ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν."

Transcript

1 ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε σειρά αριθμών που συνδέονται μεταξύ τους με τα σύμβολα των πράξεων. Η προτεραιότητα των πράξεων είναι η παρακάτω: α. Υπολογισμός δυνάμεων β. Εκτέλεση πολλαπλασιασμών και διαιρέσεων και γ. Εκτέλεση προσθέσεων και αφαιρέσεων. Αν υπάρχουν παρενθέσεις, ξεκινάμε τις πράξεις μέσα από τις παρενθέσεις με την ίδια σειρά. 2. Ποια σχέση συνδέει τον Διαιρετέο (Δ) με το διαιρέτη (δ), το πηλίκο (π) και το υπόλοιπο (υ) σε μια διαίρεση φυσικών αριθμών και πως λέγεται αυτή; Πότε μια διαίρεση χαρακτηρίζεται τέλεια; Η σχέση που τους συνδέει είναι:, ό. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. 3. Να γράψετε τα συμπεράσματά σας σε κάθε ένα από τα παρακάτω ενδεχόμενα σε μια Ευκλείδεια διαίρεση: α. Αν ο διαιρετέος είναι ίσος με το διαιρέτη β. Αν Δ=0 γ. Αν δ=1 α. Αφού Δ=δ, είναι π=1 και υ=0 β. Αν Δ=0, τότε π=0 και υ=0. γ. Αν δ=1, τότε Δ=π και υ=0. 4. Τι ονομάζουμε πολλαπλάσιο ενός φυσικού αριθμού και τι είναι το ΕΚΠ και ο ΜΚΔ; Πολλαπλάσιο ενός φυσικού αριθμού α, είναι κάθε αριθμός που προκύπτει από τον πολλαπλασιασμό του α με οποιονδήποτε φυσικό αριθμό, για παράδειγμα: 0,2,3, 4,...,20,.... Ελάχιστο κοινό πολλαπλάσιο δύο ή περισσότερων φυσικών αριθμών, είναι το μικρότερο από τα κοινά τους πολλαπλάσια. Μέγιστος κοινός διαιρέτης δύο ή περισσότερων φυσικών αριθμών, είναι ο μεγαλύτερος από τους κοινούς διαιρέτες των αριθμών. 5. Ποιος αριθμός λέγεται πρώτος και ποιος σύνθετος; Πότε δύο αριθμοί λέγονται πρώτοι μεταξύ τους; Να γράψετε όλους τους πρώτους αριθμούς ανάμεσα στο 40 και το 50, καθώς και τρεις αριθμούς που να είναι πρώτοι με το 36. Πρώτος ονομάζεται ένας αριθμός ο οποίος διαιρείται μόνο με τον εαυτό του και τη μονάδα. Ο αριθμός 1 εξαιρείται, δηλαδή δεν είναι πρώτος. Σύνθετος είναι ένας αριθμός που δεν είναι πρώτος, δηλαδή έχει εκτός από τον εαυτό του και τη μονάδα και ένα τουλάχιστον διαιρέτη ακόμα. Δύο αριθμοί που έχουν ΜΚΔ =1 είναι πρώτοι μεταξύ τους. Οι πρώτοι αριθμοί μεταξύ 40 και 50 είναι οι : 41, 43 και 47. Ο αριθμός 36, είναι πρώτος με καθένα από τους : 5, 7, 11, 13, 17,19, 23, 29, 35. Βασίλης Μπακούρος 1

2 6. Να γράψετε τα κριτήρια διαιρετότητας των φυσικών αριθμών. Με το 2: Ο αριθμός πρέπει να έχει τελευταίο ψηφίο του κάποιον από τους 0,2,4,6,8. Με το 5: Ο αριθμός πρέπει να έχει τελευταίο ψηφίο του κάποιον από τους 0, 5. Με το 3: Το άθροισμα των ψηφίων του να είναι πολλαπλάσιο του 3. Με το 9: Το άθροισμα των ψηφίων του να είναι πολλαπλάσιο του 9. Με το 4: Πρέπει ο αριθμός που σχηματίζουν τα δύο τελευταία ψηφία του αριθμού, να είναι πολλαπλάσιο του 4 ή να είναι το 00. Με το 10, το 100 ή το 1000: Ο αριθμός πρέπει να τελειώνει σε 0, 00 ή 000 αντίστοιχα. Με το 25: Ο αριθμός τελειώνει σε 25, 50 ή Να γράψετε τις ιδιότητες της πρόσθεσης και του πολλαπλασιασμού φυσικών αριθμών. ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ 1. α+0=α (το 0 είναι το ουδέτερο στοιχείο)- α (το 1 είναι το ουδέτερο στοιχείο) 2. α+β=β+α - (αντιμεταθετική ιδιότητα) - 3. α+(β+γ)=(α+β)+γ - (προσεταιριστική ιδιότητα) - 4., (επιμεριστική ιδιότητα) 2 ο ΚΕΦΑΛΑΙΟ 1. Τι είναι κλάσμα; Πότε ένα κλάσμα λέγεται ανάγωγο; Ποια κλάσματα λέγονται ισοδύναμα; Να γράψετε ένα παράδειγμα. Κλάσμα είναι κάθε παράσταση της μορφής, ό, ί ί 0. Το κλάσμα, είναι ανάγωγο, αν οι κ και ν είναι πρώτοι μεταξύ τους. Ισοδύναμα λέγονται τα κλάσματα με ίση αξία, δηλαδή τα ίσα κλάσματα, πχ: Τι είναι μεικτό κλάσμα, τι είναι σύνθετο κλάσμα, πότε δύο κλάσματα είναι αντίστροφα; Μεικτό είναι το κλάσμα που αποτελείται από έναν ακέραιο και ένα κλάσμα μικρότερο της μονάδας, για 1 7 παράδειγμα: 2. Σύνθετο είναι ένα κλάσμα της μορφής: 3 3 Αντίστροφα είναι τα κλάσματα, ό ο ΚΕΦΑΛΑΙΟ. 1. Πότε ένα ζεύγος αριθμών καλείται διατεταγμένο; Τι είναι οι συντεταγμένες ενός σημείου και πως ονομάζεται η κάθε μία; Διατεταγμένο καλείται ένα ζεύγος όταν μεταξύ των στοιχείων του έχει οριστεί ποιο θα προηγείται. Συντεταγμένες ενός σημείου είναι το διατεταγμένο ζεύγος της μορφής (χ, ψ) όπου το χ είναι η τετμημένη του σημείου (δηλαδή ο αριθμός που βρίσκουμε στον οριζόντιο άξονα αν φέρουμε από το σημείο την κάθετη Βασίλης Μπακούρος 2

3 προς αυτόν), και το ψ η τεταγμένη του (δηλαδή ο αριθμός που βρίσκουμε στον κατακόρυφο άξονα, αν φέρουμε την κάθετη από το σημείο προς αυτόν. 2. Τι είναι λόγος δύο αριθμών; Τι είναι αναλογία; Τι ονομάζουμε κλίμακα; Λόγος είναι το πηλίκο δύο αριθμών. Αναλογία είναι η ισότητα δύο λόγων. Κλίμακα ονομάζουμε το λόγο της απόστασης δύο σημείων σε μια εικόνα ή ένα χάρτη προς την πραγματική τους απόσταση, εφόσον και οι δύο αποστάσεις είναι μετρημένες με την ίδια μονάδα. 3. Πότε δύο μεγέθη λέγονται ανάλογα; Τι είναι ο συντελεστής αναλογίας; Τι μορφή έχει η γραφική παράσταση δύο ανάλογων μεγεθών; Δύο μεγέθη λέγονται ανάλογα, όταν μεταβάλλονται με τρόπο ώστε όταν οι τιμές του ενός μεγέθους πολλαπλασιάζονται με κάποιον αριθμό, οι αντίστοιχες τιμές του άλλου μεγέθους, να πολλαπλασιάζονται με τον ίδιο αριθμό. Αν δύο ποσά είναι ανάλογα, τότε ο λόγος y x δύο αντίστοιχων τιμών τους είναι σταθερός, συμβολίζεται με α και λέγεται συντελεστής αναλογίας τους. Η γραφική παράσταση δύο αναλόγων μεγεθών, είναι μια ημιευθεία με αρχή το σημείο (0,0) των αξόνων. 4. Πότε δύο μεγέθη λέγονται αντιστρόφως ανάλογα; Με ποια σχέση συνδέονται τότε οι τιμές τους; Πως λέγεται η καμπύλη που παριστάνει δύο τέτοια μεγέθη γραφικά; Δύο μεγέθη λέγονται αντιστρόφως ανάλογα, όταν μεταβάλλονται με τρόπο ώστε καθώς οι τιμές του ενός πολλαπλασιάζονται με κάποιον αριθμό, οι αντίστοιχες τιμές του άλλου μεγέθους να διαιρούνται με τον ίδιο αριθμό. Στην περίπτωση που δύο μεγέθη χ και ψ είναι αντιστρόφως ανάλογα, το γινόμενο α των αντίστοιχων τιμών τους είναι σταθερό, δηλαδή χψ=α. Η γραφική παράσταση δύο τέτοιων μεγεθών είναι μια καμπύλη η οποία καλείται υπερβολή. 7ο ΚΕΦΑΛΑΙΟ 1. Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; Τι ονομάζουμε απόλυτη τιμή ενός αριθμού; Ομόσημοι: Οι αριθμοί που έχουν το ίδιο πρόσημο. Ετερόσημοι: Οι αριθμοί που έχουν διαφορετικό πρόσημο. Απόλυτη τιμή ενός αριθμού, ονομάζουμε την απόστασή του στον άξονα από το μηδέν. Η απόλυτη τιμή ενός αριθμού, είναι πάντα θετικός αριθμός με εξαίρεση το 0 =0. 2. Ποιοι είναι οι φυσικοί, ποιοι οι ακέραιοι και ποιοι οι ρητοί; Πως συμβολίζονται τα αντίστοιχα σύνολα; ί ί : 0,1,2,... έ ί: 0, 1, 2,... ί ί : Ό ό ύ ύ ά, ί ί 3. Να γράψετε τους κανόνες της πρόσθεσης ρητών αριθμών. Για να προσθέσω δύο ομόσημους αριθμούς, προσθέτω τις απόλυτες τιμές τους και στο άθροισμα κρατάω το ίδιο πρόσημο με τους αριθμούς. Βασίλης Μπακούρος 3

4 Για να προσθέσω δύο ετερόσημους αριθμούς, αφαιρώ τις απόλυτες τιμές τους και στο άθροισμα κρατάω το πρόσημο εκείνου που είχε τη μεγαλύτερη απόλυτη τιμή. 4.Να γράψετε τους κανόνες του πολλαπλασιασμού δύο ρητών αριθμών. Πολλαπλασιασμός (διαίρεση) ομόσημων: Πολ/ζουμε (ή διαιρούμε) τις απόλυτες τιμές τους και βάζουμε θετικό πρόσημο στο αποτέλεσμα. Πολλαπλασιασμός (διαίρεση) ετερόσημων: Πολ/ζουμε (ή διαιρούμε) τις απόλυτες τιμές τους και βάζουμε αρνητικό πρόσημο στο αποτέλεσμα. 5. Να γράψετε τις ιδιότητες της πρόσθεσης και του πολλαπλασιασμού ρητών αριθμών και να γράψετε τους ορισμούς για αντίθετους και αντίστροφους αριθμούς. Ιδιότητες πράξεων σε πρόσθεση και πολλαπλασιασμό: ( ή) ( ) ( ) ( ) ( ) ( ή) 0 1 ( έ ί ) 1 a ( a) 0 ( ί ) a 1 ( ί ό ) a Δεν επιτρέπεται η διαίρεση με το μηδέν, αλλά 0 0. Αντίθετοι: Δύο αριθμοί με άθροισμα 0 Αντίστροφοι: Δύο αριθμοί με γινόμενο 1. ΓΕΩΜΕΤΡΙΑ 1 ο ΚΕΦΑΛΑΙΟ Οι βασικές έννοιες των παραγράφων 1.1 έως και 1.5 (Από τα παρακάτω μαθαίνουμε απέξω τους ορισμούς των εννοιών που έχουν υπογράμμιση) Σημείο: Αυτό που δεν έχει διαστάσεις. Τα σημεία παριστάνονται με κουκίδες και συμβολίζονται με κεφαλαία γράμματα του αλφάβητου. Ευθεία: Η γραμμή που μπορούμε να χαράξουμε με έναν κανόνα πάνω σε ένα επίπεδο. Η ευθεία δεν έχει αρχή και τέλος, αποτελείται από άπειρα σημεία τόσο πυκνά τοποθετημένα ώστε να μην έχει κενά και να μην μπορούμε να διακρίνουμε διαδοχικά σημεία και ονομάζεται με κάποιο μικρό γράμμα ((ε), (ζ)). Ημιευθεία : Αν πάνω σε μια ευθεία επιλέξουμε ένα σημείο, η ευθεία χωρίζεται σε δύο ημιευθείες με κοινή αρχή. Κάθε ημιευθεία έχει αρχή αλλά δεν έχει τέλος. Ονομάζεται με κεφαλαίο γράμμα που δηλώνει την αρχή και μικρό γράμμα που δηλώνει την κατεύθυνση. Ευθύγραμμο τμήμα : Το τμήμα μιας ευθείας ανάμεσα σε δύο σημεία μαζί με τα σημεία αυτά που ονομάζονται άκρα του ευθυγράμμου τμήματος. Το ευθύγραμμο τμήμα έχει και αυτό άπειρα σε πλήθος σημεία. Επίπεδο : Επιφάνεια με δύο διαστάσεις που εκτείνεται απεριόριστα και πάνω στην οποία μπορεί να ανήκουν όλα τα σημεία μιας ευθείας. Κάθε ευθεία που ανήκει σε ένα επίπεδο το χωρίζει σε δύο ημιεπίπεδα. Ένα επίπεδο παριστάνεται σαν πλάγιο παραλληλόγραμμο και συμβολίζεται με ένα κεφαλαίο γράμμα. Βασίλης Μπακούρος 4

5 Από δύο διαφορετικά σημεία διέρχεται μία και μόνο μία ευθεία. Ένα ευθύγραμμο τμήμα μπορεί να γράφεται και με διαφορετική σειρά στα άκρα, για παράδειγμα το τμήμα ΑΒ και το ΒΑ είναι ίδια. Οι δύο ημιευθείες που ορίζονται αν πάρουμε ένα σημείο πάνω σε μια ευθεία λέγονται αντικείμενες ημιευθείες. Από τρία μη συνευθειακά σημεία διέρχεται ένα μοναδικό επίπεδο. 1. Τι ονομάζουμε ορθή-οξεία-αμβλεία-ευθεία-μη κυρτή-μηδενική-πλήρη γωνία; Να κατασκευάσετε αντίστοιχο σχήμα για κάθε περίπτωση. Ορθή λέγεται η γωνία της οποίας το μέτρο ισούται με 90 ο. Οξεία λέγεται κάθε γωνία της οποίας το μέτρο είναι μικρότερο από 90 ο. Αμβλεία λέγεται κάθε γωνία της οποίας το μέτρο είναι μεγαλύτερο από 90 ο. Ευθεία λέγεται η γωνία της οποίας το μέτρο ισούται με 180 ο. Μη κυρτή λέγεται κάθε γωνία της οποίας το μέτρο είναι μεγαλύτερο από 180 ο και μικρότερο από 360 ο. Μηδενική λέγεται η γωνία της οποίας το μέτρο ισούται με 0 ο. Πλήρης λέγεται η γωνία της οποίας το μέτρο ισούται με 360 ο. 2. Ποιες γωνίες ονομάζονται εφεξής και ποιες διαδοχικές; Εφεξής ονομάζονται δύο γωνίες οι οποίες έχουν κοινή κορυφή, μία κοινή πλευρά και κανένα άλλο κοινό σημείο. Διαδοχικές ονομάζονται τρεις ή περισσότερες γωνίες, αν κάθε μία από αυτές είναι εφεξής με μία τουλάχιστον από τις υπόλοιπες γωνίες. Βασίλης Μπακούρος 5

6 (Εφεξής: χαψ, ψαζ) (Διαδοχικές οι γωνίες: χαψ, ψαζ, ζαλ ) 3. Ποιες γωνίες ονομάζονται συμπληρωματικές, ποιες παραπληρωματικές και ποιες κατακορυφήν; Συμπληρωματικές ονομάζονται δύο γωνίες που έχουν άθροισμα 90 ο. Παραπληρωματικές ονομάζονται δύο γωνίες που έχουν άθροισμα 180 ο. Κατακορυφήν ονομάζονται δύο γωνίες οι οποίες έχουν κοινή κορυφή και οι πλευρές τους είναι αντικείμενες ημιευθείες. 4. Ποιες ευθείες λέγονται παράλληλες και ποιες τεμνόμενες; Πότε δύο ευθύγραμμα τμήματα είναι παράλληλα; Δύο ευθείες του ίδιου επιπέδου που δεν έχουν κανένα κοινό σημείο όσο και αν προεκταθούν, λέγονται παράλληλες. Δύο ευθείες του ίδιου επιπέδου οι οποίες έχουν ένα μόνο κοινό σημείο, λέγονται τεμνόμενες. Δύο ευθύγραμμα τμήματα λέγονται παράλληλα, όταν βρίσκονται πάνω σε παράλληλες ευθείες. 5. Τι ονομάζουμε απόσταση ενός σημείου από μια ευθεία και τι απόσταση δύο παράλληλων ευθειών; Απόσταση ενός σημείου από μια ευθεία, ονομάζουμε το μήκος του κάθετου ευθυγράμμου τμήματος από το σημείο προς την ευθεία. Απόσταση δύο παράλληλων ευθειών ονομάζουμε το μήκος οποιουδήποτε τμήματος που είναι κάθετο στις δύο παράλληλες ευθείες και έχει τα άκρα του πάνω σε αυτές. 6. Τι είναι κύκλος; Τι ονομάζουμε ακτίνα του κύκλου; Να φτιάξετε ένα κύκλο και να χαράξετε πάνω του μια χορδή και μια διάμετρο του. Κύκλος λέγεται το σύνολο των σημείων του επιπέδου τα οποία απέχουν την ίδια απόσταση (η οποία ονομάζεται ακτίνα) από ένα σταθερό σημείο του επιπέδου το οποίο ονομάζεται κέντρο του κύκλου, ενώ ακτίνα του κύκλου ονομάζεται η απόσταση αυτή. 7. Τι ονομάζουμε χορδή, τι ονομάζουμε διάμετρο και τι τόξο ενός κύκλου; Χορδή είναι το ευθύγραμμο τμήμα που ενώνει δύο σημεία του κύκλου. Διάμετρος είναι η χορδή η οποία περνά από το κέντρο του κύκλου. Δύο σημεία Α και Β του κύκλου, τον χωρίζουν σε δύο μέρη, που το καθένα από αυτά λέγεται τόξο. 8. Ποιες είναι οι σχετικές θέσεις μιας ευθείας και ενός κύκλου που βρίσκονται στο ίδιο επίπεδο; Μπορεί η ευθεία να είναι τέμνουσα, δηλαδή να έχει δύο κοινά σημεία με τον κύκλο και να απέχει από το κέντρο του απόσταση μικρότερη από την ακτίνα. Μπορεί η ευθεία να είναι εφαπτόμενη, δηλαδή να έχει ένα ακριβώς κοινό σημείο με τον κύκλο και να απέχει από το κέντρο του απόσταση ίση με την ακτίνα του. Μπορεί η ευθεία να είναι εξωτερική του κύκλου, δηλαδή να μην έχει κανένα κοινό σημείο με αυτόν και να απέχει από το κέντρο του απόσταση μεγαλύτερη από την ακτίνα του. ΚΕΦΑΛΑΙΟ 2 ο Βασίλης Μπακούρος 6

7 1. Τι ονομάζουμε άξονα συμμετρίας ενός σχήματος; Σε ποια περίπτωση ένα σχήμα έχει άξονα συμμετρίας; Άξονας συμμετρίας ενός σχήματος, ονομάζεται η ευθεία που χωρίζει το σχήμα σε δύο μέρη, τα οποία συμπίπτουν όταν το σχήμα διπλωθεί κατά μήκος της ευθείας. Σε αυτή την περίπτωση, λέμε ότι το σχήμα έχει άξονα συμμετρίας. 2. Τι ονομάζουμε μεσοκάθετο ενός ευθυγράμμου σχήματος; Ποια είναι η χαρακτηριστική ιδιότητα που έχουν όλα τα σημεία της μεσοκαθέτου ενός σχήματος; Ισχύει το αντίστροφό του; Μεσοκάθετος ενός ευθυγράμμου σχήματος λέγεται η ευθεία που είναι κάθετη στο μέσον του ευθυγράμμου τμήματος. Κάθε σημείο της μεσοκαθέτου ενός ευθυγράμμου τμήματος, ισαπέχει από τα άκρα του και αντίστροφα: Κάθε σημείο το οποίο ισαπέχει από τα άκρα ενός ευθυγράμμου τμήματος, ανήκει στη μεσοκάθετο του. 3. Τι ονομάζουμε κέντρο συμμετρίας ενός σχήματος; Σε ποια περίπτωση ένα σχήμα έχει κέντρο συμμετρίας; Κέντρο συμμετρίας ενός σχήματος ονομάζεται ένα σημείο Ο, γύρω από το οποίο αν περιστραφεί το σχήμα κατά 180 ο, συμπίπτει με το αρχικό. Στην περίπτωση που υπάρχει τέτοιο σημείο, λέμε ότι είναι το κέντρο συμμετρίας του σχήματος. ΚΕΦΑΛΑΙΟ 3 ο 1. Ποια είδη τριγώνων γνωρίζετε με κριτήριο α)τις γωνίες του και β) Τις πλευρές του. Με βάση τις γωνίες του ένα τρίγωνο μπορεί να χαρακτηρισθεί ορθογώνιο (έχει μια ορθή και δύο οξείες γωνίες), αμβλυγώνιο (έχει μία αμβλεία και δύο οξείες γωνίες) ή οξυγώνιο (τρεις οξείες γωνίες). Με βάση το μήκος των πλευρών του ένα τρίγωνο μπορεί να είναι ισόπλευρο (οι τρεις πλευρές του ίσες μεταξύ τους), ισοσκελές (δύο πλευρές του ίσες μεταξύ τους) ή σκαληνό (τρεις άνισες πλευρές). 2. Τι ονομάζουμε διάμεσο ενός τριγώνου; Πόσες διαμέσους μπορούμε να φέρουμε σε ένα τρίγωνο; Διάμεσος ενός τριγώνου, ονομάζεται το ευθύγραμμο τμήμα που ενώνει την κορυφή ενός τριγώνου με το μέσο της απέναντι πλευράς του. Σε κάθε τρίγωνο, υπάρχουν τρεις διάμεσοι. 3. Τι ονομάζουμε ύψος ενός τριγώνου; Πόσα ύψη μπορούμε να φέρουμε σε ένα τρίγωνο; Ύψος ενός τριγώνου ονομάζεται το ευθύγραμμο τμήμα που φέρνουμε από μια κορυφή του τριγώνου κάθετο στην ευθεία της απέναντι πλευράς. Σε ένα οξυγώνιο ή αμβλυγώνιο τρίγωνο μπορούμε να φέρουμε τρία ύψη, σε ένα ορθογώνιο τρίγωνο όμως, φέρνουμε μόνο ένα ύψος από την κορυφή της ορθής γωνίας προς την υποτείνουσα, αφού τα άλλα δύο ύψη συμπίπτουν με τις πλευρές του τριγώνου. 4. Τι ονομάζουμε διχοτόμο ενός τριγώνου; Πόσες διχοτόμους μπορούμε να φέρουμε σε ένα τρίγωνο; Διχοτόμος μιας γωνίας ενός τριγώνου, ονομάζεται το ευθύγραμμο τμήμα που βρίσκεται πάνω στη διχοτόμο της γωνίας, ξεκινά από την κορυφή του τριγώνου και καταλήγει στην απέναντι πλευρά του. Σε κάθε τρίγωνο, υπάρχουν τρεις ακριβώς διχοτόμοι. 5. Να αναφέρετε όσες ιδιότητες ενός ισοσκελούς τριγώνου γνωρίζετε. Ισοσκελές είναι το τρίγωνο που έχει δύο πλευρές του ίσες μεταξύ τους. α. Σε κάθε ισοσκελές τρίγωνο, οι γωνίες οι προσκείμενες στη βάση γωνίες του είναι ίσες μεταξύ τους. Βασίλης Μπακούρος 7

8 β. Η ευθεία της διαμέσου που περνά από την κορυφή των ίσων πλευρών είναι άξονας συμμετρίας του τριγώνου. γ. Η διάμεσος που φέρνουμε από την κορυφή των ίσων πλευρών προς τη βάση του τριγώνου είναι ταυτόχρονα ύψος και διχοτόμος του τριγώνου. 6. Να αναφέρετε όσες ιδιότητες του ισοπλεύρου τριγώνου γνωρίζετε. α. Όλες οι πλευρές του είναι ίσες μεταξύ τους και όλες οι γωνίες του είναι ίσες μεταξύ τους (60 ο κάθε μία). β. Κάθε διάμεσός του είναι ύψος και διχοτόμος. γ. Οι ευθείες των διαμέσων είναι άξονες συμμετρίας του ισοπλεύρου τριγώνου. Προσοχή: Οι απαντήσεις στα παρακάτω ερωτήματα 7,8,9,10 και 11 πρέπει να συνοδεύονται από σχήμα όπου θα ονομάζουμε τις κορυφές του τετραπλεύρου και θα γράφουμε όλες τις ισότητες που αφορούν γωνίες και πλευρές των τετραπλεύρων οι οποίες απορρέουν από τις ιδιότητες. 7. Τι ονομάζουμε παραλληλόγραμμο; Ποιες ιδιότητες έχει; Παραλληλόγραμμο ονομάζουμε το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες. Ιδιότητες: Το κέντρο του παραλληλογράμμου (σημείο τομής των διαγωνίων του) είναι κέντρο συμμετρίας του. Οι απέναντι γωνίες του είναι ίσες, οι απέναντι πλευρές του είναι ίσες και οι διαγώνιοί του διχοτομούνται δηλαδή η μία τέμνει την άλλη στο μέσον της. (Οι γωνίες Α=Γ και Β=Δ, ΑΒ=ΓΔ και ΒΓ=ΑΔ, αν Ο το σημείο τομής των διαγωνίων ισχύουν ΑΟ=ΟΓ και ΒΟ=ΟΔ) 8. Τι ονομάζουμε ορθογώνιο παραλληλόγραμμο; Ποιες ιδιότητες έχει; Το παραλληλόγραμμο που έχει τις γωνίες του ορθές ονομάζεται ορθογώνιο παραλληλόγραμμο. Έχει όλες τις ιδιότητες του παραλληλογράμμου (ερώτηση 7) και επιπλέον: Οι μεσοκάθετοι των πλευρών του είναι άξονες συμμετρίας του και οι διαγώνιές του είναι ίσες. 9. Τι ονομάζουμε ρόμβο; Ποιες ιδιότητες έχει; Το παραλληλόγραμμο που έχει όλες του τις πλευρές ίσες μεταξύ τους λέγεται ρόμβος. Έχει όλες τις ιδιότητες του παραλληλογράμμου (ερώτηση 7) και επιπλέον: Οι διαγώνιές του είναι άξονες συμμετρίας του ενώ οι διαγώνιές του τέμνονται κάθετα και είναι διχοτόμοι των γωνιών του ρόμβου. 10. Τι είναι τετράγωνο; Ποιες ιδιότητες έχει; Τετράγωνο ονομάζουμε το τετράπλευρο που είναι ταυτόχρονα ορθογώνιο και ρόμβος. Έχει, προφανώς, όλες τις ιδιότητες που αναφέρυηκαν παραπάνω για ορθογώνιο παραλληλόγραμμο και ρόμβο. 11. Τι ονομάζουμε ισοσκελές τραπέζιο; Ποιες ιδιότητες έχει; Τραπέζιο είναι το τετράπλευρο που έχει τις δύο απέναντι πλευρές του παράλληλες (βάσεις). Αν, επιπλέον, έχει και τις δύο μη παράλληλες πλευρές του ίσες, λέγεται ισοσκελές. Σε ένα ισοσκελές τραπέζιο, η μεσοκάθετος των βάσεων είναι άξονας συμμετρίας του, ενώ οι γωνίες που πρόσκεινται σε κάθε βάση του είναι ίσες, όπως επίσης ίσες είναι και οι διαγώνιές του. Βασίλης Μπακούρος 8

9 Βασίλης Μπακούρος 9

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια

Διαβάστε περισσότερα

3, ( 4), ( 3),( 2), 2017

3, ( 4), ( 3),( 2), 2017 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α! ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική

Διαβάστε περισσότερα

Κεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες

Κεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες 17 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΓΕΩΜΕΤΡΙΙΑΣ Κεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες Β. 1. 1 81. Τι ονομάζεται ευθεία και ποιες προτάσεις αναφέρονται σ αυτή; Ονομάζεται ευθεία το σχήμα που προκύπτει

Διαβάστε περισσότερα

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ. Μαθηματικών Α Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου

ΕΠΑΝΑΛΗΨΗ. Μαθηματικών Α Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου ΕΠΑΝΑΛΗΨΗ Μαθηματικών Α Γυμνασίου ΑΡΙΘΜΟΙ Σύνολο είναι μια καλώς ορισμένη συλλογή διαφορετικών μεταξύ τους αντικειμένων. Τα αντικείμενα που αποτελούν ένα σύνολο λέγονται στοιχεία ή μέλη του συνόλου. Για

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να

Διαβάστε περισσότερα

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της. ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος ) Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

Μαθημαηικά Α Γσμμαζίοσ

Μαθημαηικά Α Γσμμαζίοσ Μαθημαηικά Α Γσμμαζίοσ Μεθοδική Επαμάληυη Σηέλιος Μιταήλογλοσ www.askisopolis.gr 2017-18 Η επαμάληυη βήμα βήμα με ερφηήζεις και απαμηήζεις ζε κάθε παράγραθο καθώς και ηις βαζικές αζκήζεις. ΚΕΦΑΛΑΙΟ 1ο

Διαβάστε περισσότερα

Μαθημαηικά Α Γσμμαζίοσ

Μαθημαηικά Α Γσμμαζίοσ Μαθημαηικά Α Γσμμαζίοσ Μεθοδική Επαμάληυη Σηέλιος Μιταήλογλοσ www.askisopolis.gr 2017-18 Η επαμάληυη βήμα βήμα με ερφηήζεις και απαμηήζεις ζε κάθε παράγραθο καθώς και ηις βαζικές αζκήζεις. ΚΕΦΑΛΑΙΟ 1ο

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ίου σεις Θεωρίας Ερωτήσ Επιµέλεια

ίου σεις Θεωρίας Ερωτήσ Επιµέλεια ΜΑΘΗΜΑΤΙΚΑ Α Γυµνασί ίου Ερωτήσ σεις ς Επιµέλεια Θ Ε Μ Ε Λ Η Σ Ε Υ Ρ Ι Π Ι Η Σ 1 ο Κεφάλαιο Φυσικοί Αριθµοί 1.1 Φυσικοί αριθµοί ιάταξη φυσικών Στρογγυλοποίηση 1. Ποιοι φυσικοί αριθµοί ονοµάζονται άρτιοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Α ΘΕΩΡΙΑ ΘΕΜΑ 1 ο : Α. Τι ονομάζουμε απόλυτη τιμή ενός ρητού αριθμού α και πως συμβολίζεται; Β. Πότε δύο αριθμοί λέγονται αντίθετοι; Γ. Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις

Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Μαθημαηικά Γ Γυμμαζίου

Μαθημαηικά Γ Γυμμαζίου Μαθημαηικά Γ Γυμμαζίου Μεθοδική Επαμάληψη Σηέλιος Μιχαήλογλου 017-18 www.askisopolis.gr Η επαμάληψη ηωμ Μαθημαηικώμ βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις www.askisopolis.gr 1.1. Πράξεις

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή

Φίλη μαθήτρια, φίλε μαθητή Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x 1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δ/ΝΣΗ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧΧΧ ΓΥΜΝΑΣΙΟ ΧΧΧΧΧΧΧΧΧΧ Α ΤΑΞΗ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2016-2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

1. Γενικά για τα τετράπλευρα

1. Γενικά για τα τετράπλευρα 1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία

Ευκλείδεια Γεωμετρία Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

Αλγεβρικές Παραστάσεις

Αλγεβρικές Παραστάσεις Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

25 17, , 30 30, 18 11

25 17, , 30 30, 18 11 Φυσικοί αριθμοί: 0,1,2,3,4,... ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ (1.1,1.2) Άρτιοι αριθμοί: Όσοι διαιρούνται με το 2 Περιττοί αριθμοί: Όσοι δεν διαιρούνται με το 2 Μπορούμε πάντα να συγκρίνουμε φυσικούς αριθμούς

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Μαθηματικά Α Τάξης Γυμνασίου

Μαθηματικά Α Τάξης Γυμνασίου Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

+ + = + + α ( β γ) ( )

+ + = + + α ( β γ) ( ) ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α.

ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α. ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΝΟΜΑΣΙΕΣ Σημείο Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α. Ευθύγραμμο τμήμα Το ευθύγραμμο τμήμα, το ονομάζουμε με δύο κεφαλαία γράμματα (των σημείων που

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του

Διαβάστε περισσότερα