ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν."

Transcript

1 ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε σειρά αριθμών που συνδέονται μεταξύ τους με τα σύμβολα των πράξεων. Η προτεραιότητα των πράξεων είναι η παρακάτω: α. Υπολογισμός δυνάμεων β. Εκτέλεση πολλαπλασιασμών και διαιρέσεων και γ. Εκτέλεση προσθέσεων και αφαιρέσεων. Αν υπάρχουν παρενθέσεις, ξεκινάμε τις πράξεις μέσα από τις παρενθέσεις με την ίδια σειρά. 2. Ποια σχέση συνδέει τον Διαιρετέο (Δ) με το διαιρέτη (δ), το πηλίκο (π) και το υπόλοιπο (υ) σε μια διαίρεση φυσικών αριθμών και πως λέγεται αυτή; Πότε μια διαίρεση χαρακτηρίζεται τέλεια; Η σχέση που τους συνδέει είναι:, ό. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. 3. Να γράψετε τα συμπεράσματά σας σε κάθε ένα από τα παρακάτω ενδεχόμενα σε μια Ευκλείδεια διαίρεση: α. Αν ο διαιρετέος είναι ίσος με το διαιρέτη β. Αν Δ=0 γ. Αν δ=1 α. Αφού Δ=δ, είναι π=1 και υ=0 β. Αν Δ=0, τότε π=0 και υ=0. γ. Αν δ=1, τότε Δ=π και υ=0. 4. Τι ονομάζουμε πολλαπλάσιο ενός φυσικού αριθμού και τι είναι το ΕΚΠ και ο ΜΚΔ; Πολλαπλάσιο ενός φυσικού αριθμού α, είναι κάθε αριθμός που προκύπτει από τον πολλαπλασιασμό του α με οποιονδήποτε φυσικό αριθμό, για παράδειγμα: 0,2,3, 4,...,20,.... Ελάχιστο κοινό πολλαπλάσιο δύο ή περισσότερων φυσικών αριθμών, είναι το μικρότερο από τα κοινά τους πολλαπλάσια. Μέγιστος κοινός διαιρέτης δύο ή περισσότερων φυσικών αριθμών, είναι ο μεγαλύτερος από τους κοινούς διαιρέτες των αριθμών. 5. Ποιος αριθμός λέγεται πρώτος και ποιος σύνθετος; Πότε δύο αριθμοί λέγονται πρώτοι μεταξύ τους; Να γράψετε όλους τους πρώτους αριθμούς ανάμεσα στο 40 και το 50, καθώς και τρεις αριθμούς που να είναι πρώτοι με το 36. Πρώτος ονομάζεται ένας αριθμός ο οποίος διαιρείται μόνο με τον εαυτό του και τη μονάδα. Ο αριθμός 1 εξαιρείται, δηλαδή δεν είναι πρώτος. Σύνθετος είναι ένας αριθμός που δεν είναι πρώτος, δηλαδή έχει εκτός από τον εαυτό του και τη μονάδα και ένα τουλάχιστον διαιρέτη ακόμα. Δύο αριθμοί που έχουν ΜΚΔ =1 είναι πρώτοι μεταξύ τους. Οι πρώτοι αριθμοί μεταξύ 40 και 50 είναι οι : 41, 43 και 47. Ο αριθμός 36, είναι πρώτος με καθένα από τους : 5, 7, 11, 13, 17,19, 23, 29, 35. Βασίλης Μπακούρος 1

2 6. Να γράψετε τα κριτήρια διαιρετότητας των φυσικών αριθμών. Με το 2: Ο αριθμός πρέπει να έχει τελευταίο ψηφίο του κάποιον από τους 0,2,4,6,8. Με το 5: Ο αριθμός πρέπει να έχει τελευταίο ψηφίο του κάποιον από τους 0, 5. Με το 3: Το άθροισμα των ψηφίων του να είναι πολλαπλάσιο του 3. Με το 9: Το άθροισμα των ψηφίων του να είναι πολλαπλάσιο του 9. Με το 4: Πρέπει ο αριθμός που σχηματίζουν τα δύο τελευταία ψηφία του αριθμού, να είναι πολλαπλάσιο του 4 ή να είναι το 00. Με το 10, το 100 ή το 1000: Ο αριθμός πρέπει να τελειώνει σε 0, 00 ή 000 αντίστοιχα. Με το 25: Ο αριθμός τελειώνει σε 25, 50 ή Να γράψετε τις ιδιότητες της πρόσθεσης και του πολλαπλασιασμού φυσικών αριθμών. ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ 1. α+0=α (το 0 είναι το ουδέτερο στοιχείο)- α (το 1 είναι το ουδέτερο στοιχείο) 2. α+β=β+α - (αντιμεταθετική ιδιότητα) - 3. α+(β+γ)=(α+β)+γ - (προσεταιριστική ιδιότητα) - 4., (επιμεριστική ιδιότητα) 2 ο ΚΕΦΑΛΑΙΟ 1. Τι είναι κλάσμα; Πότε ένα κλάσμα λέγεται ανάγωγο; Ποια κλάσματα λέγονται ισοδύναμα; Να γράψετε ένα παράδειγμα. Κλάσμα είναι κάθε παράσταση της μορφής, ό, ί ί 0. Το κλάσμα, είναι ανάγωγο, αν οι κ και ν είναι πρώτοι μεταξύ τους. Ισοδύναμα λέγονται τα κλάσματα με ίση αξία, δηλαδή τα ίσα κλάσματα, πχ: Τι είναι μεικτό κλάσμα, τι είναι σύνθετο κλάσμα, πότε δύο κλάσματα είναι αντίστροφα; Μεικτό είναι το κλάσμα που αποτελείται από έναν ακέραιο και ένα κλάσμα μικρότερο της μονάδας, για 1 7 παράδειγμα: 2. Σύνθετο είναι ένα κλάσμα της μορφής: 3 3 Αντίστροφα είναι τα κλάσματα, ό ο ΚΕΦΑΛΑΙΟ. 1. Πότε ένα ζεύγος αριθμών καλείται διατεταγμένο; Τι είναι οι συντεταγμένες ενός σημείου και πως ονομάζεται η κάθε μία; Διατεταγμένο καλείται ένα ζεύγος όταν μεταξύ των στοιχείων του έχει οριστεί ποιο θα προηγείται. Συντεταγμένες ενός σημείου είναι το διατεταγμένο ζεύγος της μορφής (χ, ψ) όπου το χ είναι η τετμημένη του σημείου (δηλαδή ο αριθμός που βρίσκουμε στον οριζόντιο άξονα αν φέρουμε από το σημείο την κάθετη Βασίλης Μπακούρος 2

3 προς αυτόν), και το ψ η τεταγμένη του (δηλαδή ο αριθμός που βρίσκουμε στον κατακόρυφο άξονα, αν φέρουμε την κάθετη από το σημείο προς αυτόν. 2. Τι είναι λόγος δύο αριθμών; Τι είναι αναλογία; Τι ονομάζουμε κλίμακα; Λόγος είναι το πηλίκο δύο αριθμών. Αναλογία είναι η ισότητα δύο λόγων. Κλίμακα ονομάζουμε το λόγο της απόστασης δύο σημείων σε μια εικόνα ή ένα χάρτη προς την πραγματική τους απόσταση, εφόσον και οι δύο αποστάσεις είναι μετρημένες με την ίδια μονάδα. 3. Πότε δύο μεγέθη λέγονται ανάλογα; Τι είναι ο συντελεστής αναλογίας; Τι μορφή έχει η γραφική παράσταση δύο ανάλογων μεγεθών; Δύο μεγέθη λέγονται ανάλογα, όταν μεταβάλλονται με τρόπο ώστε όταν οι τιμές του ενός μεγέθους πολλαπλασιάζονται με κάποιον αριθμό, οι αντίστοιχες τιμές του άλλου μεγέθους, να πολλαπλασιάζονται με τον ίδιο αριθμό. Αν δύο ποσά είναι ανάλογα, τότε ο λόγος y x δύο αντίστοιχων τιμών τους είναι σταθερός, συμβολίζεται με α και λέγεται συντελεστής αναλογίας τους. Η γραφική παράσταση δύο αναλόγων μεγεθών, είναι μια ημιευθεία με αρχή το σημείο (0,0) των αξόνων. 4. Πότε δύο μεγέθη λέγονται αντιστρόφως ανάλογα; Με ποια σχέση συνδέονται τότε οι τιμές τους; Πως λέγεται η καμπύλη που παριστάνει δύο τέτοια μεγέθη γραφικά; Δύο μεγέθη λέγονται αντιστρόφως ανάλογα, όταν μεταβάλλονται με τρόπο ώστε καθώς οι τιμές του ενός πολλαπλασιάζονται με κάποιον αριθμό, οι αντίστοιχες τιμές του άλλου μεγέθους να διαιρούνται με τον ίδιο αριθμό. Στην περίπτωση που δύο μεγέθη χ και ψ είναι αντιστρόφως ανάλογα, το γινόμενο α των αντίστοιχων τιμών τους είναι σταθερό, δηλαδή χψ=α. Η γραφική παράσταση δύο τέτοιων μεγεθών είναι μια καμπύλη η οποία καλείται υπερβολή. 7ο ΚΕΦΑΛΑΙΟ 1. Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; Τι ονομάζουμε απόλυτη τιμή ενός αριθμού; Ομόσημοι: Οι αριθμοί που έχουν το ίδιο πρόσημο. Ετερόσημοι: Οι αριθμοί που έχουν διαφορετικό πρόσημο. Απόλυτη τιμή ενός αριθμού, ονομάζουμε την απόστασή του στον άξονα από το μηδέν. Η απόλυτη τιμή ενός αριθμού, είναι πάντα θετικός αριθμός με εξαίρεση το 0 =0. 2. Ποιοι είναι οι φυσικοί, ποιοι οι ακέραιοι και ποιοι οι ρητοί; Πως συμβολίζονται τα αντίστοιχα σύνολα; ί ί : 0,1,2,... έ ί: 0, 1, 2,... ί ί : Ό ό ύ ύ ά, ί ί 3. Να γράψετε τους κανόνες της πρόσθεσης ρητών αριθμών. Για να προσθέσω δύο ομόσημους αριθμούς, προσθέτω τις απόλυτες τιμές τους και στο άθροισμα κρατάω το ίδιο πρόσημο με τους αριθμούς. Βασίλης Μπακούρος 3

4 Για να προσθέσω δύο ετερόσημους αριθμούς, αφαιρώ τις απόλυτες τιμές τους και στο άθροισμα κρατάω το πρόσημο εκείνου που είχε τη μεγαλύτερη απόλυτη τιμή. 4.Να γράψετε τους κανόνες του πολλαπλασιασμού δύο ρητών αριθμών. Πολλαπλασιασμός (διαίρεση) ομόσημων: Πολ/ζουμε (ή διαιρούμε) τις απόλυτες τιμές τους και βάζουμε θετικό πρόσημο στο αποτέλεσμα. Πολλαπλασιασμός (διαίρεση) ετερόσημων: Πολ/ζουμε (ή διαιρούμε) τις απόλυτες τιμές τους και βάζουμε αρνητικό πρόσημο στο αποτέλεσμα. 5. Να γράψετε τις ιδιότητες της πρόσθεσης και του πολλαπλασιασμού ρητών αριθμών και να γράψετε τους ορισμούς για αντίθετους και αντίστροφους αριθμούς. Ιδιότητες πράξεων σε πρόσθεση και πολλαπλασιασμό: ( ή) ( ) ( ) ( ) ( ) ( ή) 0 1 ( έ ί ) 1 a ( a) 0 ( ί ) a 1 ( ί ό ) a Δεν επιτρέπεται η διαίρεση με το μηδέν, αλλά 0 0. Αντίθετοι: Δύο αριθμοί με άθροισμα 0 Αντίστροφοι: Δύο αριθμοί με γινόμενο 1. ΓΕΩΜΕΤΡΙΑ 1 ο ΚΕΦΑΛΑΙΟ Οι βασικές έννοιες των παραγράφων 1.1 έως και 1.5 (Από τα παρακάτω μαθαίνουμε απέξω τους ορισμούς των εννοιών που έχουν υπογράμμιση) Σημείο: Αυτό που δεν έχει διαστάσεις. Τα σημεία παριστάνονται με κουκίδες και συμβολίζονται με κεφαλαία γράμματα του αλφάβητου. Ευθεία: Η γραμμή που μπορούμε να χαράξουμε με έναν κανόνα πάνω σε ένα επίπεδο. Η ευθεία δεν έχει αρχή και τέλος, αποτελείται από άπειρα σημεία τόσο πυκνά τοποθετημένα ώστε να μην έχει κενά και να μην μπορούμε να διακρίνουμε διαδοχικά σημεία και ονομάζεται με κάποιο μικρό γράμμα ((ε), (ζ)). Ημιευθεία : Αν πάνω σε μια ευθεία επιλέξουμε ένα σημείο, η ευθεία χωρίζεται σε δύο ημιευθείες με κοινή αρχή. Κάθε ημιευθεία έχει αρχή αλλά δεν έχει τέλος. Ονομάζεται με κεφαλαίο γράμμα που δηλώνει την αρχή και μικρό γράμμα που δηλώνει την κατεύθυνση. Ευθύγραμμο τμήμα : Το τμήμα μιας ευθείας ανάμεσα σε δύο σημεία μαζί με τα σημεία αυτά που ονομάζονται άκρα του ευθυγράμμου τμήματος. Το ευθύγραμμο τμήμα έχει και αυτό άπειρα σε πλήθος σημεία. Επίπεδο : Επιφάνεια με δύο διαστάσεις που εκτείνεται απεριόριστα και πάνω στην οποία μπορεί να ανήκουν όλα τα σημεία μιας ευθείας. Κάθε ευθεία που ανήκει σε ένα επίπεδο το χωρίζει σε δύο ημιεπίπεδα. Ένα επίπεδο παριστάνεται σαν πλάγιο παραλληλόγραμμο και συμβολίζεται με ένα κεφαλαίο γράμμα. Βασίλης Μπακούρος 4

5 Από δύο διαφορετικά σημεία διέρχεται μία και μόνο μία ευθεία. Ένα ευθύγραμμο τμήμα μπορεί να γράφεται και με διαφορετική σειρά στα άκρα, για παράδειγμα το τμήμα ΑΒ και το ΒΑ είναι ίδια. Οι δύο ημιευθείες που ορίζονται αν πάρουμε ένα σημείο πάνω σε μια ευθεία λέγονται αντικείμενες ημιευθείες. Από τρία μη συνευθειακά σημεία διέρχεται ένα μοναδικό επίπεδο. 1. Τι ονομάζουμε ορθή-οξεία-αμβλεία-ευθεία-μη κυρτή-μηδενική-πλήρη γωνία; Να κατασκευάσετε αντίστοιχο σχήμα για κάθε περίπτωση. Ορθή λέγεται η γωνία της οποίας το μέτρο ισούται με 90 ο. Οξεία λέγεται κάθε γωνία της οποίας το μέτρο είναι μικρότερο από 90 ο. Αμβλεία λέγεται κάθε γωνία της οποίας το μέτρο είναι μεγαλύτερο από 90 ο. Ευθεία λέγεται η γωνία της οποίας το μέτρο ισούται με 180 ο. Μη κυρτή λέγεται κάθε γωνία της οποίας το μέτρο είναι μεγαλύτερο από 180 ο και μικρότερο από 360 ο. Μηδενική λέγεται η γωνία της οποίας το μέτρο ισούται με 0 ο. Πλήρης λέγεται η γωνία της οποίας το μέτρο ισούται με 360 ο. 2. Ποιες γωνίες ονομάζονται εφεξής και ποιες διαδοχικές; Εφεξής ονομάζονται δύο γωνίες οι οποίες έχουν κοινή κορυφή, μία κοινή πλευρά και κανένα άλλο κοινό σημείο. Διαδοχικές ονομάζονται τρεις ή περισσότερες γωνίες, αν κάθε μία από αυτές είναι εφεξής με μία τουλάχιστον από τις υπόλοιπες γωνίες. Βασίλης Μπακούρος 5

6 (Εφεξής: χαψ, ψαζ) (Διαδοχικές οι γωνίες: χαψ, ψαζ, ζαλ ) 3. Ποιες γωνίες ονομάζονται συμπληρωματικές, ποιες παραπληρωματικές και ποιες κατακορυφήν; Συμπληρωματικές ονομάζονται δύο γωνίες που έχουν άθροισμα 90 ο. Παραπληρωματικές ονομάζονται δύο γωνίες που έχουν άθροισμα 180 ο. Κατακορυφήν ονομάζονται δύο γωνίες οι οποίες έχουν κοινή κορυφή και οι πλευρές τους είναι αντικείμενες ημιευθείες. 4. Ποιες ευθείες λέγονται παράλληλες και ποιες τεμνόμενες; Πότε δύο ευθύγραμμα τμήματα είναι παράλληλα; Δύο ευθείες του ίδιου επιπέδου που δεν έχουν κανένα κοινό σημείο όσο και αν προεκταθούν, λέγονται παράλληλες. Δύο ευθείες του ίδιου επιπέδου οι οποίες έχουν ένα μόνο κοινό σημείο, λέγονται τεμνόμενες. Δύο ευθύγραμμα τμήματα λέγονται παράλληλα, όταν βρίσκονται πάνω σε παράλληλες ευθείες. 5. Τι ονομάζουμε απόσταση ενός σημείου από μια ευθεία και τι απόσταση δύο παράλληλων ευθειών; Απόσταση ενός σημείου από μια ευθεία, ονομάζουμε το μήκος του κάθετου ευθυγράμμου τμήματος από το σημείο προς την ευθεία. Απόσταση δύο παράλληλων ευθειών ονομάζουμε το μήκος οποιουδήποτε τμήματος που είναι κάθετο στις δύο παράλληλες ευθείες και έχει τα άκρα του πάνω σε αυτές. 6. Τι είναι κύκλος; Τι ονομάζουμε ακτίνα του κύκλου; Να φτιάξετε ένα κύκλο και να χαράξετε πάνω του μια χορδή και μια διάμετρο του. Κύκλος λέγεται το σύνολο των σημείων του επιπέδου τα οποία απέχουν την ίδια απόσταση (η οποία ονομάζεται ακτίνα) από ένα σταθερό σημείο του επιπέδου το οποίο ονομάζεται κέντρο του κύκλου, ενώ ακτίνα του κύκλου ονομάζεται η απόσταση αυτή. 7. Τι ονομάζουμε χορδή, τι ονομάζουμε διάμετρο και τι τόξο ενός κύκλου; Χορδή είναι το ευθύγραμμο τμήμα που ενώνει δύο σημεία του κύκλου. Διάμετρος είναι η χορδή η οποία περνά από το κέντρο του κύκλου. Δύο σημεία Α και Β του κύκλου, τον χωρίζουν σε δύο μέρη, που το καθένα από αυτά λέγεται τόξο. 8. Ποιες είναι οι σχετικές θέσεις μιας ευθείας και ενός κύκλου που βρίσκονται στο ίδιο επίπεδο; Μπορεί η ευθεία να είναι τέμνουσα, δηλαδή να έχει δύο κοινά σημεία με τον κύκλο και να απέχει από το κέντρο του απόσταση μικρότερη από την ακτίνα. Μπορεί η ευθεία να είναι εφαπτόμενη, δηλαδή να έχει ένα ακριβώς κοινό σημείο με τον κύκλο και να απέχει από το κέντρο του απόσταση ίση με την ακτίνα του. Μπορεί η ευθεία να είναι εξωτερική του κύκλου, δηλαδή να μην έχει κανένα κοινό σημείο με αυτόν και να απέχει από το κέντρο του απόσταση μεγαλύτερη από την ακτίνα του. ΚΕΦΑΛΑΙΟ 2 ο Βασίλης Μπακούρος 6

7 1. Τι ονομάζουμε άξονα συμμετρίας ενός σχήματος; Σε ποια περίπτωση ένα σχήμα έχει άξονα συμμετρίας; Άξονας συμμετρίας ενός σχήματος, ονομάζεται η ευθεία που χωρίζει το σχήμα σε δύο μέρη, τα οποία συμπίπτουν όταν το σχήμα διπλωθεί κατά μήκος της ευθείας. Σε αυτή την περίπτωση, λέμε ότι το σχήμα έχει άξονα συμμετρίας. 2. Τι ονομάζουμε μεσοκάθετο ενός ευθυγράμμου σχήματος; Ποια είναι η χαρακτηριστική ιδιότητα που έχουν όλα τα σημεία της μεσοκαθέτου ενός σχήματος; Ισχύει το αντίστροφό του; Μεσοκάθετος ενός ευθυγράμμου σχήματος λέγεται η ευθεία που είναι κάθετη στο μέσον του ευθυγράμμου τμήματος. Κάθε σημείο της μεσοκαθέτου ενός ευθυγράμμου τμήματος, ισαπέχει από τα άκρα του και αντίστροφα: Κάθε σημείο το οποίο ισαπέχει από τα άκρα ενός ευθυγράμμου τμήματος, ανήκει στη μεσοκάθετο του. 3. Τι ονομάζουμε κέντρο συμμετρίας ενός σχήματος; Σε ποια περίπτωση ένα σχήμα έχει κέντρο συμμετρίας; Κέντρο συμμετρίας ενός σχήματος ονομάζεται ένα σημείο Ο, γύρω από το οποίο αν περιστραφεί το σχήμα κατά 180 ο, συμπίπτει με το αρχικό. Στην περίπτωση που υπάρχει τέτοιο σημείο, λέμε ότι είναι το κέντρο συμμετρίας του σχήματος. ΚΕΦΑΛΑΙΟ 3 ο 1. Ποια είδη τριγώνων γνωρίζετε με κριτήριο α)τις γωνίες του και β) Τις πλευρές του. Με βάση τις γωνίες του ένα τρίγωνο μπορεί να χαρακτηρισθεί ορθογώνιο (έχει μια ορθή και δύο οξείες γωνίες), αμβλυγώνιο (έχει μία αμβλεία και δύο οξείες γωνίες) ή οξυγώνιο (τρεις οξείες γωνίες). Με βάση το μήκος των πλευρών του ένα τρίγωνο μπορεί να είναι ισόπλευρο (οι τρεις πλευρές του ίσες μεταξύ τους), ισοσκελές (δύο πλευρές του ίσες μεταξύ τους) ή σκαληνό (τρεις άνισες πλευρές). 2. Τι ονομάζουμε διάμεσο ενός τριγώνου; Πόσες διαμέσους μπορούμε να φέρουμε σε ένα τρίγωνο; Διάμεσος ενός τριγώνου, ονομάζεται το ευθύγραμμο τμήμα που ενώνει την κορυφή ενός τριγώνου με το μέσο της απέναντι πλευράς του. Σε κάθε τρίγωνο, υπάρχουν τρεις διάμεσοι. 3. Τι ονομάζουμε ύψος ενός τριγώνου; Πόσα ύψη μπορούμε να φέρουμε σε ένα τρίγωνο; Ύψος ενός τριγώνου ονομάζεται το ευθύγραμμο τμήμα που φέρνουμε από μια κορυφή του τριγώνου κάθετο στην ευθεία της απέναντι πλευράς. Σε ένα οξυγώνιο ή αμβλυγώνιο τρίγωνο μπορούμε να φέρουμε τρία ύψη, σε ένα ορθογώνιο τρίγωνο όμως, φέρνουμε μόνο ένα ύψος από την κορυφή της ορθής γωνίας προς την υποτείνουσα, αφού τα άλλα δύο ύψη συμπίπτουν με τις πλευρές του τριγώνου. 4. Τι ονομάζουμε διχοτόμο ενός τριγώνου; Πόσες διχοτόμους μπορούμε να φέρουμε σε ένα τρίγωνο; Διχοτόμος μιας γωνίας ενός τριγώνου, ονομάζεται το ευθύγραμμο τμήμα που βρίσκεται πάνω στη διχοτόμο της γωνίας, ξεκινά από την κορυφή του τριγώνου και καταλήγει στην απέναντι πλευρά του. Σε κάθε τρίγωνο, υπάρχουν τρεις ακριβώς διχοτόμοι. 5. Να αναφέρετε όσες ιδιότητες ενός ισοσκελούς τριγώνου γνωρίζετε. Ισοσκελές είναι το τρίγωνο που έχει δύο πλευρές του ίσες μεταξύ τους. α. Σε κάθε ισοσκελές τρίγωνο, οι γωνίες οι προσκείμενες στη βάση γωνίες του είναι ίσες μεταξύ τους. Βασίλης Μπακούρος 7

8 β. Η ευθεία της διαμέσου που περνά από την κορυφή των ίσων πλευρών είναι άξονας συμμετρίας του τριγώνου. γ. Η διάμεσος που φέρνουμε από την κορυφή των ίσων πλευρών προς τη βάση του τριγώνου είναι ταυτόχρονα ύψος και διχοτόμος του τριγώνου. 6. Να αναφέρετε όσες ιδιότητες του ισοπλεύρου τριγώνου γνωρίζετε. α. Όλες οι πλευρές του είναι ίσες μεταξύ τους και όλες οι γωνίες του είναι ίσες μεταξύ τους (60 ο κάθε μία). β. Κάθε διάμεσός του είναι ύψος και διχοτόμος. γ. Οι ευθείες των διαμέσων είναι άξονες συμμετρίας του ισοπλεύρου τριγώνου. Προσοχή: Οι απαντήσεις στα παρακάτω ερωτήματα 7,8,9,10 και 11 πρέπει να συνοδεύονται από σχήμα όπου θα ονομάζουμε τις κορυφές του τετραπλεύρου και θα γράφουμε όλες τις ισότητες που αφορούν γωνίες και πλευρές των τετραπλεύρων οι οποίες απορρέουν από τις ιδιότητες. 7. Τι ονομάζουμε παραλληλόγραμμο; Ποιες ιδιότητες έχει; Παραλληλόγραμμο ονομάζουμε το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες. Ιδιότητες: Το κέντρο του παραλληλογράμμου (σημείο τομής των διαγωνίων του) είναι κέντρο συμμετρίας του. Οι απέναντι γωνίες του είναι ίσες, οι απέναντι πλευρές του είναι ίσες και οι διαγώνιοί του διχοτομούνται δηλαδή η μία τέμνει την άλλη στο μέσον της. (Οι γωνίες Α=Γ και Β=Δ, ΑΒ=ΓΔ και ΒΓ=ΑΔ, αν Ο το σημείο τομής των διαγωνίων ισχύουν ΑΟ=ΟΓ και ΒΟ=ΟΔ) 8. Τι ονομάζουμε ορθογώνιο παραλληλόγραμμο; Ποιες ιδιότητες έχει; Το παραλληλόγραμμο που έχει τις γωνίες του ορθές ονομάζεται ορθογώνιο παραλληλόγραμμο. Έχει όλες τις ιδιότητες του παραλληλογράμμου (ερώτηση 7) και επιπλέον: Οι μεσοκάθετοι των πλευρών του είναι άξονες συμμετρίας του και οι διαγώνιές του είναι ίσες. 9. Τι ονομάζουμε ρόμβο; Ποιες ιδιότητες έχει; Το παραλληλόγραμμο που έχει όλες του τις πλευρές ίσες μεταξύ τους λέγεται ρόμβος. Έχει όλες τις ιδιότητες του παραλληλογράμμου (ερώτηση 7) και επιπλέον: Οι διαγώνιές του είναι άξονες συμμετρίας του ενώ οι διαγώνιές του τέμνονται κάθετα και είναι διχοτόμοι των γωνιών του ρόμβου. 10. Τι είναι τετράγωνο; Ποιες ιδιότητες έχει; Τετράγωνο ονομάζουμε το τετράπλευρο που είναι ταυτόχρονα ορθογώνιο και ρόμβος. Έχει, προφανώς, όλες τις ιδιότητες που αναφέρυηκαν παραπάνω για ορθογώνιο παραλληλόγραμμο και ρόμβο. 11. Τι ονομάζουμε ισοσκελές τραπέζιο; Ποιες ιδιότητες έχει; Τραπέζιο είναι το τετράπλευρο που έχει τις δύο απέναντι πλευρές του παράλληλες (βάσεις). Αν, επιπλέον, έχει και τις δύο μη παράλληλες πλευρές του ίσες, λέγεται ισοσκελές. Σε ένα ισοσκελές τραπέζιο, η μεσοκάθετος των βάσεων είναι άξονας συμμετρίας του, ενώ οι γωνίες που πρόσκεινται σε κάθε βάση του είναι ίσες, όπως επίσης ίσες είναι και οι διαγώνιές του. Βασίλης Μπακούρος 8

9 Βασίλης Μπακούρος 9

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

+ + = + + α ( β γ) ( )

+ + = + + α ( β γ) ( ) ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

Σειρά: Τράπεζα Θεμάτων Γυμνασίου

Σειρά: Τράπεζα Θεμάτων Γυμνασίου Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΩΜΤΡΙ ΛΥΚΙΟΥ ΠΝΛΗΠΤΙΚΟ ΦΥΛΛΙΟ ΠΙΜΛΙ ΥΡΙΝΟΣ ΣΙΛΗΣ ΠΙΜΛΙ: ΥΡΙΝΟΣ ΣΙΛΗΣ ΘΜΤ ΘΩΡΙΣ ΚΦΛΙΟ ο Τ ΣΙΚ ΩΜΤΡΙΚ ΣΧΗΜΤ ΘΜ ο Τι καλείται μέσο ενός ευθυγράμμου τμήματος και τι ισχύει γι αυτό ; ΠΝΤΗΣΗ Μέσο ενός ευθύγραμμου

Διαβάστε περισσότερα

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ 1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΩΝΙΕΣ ρισµός: Έστω χ και ψ δύο ηµιευθείες που δεν έχουν κοινό φορέα και έστω p το ηµιεπίπεδο που έχει ακµή τον φορέα της Oχ και περιέχει την ψ και

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ΛΥΚΙΟΥ - ΩΜΤΡΙ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/05/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΚΕΦΛΙΟ 2 o Τ ΣΙΚ ΓΕΩΜΕΤΡΙΚ ΣΧΗΜΤ Πρωταρχικές έννοιες Όπως τα αντιλαμβανόμαστε : Σημείο, Ευθεία, Επίπεδο. ξιώματα προτάσεις που τις αποδεχόμαστε χωρίς απόδειξη. αξίωμα: πό δυο διαφορετικά σημεία του επιπέδου

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ & ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΩΝ ΓΥΜΝΑΣΙΩΝ ΡΕΘΥΜΝΟΥ & ΗΡΑΚΛΕΙΟΥ ΑΡΜΟΔΙΟΤΗΤΑΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΣΥΜΒΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΟΥ Λ.

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ & ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΩΝ ΓΥΜΝΑΣΙΩΝ ΡΕΘΥΜΝΟΥ & ΗΡΑΚΛΕΙΟΥ ΑΡΜΟΔΙΟΤΗΤΑΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΣΥΜΒΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΟΥ Λ. ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ & ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΩΝ ΓΥΜΝΑΣΙΩΝ ΡΕΘΥΜΝΟΥ & ΗΡΑΚΛΕΙΟΥ ΑΡΜΟΔΙΟΤΗΤΑΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΣΥΜΒΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΟΥ Λ. ΚΩΝΣΤΑΝΤΟΠΟΥΛΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-14 3 η Φάση Η συλλογή αυτή των θεμάτων

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Δείκτες Επιτυχίας Α3.2 Κατανοούν την έννοια της μεταβλητής, ερμηνεύουν και επεξηγούν σχέσεις μεταξύ μεταβλητών.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή

ΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή ΚΦΛΙΟ 5ο ΠΡΛΛΗΛOΡΜΜ - ΤΡΠΙ ισαγωγή. Τι καλείται τετράπλευρο ; Πόσες διαγώνιες έχει ένα κυρτό τετράπλευρο ; Τι καλείται παραλληλόγραμμο και τι τραπέζιο ; Το ευθύγραμμο σχήμα που έχει τέσσερις πλευρές λέγεται

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 1, Οι φυσικοί αριθμοί. Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 1, Βασικές Γεωμετρικές έννοιες

Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 1, Οι φυσικοί αριθμοί. Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 1, Βασικές Γεωμετρικές έννοιες Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 1 Περιεχόμενα Σελίδα 4: Σελίδα 16: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 1, Οι φυσικοί αριθμοί Α

Διαβάστε περισσότερα

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών 6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα