει ο αριθμός που σχηματίζουν τα δύο τελευταία ψηφία του αριθμού, να είναι πολλαπλάσιο του 4 ή να είναι το 00. Με το 10, το 100 ή το 1000: Ο αριθμός πρέπει να τελειώνει σε 0, 00 ή 000 αντίστοιχα. Με το 25: Ο αριθμός τελειώνει σε 25, 50 ή Να γράψετε τις ιδιότητες της πρόσθεσης και του πολλαπλασιασμού φυσικών αριθμών. ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ 1. α+0=α (το 0 είναι το ουδέτερο στοιχείο)- α (το 1 είναι το ουδέτερο στοιχείο) 2. α+β=β+α - (αντιμεταθετική ιδιότητα) - 3. α+(β+γ)=(α+β)+γ - (προσεταιριστική ιδιότητα) - 4., (επιμεριστική ιδιότητα) 2 ο ΚΕΦΑΛΑΙΟ 1. Τι είναι κλάσμα; Πότε ένα κλάσμα λέγεται ανάγωγο; Ποια κλάσματα λέγονται ισοδύναμα; Να γράψετε ένα παράδειγμα. Κλάσμα είναι κάθε παράσταση της μορφής, ό, ί ί 0. Το κλάσμα, είναι ανάγωγο, αν οι κ και ν είναι πρώτοι μεταξύ τους. Ισοδύναμα λέγονται τα κλάσματα με ίση αξία, δηλαδή τα ίσα κλάσματα, πχ: Τι είναι μεικτό κλάσμα, τι είναι σύνθετο κλάσμα, πότε δύο κλάσματα είναι αντίστροφα; Μεικτό είναι το κλάσμα που αποτελείται από έναν ακέραιο και ένα κλάσμα μικρότερο της μονάδας, για 1 7 παράδειγμα: 2. Σύνθετο είναι ένα κλάσμα της μορφής: 3 3 Αντίστροφα είναι τα κλάσματα, ό ο ΚΕΦΑΛΑΙΟ. 1. Πότε ένα ζεύγος αριθμών καλείται διατεταγμένο; Τι είναι οι συντεταγμένες ενός σημείου και πως ονομάζεται η κάθε μία; Διατεταγμένο καλείται ένα ζεύγος όταν μεταξύ των στοιχείων του έχει οριστεί ποιο θα προηγείται. Συντεταγμένες ενός σημείου είναι το διατεταγμένο ζεύγος της μορφής (χ, ψ) όπου το χ είναι η τετμημένη του σημείου (δηλαδή ο αριθμός που βρίσκουμε στον οριζόντιο άξονα αν φέρουμε από το σημείο την κάθετη Βασίλης Μπακούρος 2

3 προς αυτόν), και το ψ η τεταγμένη του (δηλαδή ο αριθμός που βρίσκουμε στον κατακόρυφο άξονα, αν φέρουμε την κάθετη από το σημείο προς αυτόν. 2. Τι είναι λόγος δύο αριθμών; Τι είναι αναλογία; Τι ονομάζουμε κλίμακα; Λόγος είναι το πηλίκο δύο αριθμών. Αναλογία είναι η ισότητα δύο λόγων. Κλίμακα ονομάζουμε το λόγο της απόστασης δύο σημείων σε μια εικόνα ή ένα χάρτη προς την πραγματική τους απόσταση, εφόσον και οι δύο αποστάσεις είναι μετρημένες με την ίδια μονάδα. 3. Πότε δύο μεγέθη λέγονται ανάλογα; Τι είναι ο συντελεστής αναλογίας; Τι μορφή έχει η γραφική παράσταση δύο ανάλογων μεγεθών; Δύο μεγέθη λέγονται ανάλογα, όταν μεταβάλλονται με τρόπο ώστε όταν οι τιμές του ενός μεγέθους πολλαπλασιάζονται με κάποιον αριθμό, οι αντίστοιχες τιμές του άλλου μεγέθους, να πολλαπλασιάζονται με τον ίδιο αριθμό. Αν δύο ποσά είναι ανάλογα, τότε ο λόγος y x δύο αντίστοιχων τιμών τους είναι σταθερός, συμβολίζεται με α και λέγεται συντελεστής αναλογίας τους. Η γραφική παράσταση δύο αναλόγων μεγεθών, είναι μια ημιευθεία με αρχή το σημείο (0,0) των αξόνων. 4. Πότε δύο μεγέθη λέγονται αντιστρόφως ανάλογα; Με ποια σχέση συνδέονται τότε οι τιμές τους; Πως λέγεται η καμπύλη που παριστάνει δύο τέτοια μεγέθη γραφικά; Δύο μεγέθη λέγονται αντιστρόφως ανάλογα, όταν μεταβάλλονται με τρόπο ώστε καθώς οι τιμές του ενός πολλαπλασιάζονται με κάποιον αριθμό, οι αντίστοιχες τιμές του άλλου μεγέθους να διαιρούνται με τον ίδιο αριθμό. Στην περίπτωση που δύο μεγέθη χ και ψ είναι αντιστρόφως ανάλογα, το γινόμενο α των αντίστοιχων τιμών τους είναι σταθερό, δηλαδή χψ=α. Η γραφική παράσταση δύο τέτοιων μεγεθών είναι μια καμπύλη η οποία καλείται υπερβολή. 7ο ΚΕΦΑΛΑΙΟ 1. Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; Τι ονομάζουμε απόλυτη τιμή ενός αριθμού; Ομόσημοι: Οι αριθμοί που έχουν το ίδιο πρόσημο. Ετερόσημοι: Οι αριθμοί που έχουν διαφορετικό πρόσημο. Απόλυτη τιμή ενός αριθμού, ονομάζουμε την απόστασή του στον άξονα από το μηδέν. Η απόλυτη τιμή ενός αριθμού, είναι πάντα θετικός αριθμός με εξαίρεση το 0 =0. 2. Ποιοι είναι οι φυσικοί, ποιοι οι ακέραιοι και ποιοι οι ρητοί; Πως συμβολίζονται τα αντίστοιχα σύνολα; ί ί : 0,1,2,... έ ί: 0, 1, 2,... ί ί : Ό ό ύ ύ ά, ί ί 3. Να γράψετε τους κανόνες της πρόσθεσης ρητών αριθμών. Για να προσθέσω δύο ομόσημους αριθμούς, προσθέτω τις απόλυτες τιμές τους και στο άθροισμα κρατάω το ίδιο πρόσημο με τους αριθμούς. Βασίλης Μπακούρος 3

4 Για να προσθέσω δύο ετερόσημους αριθμούς, αφαιρώ τις απόλυτες τιμές τους και στο άθροισμα κρατάω το πρόσημο εκείνου που είχε τη μεγαλύτερη απόλυτη τιμή. 4.Να γράψετε τους κανόνες του πολλαπλασιασμού δύο ρητών αριθμών. Πολλαπλασιασμός (διαίρεση) ομόσημων: Πολ/ζουμε (ή διαιρούμε) τις απόλυτες τιμές τους και βάζουμε θετικό πρόσημο στο αποτέλεσμα. Πολλαπλασιασμός (διαίρεση) ετερόσημων: Πολ/ζουμε (ή διαιρούμε) τις απόλυτες τιμές τους και βάζουμε αρνητικό πρόσημο στο αποτέλεσμα. 5. Να γράψετε τις ιδιότητες της πρόσθεσης και του πολλαπλασιασμού ρητών αριθμών και να γράψετε τους ορισμούς για αντίθετους και αντίστροφους αριθμούς. Ιδιότητες πράξεων σε πρόσθεση και πολλαπλασιασμό: ( ή) ( ) ( ) ( ) ( ) ( ή) 0 1 ( έ ί ) 1 a ( a) 0 ( ί ) a 1 ( ί ό ) a Δεν επιτρέπεται η διαίρεση με το μηδέν, αλλά 0 0. Αντίθετοι: Δύο αριθμοί με άθροισμα 0 Αντίστροφοι: Δύο αριθμοί με γινόμενο 1. ΓΕΩΜΕΤΡΙΑ 1 ο ΚΕΦΑΛΑΙΟ Οι βασικές έννοιες των παραγράφων 1.1 έως και 1.5 (Από τα παρακάτω μαθαίνουμε απέξω τους ορισμούς των εννοιών που έχουν υπογράμμιση) Σημείο: Αυτό που δεν έχει διαστάσεις. Τα σημεία παριστάνονται με κουκίδες και συμβολίζονται με κεφαλαία γράμματα του αλφάβητου. Ευθεία: Η γραμμή που μπορούμε να χαράξουμε με έναν κανόνα πάνω σε ένα επίπεδο. Η ευθεία δεν έχει αρχή και τέλος, αποτελείται από άπειρα σημεία τόσο πυκνά τοποθετημένα ώστε να μην έχει κενά και να μην μπορούμε να διακρίνουμε διαδοχικά σημεία και ονομάζεται με κάποιο μικρό γράμμα ((ε), (ζ)). Ημιευθεία : Αν πάνω σε μια ευθεία επιλέξουμε ένα σημείο, η ευθεία χωρίζεται σε δύο ημιευθείες με κοινή αρχή. Κάθε ημιευθεία έχει αρχή αλλά δεν έχει τέλος. Ονομάζεται με κεφαλαίο γράμμα που δηλώνει την αρχή και μικρό γράμμα που δηλώνει την κατεύθυνση. Ευθύγραμμο τμήμα : Το τμήμα μιας ευθείας ανάμεσα σε δύο σημεία μαζί με τα σημεία αυτά που ονομάζονται άκρα του ευθυγράμμου τμήματος. Το ευθύγραμμο τμήμα έχει και αυτό άπειρα σε πλήθος σημεία. Επίπεδο : Επιφάνεια με δύο διαστάσεις που εκτείνεται απεριόριστα και πάνω στην οποία μπορεί να ανήκουν όλα τα σημεία μιας ευθείας. Κάθε ευθεία που ανήκει σε ένα επίπεδο το χωρίζει σε δύο ημιεπίπεδα. Ένα επίπεδο παριστάνεται σαν πλάγιο παραλληλόγραμμο και συμβολίζεται με ένα κεφαλαίο γράμμα. Βασίλης Μπακούρος 4

5 Από δύο διαφορετικά σημεία διέρχεται μία και μόνο μία ευθεία. Ένα ευθύγραμμο τμήμα μπορεί να γράφεται και με διαφορετική σειρά στα άκρα, για παράδειγμα το τμήμα ΑΒ και το ΒΑ είναι ίδια. Οι δύο ημιευθείες που ορίζονται αν πάρουμε ένα σημείο πάνω σε μια ευθεία λέγονται αντικείμενες ημιευθείες. Από τρία μη συνευθειακά σημεία διέρχεται ένα μοναδικό επίπεδο. 1. Τι ονομάζουμε ορθή-οξεία-αμβλεία-ευθεία-μη κυρτή-μηδενική-πλήρη γωνία; Να κατασκευάσετε αντίστοιχο σχήμα για κάθε περίπτωση. Ορθή λέγεται η γωνία της οποίας το μέτρο ισούται με 90 ο. Οξεία λέγεται κάθε γωνία της οποίας το μέτρο είναι μικρότερο από 90 ο. Αμβλεία λέγεται κάθε γωνία της οποίας το μέτρο είναι μεγαλύτερο από 90 ο. Ευθεία λέγεται η γωνία της οποίας το μέτρο ισούται με 180 ο. Μη κυρτή λέγεται κάθε γωνία της οποίας το μέτρο είναι μεγαλύτερο από 180 ο και μικρότερο από 360 ο. Μηδενική λέγεται η γωνία της οποίας το μέτρο ισούται με 0 ο. Πλήρης λέγεται η γωνία της οποίας το μέτρο ισούται με 360 ο. 2. Ποιες γωνίες ονομάζονται εφεξής και ποιες διαδοχικές; Εφεξής ονομάζονται δύο γωνίες οι οποίες έχουν κοινή κορυφή, μία κοινή πλευρά και κανένα άλλο κοινό σημείο. Διαδοχικές ονομάζονται τρεις ή περισσότερες γωνίες, αν κάθε μία από αυτές είναι εφεξής με μία τουλάχιστον από τις υπόλοιπες γωνίες. Βασίλης Μπακούρος 5

6 (Εφεξής: χαψ, ψαζ) (Διαδοχικές οι γωνίες: χαψ, ψαζ, ζαλ ) 3. Ποιες γωνίες ονομάζονται συμπληρωματικές, ποιες παραπληρωματικές και ποιες κατακορυφήν; Συμπληρωματικές ονομάζονται δύο γωνίες που έχουν άθροισμα 90 ο. Παραπληρωματικές ονομάζονται δύο γωνίες που έχουν άθροισμα 180 ο. Κατακορυφήν ονομάζονται δύο γωνίες οι οποίες έχουν κοινή κορυφή και οι πλευρές τους είναι αντικείμενες ημιευθείες. 4. Ποιες ευθείες λέγονται παράλληλες και ποιες τεμνόμενες; Πότε δύο ευθύγραμμα τμήματα είναι παράλληλα; Δύο ευθείες του ίδιου επιπέδου που δεν έχουν κανένα κοινό σημείο όσο και αν προεκταθούν, λέγονται παράλληλες. Δύο ευθείες του ίδιου επιπέδου οι οποίες έχουν ένα μόνο κοινό σημείο, λέγονται τεμνόμενες. Δύο ευθύγραμμα τμήματα λέγονται παράλληλα, όταν βρίσκονται πάνω σε παράλληλες ευθείες. 5. Τι ονομάζουμε απόσταση ενός σημείου από μια ευθεία και τι απόσταση δύο παράλληλων ευθειών; Απόσταση ενός σημείου από μια ευθεία, ονομάζουμε το μήκος του κάθετου ευθυγράμμου τμήματος από το σημείο προς την ευθεία. Απόσταση δύο παράλληλων ευθειών ονομάζουμε το μήκος οποιουδήποτε τμήματος που είναι κάθετο στις δύο παράλληλες ευθείες και έχει τα άκρα του πάνω σε αυτές. 6. Τι είναι κύκλος; Τι ονομάζουμε ακτίνα του κύκλου; Να φτιάξετε ένα κύκλο και να χαράξετε πάνω του μια χορδή και μια διάμετρο του. Κύκλος λέγεται το σύνολο των σημείων του επιπέδου τα οποία απέχουν την ίδια απόσταση (η οποία ονομάζεται ακτίνα) από ένα σταθερό σημείο του επιπέδου το οποίο ονομάζεται κέντρο του κύκλου, ενώ ακτίνα του κύκλου ονομάζεται η απόσταση αυτή. 7. Τι ονομάζουμε χορδή, τι ονομάζουμε διάμετρο και τι τόξο ενός κύκλου; Χορδή είναι το ευθύγραμμο τμήμα που ενώνει δύο σημεία του κύκλου. Διάμετρος είναι η χορδή η οποία περνά από το κέντρο του κύκλου. Δύο σημεία Α και Β του κύκλου, τον χωρίζουν σε δύο μέρη, που το καθένα από αυτά λέγεται τόξο. 8. Ποιες είναι οι σχετικές θέσεις μιας ευθείας και ενός κύκλου που βρίσκονται στο ίδιο επίπεδο; Μπορεί η ευθεία να είναι τέμνουσα, δηλαδή να έχει δύο κοινά σημεία με τον κύκλο και να απέχει από το κέντρο του απόσταση μικρότερη από την ακτίνα. Μπορεί η ευθεία να είναι εφαπτόμενη, δηλαδή να έχει ένα ακριβώς κοινό σημείο με τον κύκλο και να απέχει από το κέντρο του απόσταση ίση με την ακτίνα του. Μπορεί η ευθεία να είναι εξωτερική του κύκλου, δηλαδή να μην έχει κανένα κοινό σημείο με αυτόν και να απέχει από το κέντρο του απόσταση μεγαλύτερη από την ακτίνα του. ΚΕΦΑΛΑΙΟ 2 ο Βασίλης Μπακούρος 6

7 1. Τι ονομάζουμε άξονα συμμετρίας ενός σχήματος; Σε ποια περίπτωση ένα σχήμα έχει άξονα συμμετρίας; Άξονας συμμετρίας ενός σχήματος, ονομάζεται η ευθεία που χωρίζει το σχήμα σε δύο μέρη, τα οποία συμπίπτουν όταν το σχήμα διπλωθεί κατά μήκος της ευθείας. Σε αυτή την περίπτωση, λέμε ότι το σχήμα έχει άξονα συμμετρίας. 2. Τι ονομάζουμε μεσοκάθετο ενός ευθυγράμμου σχήματος; Ποια είναι η χαρακτηριστική ιδιότητα που έχουν όλα τα σημεία της μεσοκαθέτου ενός σχήματος; Ισχύει το αντίστροφό του; Μεσοκάθετος ενός ευθυγράμμου σχήματος λέγεται η ευθεία που είναι κάθετη στο μέσον του ευθυγράμμου τμήματος. Κάθε σημείο της μεσοκαθέτου ενός ευθυγράμμου τμήματος, ισαπέχει από τα άκρα του και αντίστροφα: Κάθε σημείο το οποίο ισαπέχει από τα άκρα ενός ευθυγράμμου τμήματος, ανήκει στη μεσοκάθετο του. 3. Τι ονομάζουμε κέντρο συμμετρίας ενός σχήματος; Σε ποια περίπτωση ένα σχήμα έχει κέντρο συμμετρίας; Κέντρο συμμετρίας ενός σχήματος ονομάζεται ένα σημείο Ο, γύρω από το οποίο αν περιστραφεί το σχήμα κατά 180 ο, συμπίπτει με το αρχικό. Στην περίπτωση που υπάρχει τέτοιο σημείο, λέμε ότι είναι το κέντρο συμμετρίας του σχήματος. ΚΕΦΑΛΑΙΟ 3 ο 1. Ποια είδη τριγώνων γνωρίζετε με κριτήριο α)τις γωνίες του και β) Τις πλευρές του. Με βάση τις γωνίες του ένα τρίγωνο μπορεί να χαρακτηρισθεί ορθογώνιο (έχει μια ορθή και δύο οξείες γωνίες), αμβλυγώνιο (έχει μία αμβλεία και δύο οξείες γωνίες) ή οξυγώνιο (τρεις οξείες γωνίες). Με βάση το μήκος των πλευρών του ένα τρίγωνο μπορεί να είναι ισόπλευρο (οι τρεις πλευρές του ίσες μεταξύ τους), ισοσκελές (δύο πλευρές του ίσες μεταξύ τους) ή σκαληνό (τρεις άνισες πλευρές). 2. Τι ονομάζουμε διάμεσο ενός τριγώνου; Πόσες διαμέσους μπορούμε να φέρουμε σε ένα τρίγωνο; Διάμεσος ενός τριγώνου, ονομάζεται το ευθύγραμμο τμήμα που ενώνει την κορυφή ενός τριγώνου με το μέσο της απέναντι πλευράς του. Σε κάθε τρίγωνο, υπάρχουν τρεις διάμεσοι. 3. Τι ονομάζουμε ύψος ενός τριγώνου; Πόσα ύψη μπορούμε να φέρουμε σε ένα τρίγωνο; Ύψος ενός τριγώνου ονομάζεται το ευθύγραμμο τμήμα που φέρνουμε από μια κορυφή του τριγώνου κάθετο στην ευθεία της απέναντι πλευράς. Σε ένα οξυγώνιο ή αμβλυγώνιο τρίγωνο μπορούμε να φέρουμε τρία ύψη, σε ένα ορθογώνιο τρίγωνο όμως, φέρνουμε μόνο ένα ύψος από την κορυφή της ορθής γωνίας προς την υποτείνουσα, αφού τα άλλα δύο ύψη συμπίπτουν με τις πλευρές του τριγώνου. 4. Τι ονομάζουμε διχοτόμο ενός τριγώνου; Πόσες διχοτόμους μπορούμε να φέρουμε σε ένα τρίγωνο; Διχοτόμος μιας γωνίας ενός τριγώνου, ονομάζεται το ευθύγραμμο τμήμα που βρίσκεται πάνω στη διχοτόμο της γωνίας, ξεκινά από την κορυφή του τριγώνου και καταλήγει στην απέναντι πλευρά του. Σε κάθε τρίγωνο, υπάρχουν τρεις ακριβώς διχοτόμοι. 5. Να αναφέρετε όσες ιδιότητες ενός ισοσκελούς τριγώνου γνωρίζετε. Ισοσκελές είναι το τρίγωνο που έχει δύο πλευρές του ίσες μεταξύ τους. α. Σε κάθε ισοσκελές τρίγωνο, οι γωνίες οι προσκείμενες στη βάση γωνίες του είναι ίσες μεταξύ τους. Βασίλης Μπακούρος 7

8 β. Η ευθεία της διαμέσου που περνά από την κορυφή των ίσων πλευρών είναι άξονας συμμετρίας του τριγώνου. γ. Η διάμεσος που φέρνουμε από την κορυφή των ίσων πλευρών προς τη βάση του τριγώνου είναι ταυτόχρονα ύψος και διχοτόμος του τριγώνου. 6. Να αναφέρετε όσες ιδιότητες του ισοπλεύρου τριγώνου γνωρίζετε. α. Όλες οι πλευρές του είναι ίσες μεταξύ τους και όλες οι γωνίες του είναι ίσες μεταξύ τους (60 ο κάθε μία). β. Κάθε διάμεσός του είναι ύψος και διχοτόμος. γ. Οι ευθείες των διαμέσων είναι άξονες συμμετρίας του ισοπλεύρου τριγώνου. Προσοχή: Οι απαντήσεις στα παρακάτω ερωτήματα 7,8,9,10 και 11 πρέπει να συνοδεύονται από σχήμα όπου θα ονομάζουμε τις κορυφές του τετραπλεύρου και θα γράφουμε όλες τις ισότητες που αφορούν γωνίες και πλευρές των τετραπλεύρων οι οποίες απορρέουν από τις ιδιότητες. 7. Τι ονομάζουμε παραλληλόγραμμο; Ποιες ιδιότητες έχει; Παραλληλόγραμμο ονομάζουμε το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες. Ιδιότητες: Το κέντρο του παραλληλογράμμου (σημείο τομής των διαγωνίων του) είναι κέντρο συμμετρίας του. Οι απέναντι γωνίες του είναι ίσες, οι απέναντι πλευρές του είναι ίσες και οι διαγώνιοί του διχοτομούνται δηλαδή η μία τέμνει την άλλη στο μέσον της. (Οι γωνίες Α=Γ και Β=Δ, ΑΒ=ΓΔ και ΒΓ=ΑΔ, αν Ο το σημείο τομής των διαγωνίων ισχύουν ΑΟ=ΟΓ και ΒΟ=ΟΔ) 8. Τι ονομάζουμε ορθογώνιο παραλληλόγραμμο; Ποιες ιδιότητες έχει; Το παραλληλόγραμμο που έχει τις γωνίες του ορθές ονομάζεται ορθογώνιο παραλληλόγραμμο. Έχει όλες τις ιδιότητες του παραλληλογράμμου (ερώτηση 7) και επιπλέον: Οι μεσοκάθετοι των πλευρών του είναι άξονες συμμετρίας του και οι διαγώνιές του είναι ίσες. 9. Τι ονομάζουμε ρόμβο; Ποιες ιδιότητες έχει; Το παραλληλόγραμμο που έχει όλες του τις πλευρές ίσες μεταξύ τους λέγεται ρόμβος. Έχει όλες τις ιδιότητες του παραλληλογράμμου (ερώτηση 7) και επιπλέον: Οι διαγώνιές του είναι άξονες συμμετρίας του ενώ οι διαγώνιές του τέμνονται κάθετα και είναι διχοτόμοι των γωνιών του ρόμβου. 10. Τι είναι τετράγωνο; Ποιες ιδιότητες έχει; Τετράγωνο ονομάζουμε το τετράπλευρο που είναι ταυτόχρονα ορθογώνιο και ρόμβος. Έχει, προφανώς, όλες τις ιδιότητες που αναφέρυηκαν παραπάνω για ορθογώνιο παραλληλόγραμμο και ρόμβο. 11. Τι ονομάζουμε ισοσκελές τραπέζιο; Ποιες ιδιότητες έχει; Τραπέζιο είναι το τετράπλευρο που έχει τις δύο απέναντι πλευρές του παράλληλες (βάσεις). Αν, επιπλέον, έχει και τις δύο μη παράλληλες πλευρές του ίσες, λέγεται ισοσκελές. Σε ένα ισοσκελές τραπέζιο, η μεσοκάθετος των βάσεων είναι άξονας συμμετρίας του, ενώ οι γωνίες που πρόσκεινται σε κάθε βάση του είναι ίσες, όπως επίσης ίσες είναι και οι διαγώνιές του. Βασίλης Μπακούρος 8

9 Βασίλης Μπακούρος 9

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α! ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

Κεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες

Κεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες 17 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΓΕΩΜΕΤΡΙΙΑΣ Κεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες Β. 1. 1 81. Τι ονομάζεται ευθεία και ποιες προτάσεις αναφέρονται σ αυτή; Ονομάζεται ευθεία το σχήμα που προκύπτει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της. ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ίου σεις Θεωρίας Ερωτήσ Επιµέλεια

ίου σεις Θεωρίας Ερωτήσ Επιµέλεια ΜΑΘΗΜΑΤΙΚΑ Α Γυµνασί ίου Ερωτήσ σεις ς Επιµέλεια Θ Ε Μ Ε Λ Η Σ Ε Υ Ρ Ι Π Ι Η Σ 1 ο Κεφάλαιο Φυσικοί Αριθµοί 1.1 Φυσικοί αριθµοί ιάταξη φυσικών Στρογγυλοποίηση 1. Ποιοι φυσικοί αριθµοί ονοµάζονται άρτιοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις

Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή

Φίλη μαθήτρια, φίλε μαθητή Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

+ + = + + α ( β γ) ( )

+ + = + + α ( β γ) ( ) ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία

Ευκλείδεια Γεωμετρία Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου

Διαβάστε περισσότερα

25 17, , 30 30, 18 11

25 17, , 30 30, 18 11 Φυσικοί αριθμοί: 0,1,2,3,4,... ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ (1.1,1.2) Άρτιοι αριθμοί: Όσοι διαιρούνται με το 2 Περιττοί αριθμοί: Όσοι δεν διαιρούνται με το 2 Μπορούμε πάντα να συγκρίνουμε φυσικούς αριθμούς

Διαβάστε περισσότερα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α.

ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α. ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΝΟΜΑΣΙΕΣ Σημείο Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α. Ευθύγραμμο τμήμα Το ευθύγραμμο τμήμα, το ονομάζουμε με δύο κεφαλαία γράμματα (των σημείων που

Διαβάστε περισσότερα

Σωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες.

Σωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες. Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1) Οι οξείες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ Α Α. Να αποδείξετε ότι ισχύει α + β α + β, για κάθε α, β R. Α. Τι ονομάζουμε νιοστή ρίζα ενός μη αρνητικού αριθμού α; Α. Να χαρακτηρίσεις

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΔΦΦΦΦΦ. Μαθηματικά. Α Γυμνασίου

ΔΦΦΦΦΦ. Μαθηματικά. Α Γυμνασίου ΔΦΦΦΦΦ Μαθηματικά Α Γυμνασίου Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Φυσικοί αριθμ οί... 5 Α1.1 Φυσικοί αριθμ οί-διάταξη φυσικών-στρογγυλοποίηση... 5 Α1.2 Πρόσθεση, αφαίρεση και πολλαπλασιασμ ός φυσικών αριθμ ών... 7

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 1

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός) Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

Σειρά: Τράπεζα Θεμάτων Γυμνασίου

Σειρά: Τράπεζα Θεμάτων Γυμνασίου Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΩΜΤΡΙ ΛΥΚΙΟΥ ΠΝΛΗΠΤΙΚΟ ΦΥΛΛΙΟ ΠΙΜΛΙ ΥΡΙΝΟΣ ΣΙΛΗΣ ΠΙΜΛΙ: ΥΡΙΝΟΣ ΣΙΛΗΣ ΘΜΤ ΘΩΡΙΣ ΚΦΛΙΟ ο Τ ΣΙΚ ΩΜΤΡΙΚ ΣΧΗΜΤ ΘΜ ο Τι καλείται μέσο ενός ευθυγράμμου τμήματος και τι ισχύει γι αυτό ; ΠΝΤΗΣΗ Μέσο ενός ευθύγραμμου

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο ΥΣΕΙΣ ΙΩΝΙΣΜΤΣ ΕΩΜΕΤΡΙΣ ΥΚΕΙΥ 1 / 11 / 09 ΘΕΜ 1 ο ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. ύο τόξα ενός κύκλου είναι ίσα, όταν οι αντίστοιχες χορδές τους είναι ίσες.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η.

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η. Άσκηση 1η Αν η εξίσωση είναι αόριστη, τότε: α) Να δειχθεί ότι η εξίσωση είναι αδύνατη β) Να λυθεί η ανίσωση γ) Αν ισχύει ότι να βρεθεί ο αριθμός Α Άσκηση 2η Αν η εξίσωση έχει λύση μεγαλύτερη του και η

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα