ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗ ΚΙΝΔΥΝΟΥ ΜΑΚΡΟΧΡΟΝΙΕΣ ΚΑΙ ΒΡΑΧΥΧΡΟΝΙΕΣ ΣΥΝΙΣΤΩΣΕΣ ΤΟΥ ΣΥΣΤΗΜΑΤΙΚΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΜΕΤΟΧΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΕΩΡΓΙΟΣ Π. ΤΡΙΠΟΛΙΤΑΚΗΣ Επιβλέπουσα: Αικατερίνη Πανοπούλου Επίκουρος Καθηγήτρια Πανεπιστημίου Πειραιώς Πειραιάς, Οκτώβριος 011

2 Περίληψη Η παρούσα διπλωματική εργασία μελετά την επιρροή της ανάλυσης στο πεδίο των συχνοτήτων (frequecy domai) στο κλασικό μοντέλο CAPM. Για το σκοπό αυτό εξετάζουμε τις μηνιαίες αποδόσεις σε τρία διαφορετικά είδη χαρτοφυλακίων, τα book o marke, τα momeum και τα ize, όπως χρησιμοποιούνται ευρέως στη σχετική βιβλιογραφία. Επιπλέον, διακρίνουμε δυο διαφορετικές χρονικές περιόδους, για τις οποίες το κλασικό μοντέλο CAPM παρουσιάζει διαφορετική συμπεριφορά. Η ανάλυση σε πεδία συχνοτήτων (φασματική ανάλυση) μας παρέχει τα κατάλληλα εργαλεία για να απομονώσουμε τα ενυπάρχοντα κυκλικά χαρακτηριστικά των χρονοσειρών και μάλιστα, όπως θα δείξουμε, διατηρώντας τη μεταβλητότητα της αρχικής χρονοσειράς σε επιλεγμένες κυκλικές περιόδους. Με τον τρόπο αυτό, μπορούμε να φιλτράρουμε τις βραχυχρόνιες και μακροχρόνιες επιρροές, επιδιώκοντας στη βελτίωση των χαρακτηριστικών του κλασικού CAPM, που είναι η απόρριψή του στην περίοδο και η αδυναμία τιμολόγησης του κινδύνου κατά την επιπλέον διαστρωματική ανάλυση σε ize και book o marke χαρτοφυλάκια. Syopi Thi hei udie he ifluece of he frequecy domai aalyi o he adard CAPM model. For hi purpoe, we examie he mohly performace of hree differe ype of porfolio, he book o marke, momeum ad ize porfolio, which are widely ued i he relaed lieraure. Moreover, we diiguih bewee wo differe ime period for which he adard CAPM model how differe behavior. The aalyi i he frequecy domai (pecral aalyi) give u he ool o iolae he ihere cyclic characeriic of he ime erie ad ideed, a we will how, by maiaiig he volailiy of he origial ime erie i eleced cyclical period. I hi way, we ca filer ou horerm ad log-erm ifluece, eekig o improve he characeriic of claic CAPM, which i dicharged i he period ad, imulaeouly, cao price he rik i he furher croecioal aalyi io ize ad book o marke porfolio.

3 3 Ευχαριστίες Για τη συγγραφή της παρούσας διπλωματικής εργασίας οφείλω να ευχαριστήσω την Επίκουρο Καθηγήτρια του Πανεπιστημίου Πειραιώς, κ. Κατερίνα Πανοπούλου, για την αμέριστη συμπαράσταση και καθοδήγηση καθόλη τη διάρκεια της εκπόνησής της.

4 4 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή Το κλασικό μοντέλο CAPM (Capial Ae Pricig Model) και η υπόθεση σταθερού βήτα...5 ΚΕΦΑΛΑΙΟ Φασματική ανάλυση χρονοσειράς Στάσιμες χρονοσειρές.. 8. Φασματική ανάλυση στάσιμης χρονοσειράς Παραδείγματα φασματικών πυκνοτήτων Το δειγματικό περιοδόγραμμα Γραμμικά φίλτρα Τα bad-pa φίλτρα Baxer-Kig και Chriiao-Fizgerlad ΚΕΦΑΛΑΙΟ 3 Εμπειρική ανάλυση δεδομένων Περιγραφή δεδομένων Στατιστική περιγραφή δεδομένων Μεθοδολογία..30 Συμπεράσματα Παράρτημα Παράρτημα...68 Βιβλιογραφία

5 5 Κεφάλαιο 1 Εισαγωγή 1.1 Το κλασικό μοντέλο CAPM (Capial Ae Pricig Model) και η υπόθεση σταθερού βήτα Το κλασικό μοντέλο εκτίμησης των αποδόσεων περιουσιακών στοιχείων ή το Sadard CAPM αναπτύχθηκε από τους W. Sharpe, J. Lier και J. Moi, βασιζόμενο στις παρακάτω υποθέσεις 1 Υ1 Τα κόστη συναλλαγών είναι αμελητέα σε σχέση με το συνολικό όγκο συναλλαγών. Υ Τα περιουσιακά στοιχεία είναι απείρως διαιρετά. Υ3 Οι φόροι προσωπικού εισοδήματος είναι αμελητέοι (επομένως ένα άτομο είναι αδιάφορο στην επιλογή μεταξύ του κέρδους από μερίσματα ή από άλλες επενδύσεις κεφαλαίου). Υ4 Ένα μεμονωμένο άτομο ή επιχείρηση δεν μπορεί να επηρεάσει την τιμή μιας μετοχής (τέλειος ανταγωνισμός). Υ5 Όλα τα άτομα επενδύουν με βάση την αναμενόμενη απόδοση και τη διασπορά των αποδόσεων. Υ6 Επιτρέπονται απεριόριστες ανοιχτές πωλήσεις (hor ale). Υ7 Επιτρέπεται απεριόριστος δανεισμός με το ακίνδυνο επιτόκιο (rik free rae) Υ8 Ισορροπία αποδόσεων-διασποράς-χρόνου (όλοι οι επενδυτές αναμένουν τις ίδιες αποδόσεις και διασπορά αποδόσεων, και επενδύουν στον ίδιο χρονικό ορίζοντα). Υ9 Όλα τα περιουσιακά στοιχεία είναι εμπορεύσιμα. Η εξίσωση του κλασικού CAPM Έστω i η απόδοση του στοιχείου ή χαρτοφυλακίου i, free η ακίνδυνη απόδοση και m η απόδοση της αγοράς. Τότε ισχύει η σχέση Ε( i ) = free + i (Ε( ) m free ), [1.1] όπου i = Cov( i, m ) Var( ) m = συντελεστής συστηματικού ρίσκου ή συντελεστής «βήτα» [1.] Η σχέση [1.1] υποδηλώνει ότι η αναμενόμενη απόδοση ενός περιουσιακού στοιχείου ή χαρτοφυλακίου, ξεπερνά την ακίνδυνη απόδοση κατά ένα ποσό γραμμικά ανάλογο με το συστηματικό ή μη-διαφοροποιήσιμο μέρος του ρίσκου. Με άλλα λόγια, ο επενδυτής δεν αναμένει 1 βλ. Elo, Gruber 007:84 και Fabozzi 006:08

6 6 την αποζημίωσή του για το μέρος εκείνο του ρίσκου το οποίο μπορεί να αντισταθμίσει με μια κατάλληλη διαφοροποίηση του χαρτοφυλακίου του, και το οποίο δεν σχετίζεται με τον κίνδυνο της αγοράς (ιδιάζων ή μη-συστηματικό μέρος του ρίσκου). Η σχέση [1.1] μπορεί να εξεταστεί (βλ. 3.3) για i σταθερό. Στην πραγματικότητα, η σταθερότητα του συντελεστή βήτα δεν εξασφαλίζεται. Για παράδειγμα, αν μια εταιρεία μεταβάλλει την κεφαλαιοποίησή της, τότε δεν εξασφαλίζεται η σταθερότητα της συνδιασποράς Cov(, ). Οι Fama και Frech (199, 1993) εξέτασαν το κλασικό CAPM με σταθερό βήτα και βρήκαν ότι το μοντέλο αδυνατεί να εξηγήσει κάποιες ανωμαλίες τιμολόγησης. Για παράδειγμα, αναφέρουν ότι το μοντέλο δεν μπορεί να εξηγήσει γιατί i) χαρτοφυλάκια με μικρές εταιρείες ξεπερνούν σε απόδοση τις μεγάλες εταιρείες (επιρροή μεγέθους, βλ. 3.3), ii) χαρτοφυλάκια εταιρειών με μεγάλη αναλογία λογιστικής αξίας προς αξία από την αγορά ξεπερνούν σε απόδοση τις εταιρείες με αντίστοιχη μικρή αναλογία (book o marke επιρροή, βλ. 3.3) και iii) γιατί χαρτοφυλάκια εταιρειών με σχετικά μεγαλύτερες αποδόσεις στο παρελθόν ξεπερνούν σε απόδοση τις εταιρείες με αντίστοιχα χαμηλές προηγούμενες αποδόσεις (momeum επιρροή, βλ. 3.3). i m Μια πιθανή αιτία για την αποτυχία του κλασικού CAPM να εξηγήσει τις παραπάνω διαφοροποιήσεις, είναι η υπόθεση του σταθερού βήτα. Πολλές αναλύσεις (για παράδειγμα των Jagaaha και Wag (1996), των Fama και Frech (1997, 006) και των Ag και Che (007)) εντοπίζουν μια συνδιασπορά ανάμεσα στο χρονικά μεταβαλλόμενο βήτα και στη χρονικά μεταβαλλόμενη υπερβάλλουσα απόδοση της αγοράς. Οι Fero και Harvey (1999) και οι Pekova και Zhag (005) χρησιμοποιούν βοηθητικές μεταβλητές για να εντοπίσουν τις μεταβολές του βήτα και της υπερβάλλουσας απόδοσης της αγοράς, αλλά και τη συνδιασπορά τους. Οι Abdymomuov και Morley (011) ερευνούν τις μεταβολές του βήτα σε book o marke και momeum χαρτοφυλάκια σε σχέση με κάποιες διακριτές αλλαγές στη μεταβλητότητα της αγοράς των μετοχών και στις υπερβάλλουσες αποδόσεις της αγοράς. Oι Badi και Garcia (010) επιχειρούν να εκτιμήσουν τη δυνατότητα τιμολόγησης του κινδύνου (rik pricig) στο κλασικό CAPM, διακρίνοντας σε βραχυχρόνιες και μακροχρόνιες σωρευτικές αποδόσεις, και καταφέρνουν να εξομαλύνουν τη γραμμική σχέση του χρονικά μεταβαλλόμενου βήτα ως προς τις μέσες αποδόσεις, για μεγαλύτερα χρονικά διαστήματα. Η δική μας ανάλυση εστιάζει στο φιλτράρισμα των αποδόσεων των διαμερισμένων χαρτοφυλακίων και στη βελτίωση της προσαρμογής του κλασικού μοντέλου CAPM, για τις διάφορες κυκλικές συνιστώσες. Όπως θα δείξουμε, το μοντέλο CAPM βελτιώνεται με χρήση ειδικού φίλτρου, η Αυτό το διαχωρισμό υιοθετούμε κι εμείς (βλ. Fama και Frech 199 και Fama και Frech 1993).

7 7 βελτίωση όμως αυτή δεν αφορά και την τιμολόγηση του κινδύνου, ο οποίος προκύπτει αρνητικός σε σχέση με τις μέσες αποδόσεις. Στο ο Κεφάλαιο παρουσιάζουμε τα βασικά στοιχεία της φασματικής ανάλυσης, με στόχο την κατανόηση των ιδιοτήτων και των σχετικών μηχανισμών της. Στη συνέχεια, στο Κεφάλαιο 3, έχουμε την εφαρμογή των μηχανισμών αυτών στα δεδομένα των χαρτοφυλακίων μας και την εξαγωγή των συμπερασμάτων. Ακολουθούν τα Παραρτήματα, στα οποία συμπεριλαμβάνονται αναλυτικά όλοι οι πίνακες, τα στατιστικά συμπεράσματα και κάποια επιπλέον γραφήματα.

8 8 Κεφάλαιο Φασματική ανάλυση χρονοσειράς.1 Στάσιμες χρονοσειρές Ισχυρή Στασιμότητα Η χρονοσειρά { κάθε k (k ), η από κοινού κατανομή των { κατανομή των {, 1 k k } είναι (ισχυρά) στάσιμη, αν για κάθε 1,,, 1,,, και για } ταυτίζεται με την από κοινού,, }. Η από κοινού κατανομή, λοιπόν, των { k παραμένει σταθερή για οποιαδήποτε κοινή χρονική μετατόπιση κατά k. 1,,, } Στασιμότητα έως βαθμού m Η χρονοσειρά { } είναι στάσιμη έως το βαθμό m (m ), αν για κάθε 1,,, και για κάθε k, οι από κοινού ροπές έως του βαθμού m των { είναι ίσες με τις από κοινού ροπές έως βαθμού m των {, ή 1 k k,, } k 1, 1 Ε[ { } m { } m m { } 1 ] = Ε[ { } m { } m m { } ] 1 ( m 1 + m + + m m : i m, m για κάθε i) 1 k k k,, } Διακρίνουμε δυο βασικές περιπτώσεις m = m 3 = = m = 0 και m1 m. Τότε, για k = Ε[ { } m 1 ] = Ε[ { } m ] = σταθερό και ανεξάρτητο του. 1. m 3 = m 4 = = m = 0 και m 1 + m m. Τότε, για k = Ε[ { } m 1 = Ε[ { } m { } m ] = συνάρτηση του ( ) μόνο. 0 0 { } m ] Από τα προηγούμενα συνεπάγεται ότι, i) Αν η { } είναι στάσιμη έως βαθμού m = 1, τότε Ε[ ] = σταθερό = μ. ii) Αν η { } είναι στάσιμη έως βαθμού m =, τότε Ε[ ] = σταθερό = μ (η στάσιμη βαθμού είναι και στάσιμη βαθμού 1) και για m 1 =, Ε[ ( ) ] = = σταθερά (ανεξάρτητη του ) Var( ) = Ε[ ( ) ] E [ ] = = = σταθερά. 3 Βλ. Prieley:105 και Mood, Graybill:159

9 9 iii) Αν m = και m 1 = m = 1, τότε για κάθε και, E[ ( ) μόνο Cov(, ) = E[ ] ] = συνάρτηση της διαφοράς = συνάρτηση της διαφοράς ( ) μόνο. Συνεπώς, μια στάσιμη χρονοσειρά έως βαθμού, i) Έχει σταθερή μέση τιμή μ για κάθε ii) Έχει σταθερή διασπορά για κάθε iii) Η συνδιασπορά για οποιαδήποτε χρονικά σημεία, εξαρτάται μόνο από το διάστημα ( - ) και όχι από το που βρίσκονται τα σημεία, στο χρόνο. Εξαιτίας των ιδιοτήτων αυτών, η στάσιμη χρονοσειρά έως βαθμού κρίνεται ικανοποιητική για τα οικονομικά μοντέλα μας και εφεξής αυτή θα εννοείται ως η «στάσιμη» χρονοσειρά. Αυτοσυσχέτιση Aν x = Var( ) και (τ) = Cov(, ) είναι η συνάρτηση (αυτο)συνδιακύμανσης, τότε ορίζεται η συνάρτηση αυτοσυσχέτισης, ως ρ(τ) = (τ)/. Για μια x στάσιμη χρονοσειρά, (0) = Cov(, ) = Var( ) = x ρ(0) = 1. Επίσης, (τ) (0) ρ(τ) 1 για κάθε τ. Αν η στάσιμη χρονοσειρά λαμβάνει μόνο πραγματικές τιμές ( ), τότε ισχύει ότι για κάθε (-τ) = (τ) για κάθε τ ρ(-τ) = ρ(τ). Τέλος, για μια στάσιμη χρονοσειρά, φυσιολογικά (τ),ρ(τ) 0 όταν τ. 4. Φασματική ανάλυση στάσιμης χρονοσειράς Περίοδος, συχνότητα, κυκλική συχνότητα Ορίζονται ως Τ = Περίοδος = Ο χρόνος ενός κύκλου (στις αντίστοιχες χρονικές μονάδες μέτρησης) ν = 1/Τ = Συχνότητα = Αριθμός κύκλων ανά μονάδα χρόνου ω = πν = π/τ = Κυκλική συχνότητα = συχνότητα σε rad ανά μονάδα χρόνου Φασματική αναπαράσταση Grager Σύμφωνα με τον Grager 5, για τη στάσιμη χρονοσειρά { ορίζεται η φασματική της αναπαράσταση: } i = e dz ( ) = [co( ) ii( )] dz ( ), [.1] όπου Ζ(ω) είναι μια (μιγαδική) στοχαστική διαδικασία στο (-π, π) με τα εξής χαρακτηριστικά: 4 Το τ χαρακτηρίζεται ως το lag (υστέρηση). 5 Βλ. Arrow και Iriligaor 1984: 989

10 10 (i) E[dZ(ω)] = 0, για κάθε ω, 0, αν ω λ (ii) Ε[dZ(ω) dz(λ) ] = ( ) ( ) ( ), αν ω = λ, x df x f d όπου dz(λ) είναι η συζυγής της προσαύξησης dz(λ) και f(ω) η (κανονικοποιημένη) φασματική πυκνότητα της. Προφανώς, Ε[dZ(ω) dz(λ) ] ω=λ = Ε[ dz(ω) ] = Var[dZ(ω)]. Η παραπάνω αυτή αναπαράσταση της μπορεί να ερμηνευθεί ως ένα άθροισμα ενός απείρου αριθμού ασυσχέτιστων τυχαίων μεταβλητών (εξαιτίας των χαρακτηριστικών (i) και (ii), συνδεδεμένων με κάποια αντίστοιχη συχνότητα (μεταβλητές ή συνιστώσες συχνότητας). Το ολοκλήρωμα όλων των στοιχειωδών διασπορών Var[dZ(ω)] ισούται με την διασπορά χρονοσειράς, κάτι που χρησιμεύει στην ανάλυση της σχετικής σημασίας των μεταβλητών συχνότητας. Βάσει του ότι ω=π/τ, έχουμε ότι οι μικρές (ή χαμηλές) κυκλικές συχνότητες αντιστοιχούν σε μεγάλες οικονομικές περιόδους Τ, ενώ οι μεγάλες (ή υψηλές) κυκλικές συχνότητες (κοντά στο π) αντιστοιχούν σε σύντομες οικονομικές περιόδους Τ. Αυτή η διάκριση καθιστά τη φασματική ανάλυση συχνοτήτων πιο ελκυστική από την κλασσική ανάλυση χρονοσειρών (που βασίζεται στην καθαυτή μελέτη της ρ(τ)) όταν πρωταρχικός στόχος είναι η ανίχνευση των οικονομικών κύκλων στην πραγματοποίηση μιας χρονοσειράς. 6 x της Θεώρημα Wold 7 Οι συναρτήσεις {ρ(τ): τ = 0, ±1, ±, } αποτελούν συναρτήσεις αυτοσυσχέτισης μιας στάσιμης χρονοσειράς διακριτού χρόνου, { συνάρτηση F(ω) η οποία: : = 0, ±1, ±, }, αν και μόνο αν υπάρχει (i) Διαθέτει τα χαρακτηριστικά συνάρτησης κατανομής [δηλ. 0 F(ω) 1 για κάθε ω στο (-π, π), F(-π) = 0, F(π) = 1 και η F(ω) είναι μη-φθίνουσα] στο διάστημα (-π, π) και i (ii) ρ(τ) = e df ( ), τ = 0, ±1, ±, Η συνάρτηση F καλείται φασματική συνάρτηση κατανομής. Σημειώνουμε ότι, αν η είναι τέτοια ώστε η F(ω) να είναι παντού διαφορίσιμη, τότε η f(ω) = df(ω)/dω (f 0) υπάρχει για κάθε ω, και η αυτοσυσχέτιση ρ(τ) μπορεί να γραφεί ισοδύναμα ως 6 Στο σημείο αυτό είναι χρήσιμο να διευκρινίσουμε ότι ω π ή πν π ή ν ½ ή Τ. 7 Βλ. Prieley:

11 11 i ρ(τ) = e f ( ) d, τ = 0, ±1, ±, [.] (Kανονικοποιημένη) φασματική πυκνότητα Η ρ(τ) μπορεί να αντιστραφεί (βλ. Prieley: 5) δίνοντας την παρακάτω συνάρτηση συχνοτήτων ή (κανονικοποιημένη) φασματική πυκνότητα: f(ω) = 1 i ( ) e = 1 [co( ) ii( )] ( ), -π ω π [.3] Αν η στάσιμη { } λαμβάνει μόνο πραγματικές τιμές, τότε ρ(-τ) = ρ(τ) και άρα και f(-ω)= f(ω) για όλα τα ω στο (-π, π). Τότε, μάλιστα, η [.3] γίνεται, 8 f(ω) = 1 1 [co( ) ii( )] ( ) (0)[co(0) ii(0)] + 1 [co( ) ii( )] ( ) = 1 1 ( )co( ), -π ω π [.4] 1 Αντίστοιχα με την [.] και επειδή (τ) = x ρ(τ), θα έχουμε ότι: (τ) = e i f x ( ) d, τ = 0, ±1, ±, [.5] (Μη-κανονικοποιημένη) φασματική πυκνότητα ή φάσμα διακριτού χρόνου, { : = 0, ±1, ±, } και (τ) = Cov(, Έστω μια στάσιμη χρονοσειρά ) η συνάρτηση (αυτο)συνδιακύμανσης. Τότε ορίζουμε ως (μη-κανονικοποιημένη) φασματική πυκνότητα ή φάσμα της τη συνάρτηση h(ω) = 1 i ( ) e = 1 [co( ) ii( )] ( ), -π ω π [. 6] Συγκρίνοντας με τη [.3] και λαμβάνοντας υπόψη ότι (τ) = x ρ(τ), παρατηρούμε ότι h(ω) = x f(ω). Μάλιστα, f 0 h 0. Aν η στάσιμη { } λαμβάνει μόνο πραγματικές τιμές, τότε f(-ω) = f(ω) h(-ω)= h(ω) για όλα τα ω στο [-π, π]. 8 Βλ. Prieley: 08, 17

12 1 Αν η στάσιμη { τη [.4], η [.6] γράφεται ως: } λαμβάνει μόνο πραγματικές τιμές, τότε ισχύει (-τ) = (τ) και, αντίστοιχα με h(ω) = 1 (0) ( )co( ), -π ω π [.7] 1 Ερμηνεία του φάσματος Έχουμε πει ότι h(ω) = x f(ω), και η [.5], τότε, γίνεται i (τ) = e h( ) d, τ = 0, ±1, ±, [.9] Για τ = 0 θα είναι, (0) = h( ) d x = h( ) d [.10] Παρατηρούμε, λοιπόν, ότι η περιοχή κάτω από τη συνάρτηση φάσματος h(ω), για -π ω π, αντιστοιχεί στη διασπορά της χρονοσειράς { }. 9 Επειδή η h(ω) είναι μη-αρνητική, το ολοκλήρωμα 1 h( ) d, 0 < 1 < π είναι θετικό και εκφράζει το ποσοστό της διασποράς της χρονοσειράς { 1 συχνότητες ω όπου 1. Αν λάβουμε υπόψη και ότι h(-ω)= h(ω), τότε η ποσότητα } που συνδέεται με τις 1 h( ) d, 0 < 1 < π αναπαριστά το ποσοστό της διασποράς της χρονοσειράς { κυκλικών συχνοτήτων μικρότερων ή ίσων από μια δεδομένη συχνότητα 1. 0 } που συνδέεται με ένα σύνολο 9 Βλ. Hamilo: 156

13 13.3 Παραδείγματα φασματικών πυκνοτήτων Τα επόμενα παραδείγματα είναι ενδεικτικά και στοιχειώδη στη μελέτη της φασματικής πυκνότητας μιας χρονοσειράς. Παράδειγμα 1 Η φασματική πυκνότητα του «λευκού θορύβου» Για την εξίσωση του «λευκού θορύβου» είναι γνωστό ότι (βλ. Prieley: 33): ρ(τ) = 1, = 0 0, = ±1, ±,... Συνεπώς, η φασματική πυκνότητα f(ω), με βάση τη σχέση [.4] θα ισούται με f(ω) = 1 (0) ( )co( ) 1 = 1, -π ω π [.11] Στην περίπτωση αυτή λέμε ότι έχουμε ομοιόμορφη κατανομή της πυκνότητας σε όλες τις κυκλικές συχνότητες ω στο (-π, π). Παράδειγμα Διακριτή χρονοσειρά A(1) Για τη διακριτή χρονοσειρά A(1) της μορφής { x ax 1 }, η συνάρτηση αυτοσυσχέτισης βρίσκεται για a 1, ίση με (βλ. Prieley: 119) ρ(τ) = a, οπότε από την [.4] και με δεδομένο ότι co(ωτ) = e( e i ), έχουμε ότι f(ω) = = 1 1 a co( ) 1 1 e 1 ( i ae ) 1 = 1 i ae 1 e i 1 ae = 1 a (1 a a co ), -π ω π, a 1 [.1] Η φασματική πυκνότητα f(ω) για διάφορες (θετικές) τιμές του a παριστάνεται στο γράφημα 1.

14 14 Γράφημα 1 φασματική πυκνότητα f(ω) της διακριτής A(1) [α = 0.1, 0.3, 0.5, 0.7, 0.9] Για όλα τα α από 0 έως 1, παρατηρούμε μια μεγαλύτερη συγκέντρωση πυκνότητας (και άρα και διασποράς) στις χαμηλότερες κυκλικές συχνότητες (ω 0) ή όταν Τ..4 Το δειγματικό περιοδόγραμμα Έστω μια πραγματοποίηση { y : = 1,,, T} της στάσιμης χρονοσειράς { Y }. Τότε μπορούμε να υπολογίσουμε τις δειγματικές (αυτο)συνδιακυμάνσεις ˆ( ), όπου τ η υστέρηση, ως 10 T 1 (y y)(y y), για = 0, 1,,...,T-1 ˆ( ) = 1 ˆ( ), για = -1, -,..., - (T-1) [.13] όπου y είναι ο δειγματικός μέσος, y = T 1 y. Για κάθε ω ορίζεται, αντίστοιχα με τη σχέση [.6], T 1 το δειγματικό φάσμα ή δειγματικό περιοδόγραμμα: T-1 1 h ˆ( ) = ˆ( ) i e [.14] T+1 Όπως στη σχέση [.7], το δειγματικό περιοδόγραμμα μπορεί να γραφεί και ως: 10 Βλ. Hamilo: 158

15 15 T-1 1 h ˆ( ) = ˆ(0) ˆ ( )co( ), -π ω π [.15] 1 Αποδεικνύεται, τότε, το δειγματικό ανάλογο του θεωρήματος αναπαράστασης Grager M y = â 0 + { ˆ co[ ( 1)] ˆ a i[ ( 1)]} [.16] 1 όπου 1 =π/τ, =4π/Τ,, = πμ/τ, δηλαδή = π/t με = 1,,,Μ και T /, αν Τ άρτιος M= (T-1) /, αν Τ περιττός, ώστε π για κάθε, ενώ το â0 και οι συντελεστές â και ˆ προκύπτουν από την παλινδρόμηση ελαχίστων τετραγώνων του μοντέλου y = a 0 + M 1 { a co[ ( 1)] i[ ( 1)]} + u [.17] Η σχέση [.17] δηλώνει ότι οποιαδήποτε πραγματοποίηση { y : = 1,,, T : T - περιττός} μιας στάσιμης χρονοσειράς { Y } μπορεί να εκφρασθεί ως μια σταθερά συν ένα σταθμισμένο άθροισμα Μ ή (Τ-1) περιοδικών συναρτήσεων με Μ ή (Τ-1)/ διαφορετικές συχνότητες. 11 Αν και το ω μπορεί να λάβει οποιαδήποτε τιμή από 0 έως π, εμείς, λοιπόν, αποδίδουμε όλη τη δειγματική διασπορά σε ένα αριθμό συχνοτήτων το πλήθος των οποίων εξαρτάται από το πλήθος των παρατηρήσεων. Αυτό μας περιορίζει στο να ανάγουμε στη συχνότητα τη διασπορά που συνδέεται με συχνότητες κοντά στην. Το μοντέλο [.17] αντιστοιχεί σε ένα πολυμεταβλητό γραμμικό μοντέλο της μορφής Y = B + U όπου Y = [ y1 y και... y T ], = 1 x z x z 1 x z x z M 1M T1 T1 TM TM T (M +1) U = [ u1 u... u T ], x = co[ ( 1) ] και z = i[ ( 1) ]., B = [ a0 a1 1 a M M ] 11 Ένα παρόμοιο αποτέλεσμα προκύπτει και για Τ άρτιο. Σημειώνουμε ότι για λόγους ευκολίας επιλέγουμε θετικές κυκλικές συχνότητες από 0 έως π.

16 16 Σύμφωνα με τους Hamilo (1994) και Weber (001), αν επιλέξουμε Τ περιττό (ώστε Τ = Μ+1), τότε η μέθοδος ελαχίστων τετραγώνων στο μοντέλο [.17], με Τ επεξηγηματικές μεταβλητές και Τ παρατηρήσεις, έχει τέλεια προσαρμογή, ώστε U ˆ 0 Y ˆ = Y. Τότε, προκύπτουν τα εξής: (i) ˆ = [ â0 1 ˆ â M â 1 ˆ ] M = T T T T y y x y z y x y z T T T T 1 1 M M ώστε y = y + M { ˆ co[ ( 1)] ˆ a i[ ( 1)]} [.18] 1 με a ˆ = T T 1 y x, για = 1,,, M και ˆ = T y z, για = 1,,, M [.19] T 1 (ii) Δειγματική Διασπορά = 1 T T ( y y) = 1 1 ˆ [.0] ( aˆ ) 1 και το μέρος της δειγματικής διασποράς που μπορεί να αποδοθεί σε κύκλους με συχνότητα δίνεται από την ποσότητα 1 ˆ ( aˆ ). (iii) Tο μέρος της δειγματικής διασποράς που μπορεί να αποδοθεί σε κύκλους με συχνότητα εκφράζεται ισοδύναμα ως 1 ˆ ˆ ( a ) = 4π hˆ( ) [.1] όπου h ˆ( ) το δειγματικό περιοδόγραμμα στη συχνότητα. Όπως αναφέραμε προηγουμένως, στην περιγραφή του μοντέλου [.17], στη συχνότητα ανάγουμε τη διασπορά που συνδέεται με συχνότητες κοντά στην. Έτσι, η ποσότητα της διασποράς της Y, δεν συνδέεται μόνο με τη συχνότητα 1 ˆ ˆ ( a ), ως μέρος αλλά και με κύκλους συχνοτήτων κοντά στην. Εφόσον = π/t με = 1,,,Μ 1 = π/τ και από τη σχέση [.1] έχουμε ότι 1 ˆ ( aˆ ) = ( 1 ) h ˆ( ), που είναι περίπου διπλάσιο από το εμβαδόν που

17 17 περικλείει η συνάρτηση h ˆ( ) ανάμεσα στις συχνότητες 1 και, όπως φαίνεται στο γράφημα. 1 Γράφημα Δειγματικό περιοδόγραμμα ˆ( ) h Y-Axi h ˆ( ) π Πηγή:Weber 008, Hamilo:163 Επομένως, με βάση τη σχέση [.0] η συνολική δειγματική διασπορά κατανέμεται σε όλο το εμβαδόν του δειγματικού περιοδογράμματος, ώστε να είναι ανάλογη με το συνολικό εμβαδόν ως εξής T 1 1 ˆ ˆ π ˆ y ˆ y a 1 h h T ( ) ( ) ( ) ( ) ( ) Το δειγματικό περιοδόγραμμα, με χρήση των [.19] και [.1], ισοδύναμα υπολογίζεται ως T T T 1 ˆ ˆ h( ) = ( ˆ ) y x y z 8π πτ 1 1 [.] Εφαρμογή σε δεδομένα των αποδόσεων αγοράς Οι αποδόσεις της αγοράς εξομοιώνονται στο value-weighed (στάθμιση βάσει της κεφαλαιοποίησης) χαρτοφυλάκιο που αποτελείται από όλες τις μετοχές των δεικτών NYSE, AME και NASDAQ. Η χρονοσειρά περιέχει μηνιαία δεδομένα από το 197 έως και το Αυτό είναι αντίστοιχο με τη συνεχή περίπτωση (το ω λαμβάνει πραγματικές τιμές από 0 έως 1 < π) όπου το μέρος της διασποράς της χρονοσειράς που συνδέεται με συχνότητες έως την 1 δίνεται από το διπλάσιο του ολοκληρώματος 1 h( ) d (βλ..). 0

18 18 Η κυκλική συχνότητα = π/t ανταποκρίνεται σε περιόδους π/ = T/. Επομένως, με βάση το γράφημα 3b, παρατηρούμε μια κορυφή περίπου στο =1, συνεπώς έχουμε μια κυκλική περίοδο ίση με 1007/1 = 83,9 μήνες ή περίπου 7 χρόνια. Η περίοδος αυτή μπορεί να ερμηνευθεί ως η διάρκεια ενός πλήρους οικονομικού-χρηματιστηριακού κύκλου (ανάπτυξη (bull marke) - ύφεση (bear marke) ανάπτυξη), ώστε το εμβαδόν κάτω από την περιοχή αυτή (για =1±), να εξηγεί το ποσοστό της διασποράς στις μηνιαίες αποδόσεις που οφείλεται στους οικονομικούς κύκλους. Γράφημα 3 Αποδόσεις αγοράς και δειγματικό περιοδόγραμμα (3a) marke reur (3b) ample periodogram of marke reur Στο γράφημα 3a έχουμε τις λογαριθμικές αποδόσεις των αποδόσεων της αγοράς, ενώ στο γράφημα 3b υπολογίζουμε το δειγματικό περιοδόγραμμα h ˆ( ) σε συνάρτηση του, για τα = π/t, με βάση τον τύπο [.], για Τ= 1007 και Μ = (Τ-1)/= Πηγή: Keeh Frech library (hp://mba.uck.darmouh.edu/page/faculy/ke.frech/daa_library.hml) Εξομάλυνση του περιοδογράμματος Σύμφωνα με τον Hamilo (Hamilo 1994:165), για μπορούμε να ορίσουμε μια νέα τιμή h ˆ ( ), υποθέτοντας ότι hˆ ( ) h ˆ( ) για συχνότητες i i i κοντά στην. 14 Το h ˆ ( ) μπορεί, τότε, να υπολογισθεί ως ένα σταθμισμένο άθροισμα των τιμών των h ˆ( i ) για συχνότητες i κοντά στην, όπου οι σταθμίσεις θα εξαρτώνται από την απόσταση ανάμεσα στα i,. 13 Στο παράρτημα βρίσκονται οι σχετικοί αλγόριθμοι που υλοποιούνται στο στατιστικό περιβάλλον του EView 6 (Κώδικες Κ1-Κ3). 14 Ο δείκτης προκύπτει από την αγγλική λέξη «mooh».

19 19 Η στάθμιση θα είναι της μορφής w(m) = (g + 1 m )/ ( g 1), όπου g = παράμετρος εύρους (badwidh) έτσι ώστε ˆ g 1 m h ( ) [ ] ( ) [.3] g ˆ h m m g ( g 1) Παρατηρούμε ότι η στάθμιση γίνεται με μεγαλύτερη βαρύτητα για τις πιο κοντινές τιμές και λαμβάνει την ελάχιστη τιμή, που ισούται με 1/ ( g 1), όταν m = ± g, ενώ, εύκολα, αποδεικνύεται g ότι w( m) = Στη συνέχεια εξομαλύνουμε τα δεδομένα του γραφήματος 3b, για g=0, και έτσι m g προκύπτει το επόμενο περιοδόγραμμα. Γράφημα 4 Εξομαλυμένο δειγματικό περιοδόγραμμα (a) marke reur mooh periodogram badwidh= (4b) periodogram moohig badwidh= Η πρώτη κορυφή παρατηρείται περίπου για =4 που αντιστοιχεί σε περίοδο Τ/=1007/5 4 μήνες ή περίπου 3,5 έτη και αφορά το μέρος της διασποράς που οφείλεται σε μακροπρόθεσμες επιρροές, δηλαδή, στους κύκλους της αγοράς. 16 Η δεύτερη κορυφή συμβαίνει περίπου για =116, ώστε Τ/=8.7 μήνες, κάτι που αντιστοιχεί σε έναν κύκλο που περιέχει βραχυπρόθεσμες ή εποχιακές επιρροές. Ακολουθούν αντίστοιχοι κύκλοι (βραχείας διάρκειας) 5.9, 4.4,.9,.4 και. μηνών. g 15 Πράγματι, ( g 1 m ) = mg g g g g ( g 1) m ( g 1) 1 m ( g 1)( g 1) g( g 1) / ( g 1). mg mg m g m0 16 Το αποτέλεσμα αυτό συμφωνεί με τον C.J. Grager (βλ. Ghyel και Swao: 11), σύμφωνα με τους οποίους η μέση διάρκεια των οικονομικών κύκλων είναι περίπου ίση με 40 μήνες.

20 0.5 Γραμμικά φίλτρα Φιλτράρισμα ή φίλτρο Έστω η διακριτή χρονοσειρά { } και a μια δοσμένη (ντετερμινιστική) ακολουθία πραγματικών. Ονομάζουμε ένα φιλτράρισμα ή φίλτρο τη χρονοσειρά { Y } Y = a [.4] Το φίλτρο, λοιπόν, είναι ένας σταθμισμένος γραμμικός συνδυασμός παρελθοντικών (lag), τωρινών και μελλοντικών (lead) τιμών της { }. Αποδεικνύεται, 17 ότι εάν η { } είναι στάσιμη χρονοσειρά με φασματική πυκνότητα h ( ) και a τέτοια ώστε a <, τότε η Y παραπάνω, είναι επίσης στάσιμη με φασματική πυκνότητα όπως hy ( ) = h ( ), ω π [.5] ( ) όπου, ( ) = μεταβίβασης. i ae η συνάρτηση απόκρισης συχνοτήτων και ( ) η συνάρτηση Τα βάρη a υπολογίζονται μέσω του αντίστροφου μετασχηματισμού Fourier στην A( ), ώστε a = 1 π i e A( ) d, = 0, ±1, ±, [.6] Φίλτρο Low-Pa Αν επιλέξουμε μια ακολουθία από = ( ) 1, 0 0, 0 a, τέτοια ώστε [.7] τότε έχουμε ένα (ιδανικό) φίλτρο «low-pa». Το φίλτρο low-pa αφήνει αμετάβλητες όλες τις μεταβλητές συχνοτήτων σε συχνότητες (απολύτως) μικρότερες της 0, ενώ όλες οι μεταβλητές σε υψηλότερες συχνότητες αφαιρούνται. Λαμβάνοντας υπόψη και τη σχέση [.5] συμπεραίνουμε ότι το low-pa φίλτρο διατηρεί, για τις συχνότητες εκείνες, αμετάβλητη την κατανομή της διασποράς x της χρονοσειράς { }. 18 Αποδεικνύεται (βλ. Baxer και Kig 1995) ότι τα κατάλληλα βάρη για το (ιδανικό) low-pa φίλτρο είναι ίσα με a 0 = 0 /π και a = i( 0 )/π για = ±1, ±, [.8] a 17 Βλ. Weber, Prieley: Για 0 ω έχουμε ότι π/τ π/ Τ

21 1 Φίλτρο High-Pa Αν επιλέξουμε μια ακολουθία από = ( ) 1, 0 0, 0 a, τέτοια ώστε [.9] τότε έχουμε ένα (ιδανικό) φίλτρο «high-pa». Το φίλτρο high-pa αφήνει αμετάβλητες όλες τις μεταβλητές συχνοτήτων σε συχνότητες μεγαλύτερες της 0, ενώ όλες οι μεταβλητές σε χαμηλότερες συχνότητες αφαιρούνται. Φίλτρο Bad-Pa Αν, με βάση τη [.5], επιλέξουμε μια ακολουθία από = ( ) 1, ω 1 0, αλλιώς a, τέτοια ώστε [.30] τότε έχουμε ένα (ιδανικό) φίλτρο «bad-pa». Το φίλτρο bad-pa διατηρεί τις μεταβλητές συχνοτήτων στην περιοχή ( ω 1, ω ), ενώ όλες οι μεταβλητές των υπολοίπων συχνοτήτων αφαιρούνται. Με τον τρόπο αυτό απομονώνονται τα κυκλικά χαρακτηριστικά μιας χρονοσειράς σε μια συγκεκριμένη περιοχή συχνοτήτων ή περιόδων. Είναι εύκολο να δούμε ότι το φίλτρο bad-pa μπορεί να γραφεί ως διαφορά δυο low-pa, για τις συναρτήσεις απόκρισης των οποίων έχουμε ότι = ( ) 1, 0, (άνω φίλτρο) και = ( ) 1, 1 0, 1 (κάτω φίλτρο) Τότε, = ( ) ( ) ( ) [.31].6 Τα bad-pa φίλτρα Baxer-Kig και Chriiao-Fizgerlad Το φίλτρο Baxer-Kig Οι Baxer και Kig (1995) εξήγαγαν ένα bad-pa φίλτρο αφαιρώντας τις βραχυπρόθεσμες συνιστώσες (υψηλών συχνοτήτων) για τις περιόδους Τ= έως 18 μηνών και τις μακροπρόθεσμες συνιστώσες (χαμηλών συχνοτήτων) για τις περιόδους Τ=96 μηνών και άνω (συνιστώσες τάσης). Οι ενδιάμεσες συνιστώσες (για περιοδικότητες από 18 έως 96 μήνες) που παραμένουν, αποτελούν την περιοχή εμφάνισης των οικονομικών κύκλων (buie cycle). Η μέθοδος που ακολουθείται πάνω σε ένα δείγμα δεδομένων, χρησιμοποιεί το γραμμικό φίλτρο [.4]

22 με πεπερασμένο αριθμό από k lag και lead, ώστε να ορίζεται μια νέα (προσεγγιστική) συνάρτηση απόκρισης 19, η A ( ) k = k i be [.3] k Αντίστοιχα, έχουμε το φιλτράρισμα k Y = b [.33] k Για την ακριβή εύρεση των βαρών συνάρτησης 0 b της συνάρτησης [.3] ζητείται η ελαχιστοποίηση της Q = ( ) ( ) d k = k i i ae be d k [.34] Τα βέλτιστα βάρη όπου b για το φίλτρο bad-pa προκύπτουν, τότε, ίσα με a τα βάρη του (ιδανικού) άνω-φίλτρου low-pa, b = a a + θ θ [.35] a τα βάρη του (ιδανικού) κάτω-φίλτρου low-pa, όπως ορίζονται στη σχέση [.8], και θ μια σταθερά η οποία εξαρτάται από τον αριθμό των υστερήσεων k ώστε θ = 1 k k a k 1 και θ = 1 k k a k 1 [.36] Το φίλτρο συχνοτήτων Baxer-Kig συμβολίζεται ως BP k (p,q), όπου p είναι η μικρότερη και q η μεγαλύτερη περίοδος. Στα γραφήματα 5a και 5b έχουμε την εφαρμογή του bad-pa φίλτρου Baxer-Kig πάνω στη χρονοσειρά των αποδόσεων της αγοράς από το 197 έως το Η συνάρτηση αυτή προσεγγίζει την ιδανική συνάρτηση απόκρισης A( ) για k ±. Γενικά, για μεγαλύτερο k έχουμε και καλύτερη προσέγγιση της ιδανικής συνάρτησης απόκρισης που λαμβάνει τιμές ακριβώς ίσες με 0,1, ταυτόχρονα, όμως, πρέπει να αφαιρέσουμε περισσότερες τιμές από το δείγμα μας (τις k αρχικές και k τελευταίες τιμές). 0 Βλ. Ever 006. Το Α(ω) είναι η συνάρτηση απόκρισης που ορίζεται στη σχέση [.5].

23 3 Γράφημα 5 Το φίλτρο Baxer-Kig (5a) Fixed Legh Symmeric (Baxer-Kig) Filer lag/lead = (5b) Frequecy epoe Fucio _1 No-cyclical Cycle Acual Ideal cycle/period Στο σχήμα 5a έχουμε το αποτέλεσμα της εφαρμογής του φίλτρου Baxer-Kig στις αποδόσεις της αγοράς και την εξαγωγή των συνιστωσών που ανήκουν στην περιοχή των οικονομικών κύκλων [ B 1, B ] = [18,96]. Στο σχήμα 5b έχουμε την απόκριση A ( ) για k=36, σε συνάρτηση με τη συχνότητα f (κύκλοι ανά περίοδο). Η ιδανική συνάρτηση απόκρισης σχηματίζεται για k=. k Το φίλτρο Chriiao-Fizgerald 1 Για τις = 1,,,T παρατηρήσεις, το φίλτρο Chriiao- Fizgerald προκύπτει με βάση την ελαχιστοποίηση της συνάρτησης Q = ( ) B T ( ) h( ) d [.37] όπου Α(ω) η συνάρτηση απόκρισης του ιδανικού φίλτρου bad-pa, Β(ω) η προσεγγιστική συνάρτηση απόκρισης, η οποία ορίζεται ως ( ) = 1 i be, = 1,,,T [.38] T και h(ω) η (μη-κανονικοποιημένη) φασματική πυκνότητα της δοθείσας χρονοσειράς { }. Στην περίπτωση αυτή παρατηρούμε ότι έχουμε Τ διαφορετικές συναρτήσεις απόκρισης και Τ δυνατά φίλτρα (εξισώνουμε f=t και p= 1) με Τ βάρη Y, T = b για το κάθε φίλτρο, p b [.39] f Τα φίλτρα αυτά είναι μη-συμμετρικά (διαφορετικός αριθμός lag και lead), με μοναδική εξαίρεση την περίπτωση όπου p=f (συμμετρικό φίλτρο Chriiao-Fizgerald), δηλαδή στην ημερομηνία εκείνη για την οποία =(T+1)/. 1 Βλ. Ever 006 και Chriiao και Fizgerald 003.

24 4 Η ελαχιστοποίηση της [.37] δίνει τα Τ βέλτιστα βάρη b, 1 1 a0 a, για 1 0 b = a, για,..., T a0 a, για T 1 [.40] όπου τα βάρη του ιδανικού bad-pa φίλτρου, a i 1 {i( i ) i( 1i )}, για i 0 i ( 1 ) /, για i=0 [.41] με 1, όπως ορίζονται στη σχέση [.30]. Γράφημα 6 Το φίλτρο Chriiao-Fizgerald aymmeric Aymmeric (ime-varyig) Filer Στο γράφημα 6 έχουμε το αποτέλεσμα της εφαρμογής του φίλτρου Chriiao-Fizgerald aymmeric στις αποδόσεις της αγοράς και την εξαγωγή των συνιστωσών που ανήκουν στην περιοχή των οικονομικών κύκλων [ B 1, B ] = [18,96]. Το EView δημιουργεί έναν πίνακα ΤxΤ με Τ φίλτρα (ανά στήλη) και Τ βάρη για κάθε φίλτρο (ανά γραμμή). _1 No-cyclical Cycle Στη συνέχεια (Κεφάλαιο 3), και με τη χρήση των προαναφερθέντων φίλτρων, εξάγουμε τις βραχυχρόνιες και μακροχρόνιες συνιστώσες των αποδόσεων χαρτοφυλακίων book o marke, ize και momeum (όπως τα κατηγοριοποιούν οι Fama και Frech - 199, 1993), επιδιώκοντας τη βελτίωση των χαρακτηριστικών του στατικού μοντέλου CAPM.

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ Σημειώσεις Πανεπιστημιακών Παραδόσεων ΑΛΕΞΑΝΔΡΟΣ ΜΗΛΙΏΝΗΣ ΟΚΤΩΒΡΙΟΣ 205 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104 ΘΕΜΑ 3 ΙΑ) Η οικονομική αξία της μετοχής BC θα υπολογιστεί από το συνδυασμό των υποδειγμάτων α) D D προεξόφλησης IV για τα πρώτα έτη 05 και 06 και β) σταθερής k k αύξησης μερισμάτων D IV (τυπολόγιο σελ.

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Επιλογή επενδύσεων κάτω από αβεβαιότητα

Επιλογή επενδύσεων κάτω από αβεβαιότητα Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

www.oleclassroom.gr ΘΕΜΑ 4 Στον πίνακα που ακολουθεί παρατίθενται οι κατανομές των αποδόσεων δύο μετοχών. Πιθανότητα (π ) 0,5 0,5 0,5 0,5 r Α 10% 6% 13% 3% r Β 0% 5% -1% 16% Α. Να υπολογιστεί η εκτιμώμενη

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Σχήμα Χαμηλοδιαβατά φίλτρα:

Σχήμα Χαμηλοδιαβατά φίλτρα: ΦΙΛΤΡΑ 6.. ΦΙΛΤΡΑ Το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων. Στο Σχήμα 6.6 δείχνουμε την απόκριση συχνότητας

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Στόχος της άσκησης είναι η εξοικείωση με γραφικές παραστάσεις βασικών σημάτων και πράξεις, καθώς και τον υπολογισμό ΜΣ Fourier βασικών σημάτων με τη χρήση

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 3.1 Εισαγωγή ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ Στο κεφ. 2 είδαμε πώς θα μπορούσαμε να σχεδιάσουμε έναν βέλτιστο ταξινομητή εάν ξέραμε τις προγενέστερες(prior) πιθανότητες ( ) και τις κλάση-υπό όρους πυκνότητες

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Ογενικός(πλήρης) έλεγχος των Dickey Fuller

Ογενικός(πλήρης) έλεγχος των Dickey Fuller ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα