Thermofluids Data Book for Part I of the Engineering Tripos

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Thermofluids Data Book for Part I of the Engineering Tripos"

Transcript

1 Thermofluids Data Book for Part I of the Engineering Tripos 004 Edition Cambridge University Engineering Department

2 CONTENTS Thermodynamic definitions & relationships... Ideal gas relationships... 3 Perfect gas relationships... 3 Mixtures of perfect gases... 3 Non-dimensional groups... 4 Heat transfer... 5 Equations for systems... 6 Equations for control volumes... 7 Equations for streamlines... 9 Incompressible viscous pipe flow... 9 Equations of motion in differential form for viscous steady flow of a fluid... 9 Thermodynamic efficiencies... 0 Combustion... Properties of perfect gases... Molar enthalpies of common gases at low pressures... 3 Thermochemical data for equilibrium reactions... 4 Data for steam... 6 Triple point data for steam... 6 Critical point data for steam... 6 Properties of saturated water & steam: Temperatures from the triple point to the critical point. 7 Properties of saturated water & steam: Pressures from the triple point to the critical point... 9 Specific enthalpy of water and steam...3 Specific Entropy of water and steam... 4 Density of water and steam... 5 Specific internal energy of water and steam... 6 Transport properties of saturated water & steam... 7 Transport properties of steam... 8 Transport properties of air... 8 Transport properties of carbon dioxide... 9 Transport properties of hydrogen... 9 Perfect gas relations for compressible flow for γ= Properties of gases at sea level conditions... 3 Properties of liquids at sea level conditions... 3 The International Standard Atmosphere... 3 Properties of the International Standard Atmosphere at altitude... 3 Physical constants Conversion of Non-SI to SI Units Conversion of Non-SI to SI Units cont Sources of Information Critical point data for Refrigerant R-34a (CH FCF 3 ) Properties Table for Refrigerant R-34a (CH FCF 3 ) Properties Chart for Refrigerant R-34a (CH FCF 3 ) Properties of steam /09/04

3 THERMODYNAMIC DEFINITIONS & RELATIONSHIPS Specific enthalpy Specific heat capacity at constant volume Specific heat capacity at constant pressure Ratio of specific heat capacities Coefficient of volume expansion Coefficient of compressibility For a simple compressible substance, in the absence of capillarity, electric and magnetic fields h u + c c v p γ pv u T v h T c c p v p v β v T p v κ v p T Tds = du + pdv = dh vdp 06/09/04

4 IDEAL GAS RELATIONSHIPS Equation of state Relationship between c p, c v and R pv = nrt pv = mrt pv = RT p = ρrt c p cv = R Speed of sound a = γrt PERFECT GAS RELATIONSHIPS Change in specific internal energy u u = cv ( T ) T Change in specific enthalpy h h = c p ( T ) T Change in specific entropy For Isentropic changes s T v c v ln +Rln T v T p s = c p ln Rln T p p ln v c +c ln v p p v γ pv = const. γ Tv = const. ( γ T / p ) γ = const. MIXTURES OF PERFECT GASES For a mixture of N perfect gases where, for component -i, m i = mass, p i = partial pressure, h i = h i (T) = partial specific enthalpy, s i = s i (T, p i ) = partial specific entropy, n i = number of mols and the overbar signifies a partial molar quantity: Pressure of the mixture = p mixture = p i i= i N Enthalpy of the mixture Entropy of the mixture H S mixture mixture = = i = N i= i= N i= m h i m s i i i = = i= N n h i i= i = N n s i i= i i 06/09/04 3

5 Reynolds Number Mach Number Froude Number Prandtl Number Drag Coefficient Lift Coefficient NON-DIMENSIONAL GROUPS ρvd Vd Re = = µ ν V M = a Fr = V gz µ c p Pr = = λ = D C D ρ V = L C L ρ V τ Skin Friction Coefficient c w f = V ρ Friction Factor Discharge Coefficient Nusselt Number Grashof Number Stanton Number f = 4c f C d m = m hd Nu = λ actual ideal 3 ν α A A gd β T Gr = ν St = Nu RePr h = ρvc p 06/09/04 4

6 HEAT TRANSFER Conduction, Convection and Radiation Rate of heat transfer Q by convection from a body of surface area A ( ) Q = ha T body T surroundings Rate of heat transfer Q by conduction along a straight bar of cross-sectional area A dt Q = λa dx Rate of heat transfer Q by conduction radially in a straight circular bar of length L dt Q = λπrl dr Rate of heat transfer Q by radiation from a grey body of surface area A and emissivity ε 4 Q = ε Q black = εσat where σ = 5.67x0-8 Wm - K -4 is the Stefan-Boltzmann constant. Logarithmic-Mean Temperature Difference (LMTD) T m T = ln T ( T T ) Convective heat transfer for fully developed flow in circular pipes of diameter d Overall heat transfer for laminar flow with constant wall temperature Nu = 3.66 Re < 300 d Overall heat transfer for turbulent flow with constant wall temperature Nu d = 0.8 d 0.03Re Pr 0.4 d 7 0. < Pr 300 Re <0 0.5 < Pr < 0 < d Heat transfer due to natural convection from a vertical isothermal plate of height L Overall heat transfer ( ) 0. 5 Nu L = 0.5 GrPr Pr Reynolds Analogy c f St = Note that the net rate of heat transfer will be less due to incident radiation 06/09/04 5

7 Definition of a system A system is a fixed quantity of matter. Conservation of mass applied to a system The mass of a system is constant, i.e. EQUATIONS FOR SYSTEMS m = const. st Law of Thermodynamics applied to a system When heat transfer to, and work done by, a system are defined as positive and the system is undergoing a cyclic process dq = dw When heat transfer to, and work done by, a system of mass m undergoing a process between state and state are defined as positive and in the absence of capillarity, electric and magnetic fields Q W = E E = ( U + mv + mgz ) ( U + mv + mgz ) nd Law of Thermodynamics applied to a system When heat transfer to a system undergoing a cyclic process is defined as positive, the Clausius inequality is dq 0 T When heat transfer to a system of mass m undergoing a process is defined as positive dq mds = + mds irrev where dsirrev T where ds is the entropy created per unit mass by irreversibilities. irrev pdv work for a system When the surface of a system undergoes displacement between state and state and the pressure causing the displacement is known over the entire surface that is displaced, the displacement work done by the system during this process is W = pdv 0 06/09/04 6

8 EQUATIONS FOR CONTROL VOLUMES Definition of a control volume A control volume is that region of space that is enclosed by a rigid control surface. The requirements for steady flow within a control volume For steady-flow, conditions within the control volume are not, on average, changing so that the mass, momentum, energy and entropy within the control volume remain constant. Conservation of mass applied to a control volume - the Continuity Equation In general, this may be written in vector form as d dt cv ρdv + cs ρv da = 0 where da is positive out of the control volume. It may also be written as dmcv + m out m in = 0 dt For steady flow, the above becomes m out = m in Momentum equations applied to a control volume, including the Steady Flow Momentum Equation (SFME) In general, this may be written in vector form as d dt cv ρvdv + cs ρvv da = F where da is positive out of the control volume and F is the sum of all the non-pressure forces on the flow. cs pda For steady flow, the above becomes the Steady Flow Momentum Equation (SFME) and in x and y coordinates, the SFME is m m out out ρvv da = F cs V V cs x, out m invx, in y, out m inv y, in = = pda F F x y ( pa) x ( pa) y where care is needed with respect to the sign of the V x, V y and A terms. 06/09/04 7

9 st Law of Thermodynamics applied to a control volume, including the Steady Flow Energy Equation (SFEE) In the absence of capillarity, electric and magnetic fields, the st Law becomes ( h + V + gz ) m ( h + V + gz ) = Q W x decv + m out out dt out out in in in in where E cv is the total energy within the control volume, Q is the rate of heat transfer to the control volume and W x is the rate of shaft work transferred from the control volume. For steady flow, the above becomes the Steady Flow Energy Equation (SFEE) m out ( hout + Vout + gzout ) m in ( hin + Vin + gzin ) = Q W x nd Law of Thermodynamics applied to a control volume When heat transfer to a control volume is defined as positive ds dt cv dq + mout sout minsin S = + irrev where S irrev 0 T A where dq is the rate of heat transfer to an area da of the control surface at temperature T and the integration is over the whole area A of the control surface, S cv is the total entropy within the control volume and S irrev is the rate of entropy creation within the control volume due to irreversibilities. 06/09/04 8

10 EQUATIONS FOR STREAMLINES Bernoulli's Equation for incompressible inviscid steady flow along a streamline p + ρv + ρgz = const. The pressure gradient normal to a streamline with a radius of curvature R V dp dn ρv = R n,e n e s s R INCOMPRESSIBLE VISCOUS PIPE FLOW The pressure drop along a pipe of constant diameter d and length L, with viscous flow L L p = 4c f ρ V = f ρv d d EQUATIONS OF MOTION IN DIFFERENTIAL FORM FOR VISCOUS STEADY FLOW OF A FLUID Mass conservation (continuity) n Intrinsic coordinates. ( ) = 0 e s + e s Vector Notation. ( ρv ) = 0 n V e s Momentum Intrinsic coordinates Vector Notation V V p p ρ V es e n = es en + ρ g + viscous s R s n ρv V = p + ρ g + viscous 06/09/04 9

11 THERMODYNAMIC EFFICIENCIES Efficiency of a cycle W ηcycle Q but so W η net cycle = Q B net B Q Q = Q A B A Isentropic efficiencies of compressors and turbines. Q B. Q A. W Net η c Ideal Work Input Actual Work Input = h s h h h η t Actual Work Output Ideal Work Output h = h 3 3 h h 4 4s 06/09/04 0

12 COMBUSTION The SFEE applied to stoichiometric combustion at constant T and p When heat transfer to a control volume is defined as positive and in the absence of shaft work, changes in KE and PE, capillarity, electric and magnetic fields, the rate of heat transfer and the calorific value (CV ) are related by where ( CV ) n h Q = m = fuel m = M fuel n fuel Calorific values of common fuels (Enthalpies of Reaction) In the following table, the calorific value is equal and opposite to the enthalpy of reaction when the reactants and products are at 5 C and.034 bar. In the evaluation of the lower calorific value and lower enthalpy of reaction, the steam is assumed to be dry saturated. Stoichiometric Equation C Molar Mass M of Fuel kg kmol fuel Phase Calorific Value MJ/kg O CO solid C + O CO solid CO + O CO 8 gas 0.00 Higher: H O Lower: H O to water to steam + O H O gas H CH4 + O CO + HO 6 gas H + 3.5O CO + H O 30 gas C 6 3 C3H8 + 5 O 3CO + 4H O 44 gas H + 6.5O 4CO + H O 58 gas C4 0 5 C8H8 +.5O 8CO + 9H O 4 gas H +.5O 8CO + H O 4 liquid C8 8 9 A more exact value is.06 06/09/04

13 PROPERTIES OF PERFECT GASES Values of M, R, c p, c v and γ At normal atmospheric conditions, and over a limited range of temperature and pressure, the gases listed below may be assumed to behave as perfect gases. That is, they may be assumed to have the equation of state pv = RT, and to have constant specific heat capacities. Gas Molar mass M kg/kmol Gas constant R kj/kg K c p kj/kg K c v kj/kg K Air # Atmospheric nitrogen N O A H * He CO CO SO CH C H C 3 H Real gases are not perfect gases, and the rounded values for R, c p c v and c p cv listed above do not exactly satisfy the relationships between these quantities that would be obtained for perfect gases. γ c c p v Molar (universal) gas constant R = MR = kj/kmol K Molar volume of a perfect gas kmol of any perfect gas occupies a volume of approximately.4 m 3 at s.t.p. (0 C and bar) and contains 6.0x0 6 particles. # Air contains.0% O and 79.0% atmospheric nitrogen by volume (Volumetric and Molar Analyses); 3.% O and 76.8% atmospheric nitrogen by weight (Gravimetric Analysis). Air contains 0.93 % of argon (A) and traces of other gases; these and the nitrogen together are called atmospheric nitrogen. * A more exact value is /09/04

14 MOLAR ENTHALPIES OF COMMON GASES AT LOW PRESSURES At low pressures, and over the temperature range quoted, the gases listed in this Table behave as semi-perfect gases. That is, while having the molar equation of state pv = RT, their specific heat capacities c p and c v are not constant but are functions only of temperature. Gas Air N O H CO CO H O Gas Molar Mass kg/kmol Molar Mass kg/kmol Temperature K Molar enthalpy MJ/kmol Temperature K =5 C C= Notes: () The molar enthalpies listed are those in the ideal gas state at zero pressure, but the values given are also valid at and around atmospheric pressure. () In this table, the arbitrary datum state for zero enthalpy is that of the substance in the ideal gas state at zero pressure and zero absolute temperature. (3) The values for atmospheric nitrogen, * N, may be taken to be the same as those for N. A more exact value is.06 06/09/04 3

15 THERMOCHEMICAL DATA FOR EQUILIBRIUM REACTIONS The tables of equilibrium constants and standard enthalpy change on the next page relate to the reactions listed below Stoichiometric equations vi A i = 0 i where v i is the stoichiometric coefficient of the substance whose chemical symbol is A i. () H + H = 0 (4) NO + N + O = 0 (7) CO ½ O + CO = 0 () N + N = 0 (5) H ½ O + H O = 0 (8) CO H O + CO + H = 0 (3) O + O = 0 (6) ½ H OH + H O = 0 (9) ½ N 3 H + NH 3 = 0 Equilibrium constants The equilibrium constant * i K p is given by ln ( K p ) = where p pi p0 pi partial pressure of species Ai in bars p standard pressure bar 0 i i * i v ln p Thus * p i is numerically equal to p i but is dimensionless. Standard free enthalpy of reaction At a given temperature, the standard free enthalpy of reaction (or the standard Gibbs function change) ln by the following equation: 0 G T may be calculated from the listed value of ( ) K p G 0 T = RT ln K p = T ln( K ) kj p Standard enthalpy of reaction The Standard enthalpy of reaction is given by where 0 ( f T ) i where [ ] H 0 0 [ h ] = ν ([ H ] ) ν i i T i 0 ~ T = i ~ [ hi ] T = ([ H f ] 98 ) + ([ h ] T [ h ] 98 ) i Η is the standard enthalpy of formation of species i at temperature T and a pressure p 0 = bar. i i f T i 06/09/04 4

16 Equilibrium constants & standard enthalpies of reaction Reaction Number v i = 0 ½ ½ ½ 0 i Temperature Equilibrium Constant ln( ) K Temperature K K p Standard Enthalpy of Reaction MJ 0 H T Warning: These tables list absolute temperatures 06/09/04 5

17 DATA FOR STEAM Source of data The follow ing tables have been produced using equations from the IAPW S Form ulation 995 for the Therm odynam ic Properties ofordinary W ater Substance for G eneraland Scientific Use and the Supplem entary R elease: Saturation Properties of Ordinary W ater Substance. These docum ents can be found on the InternationalA ssociation for the Properties of W ater and Steam w ebsite w w.iapw s.org. TRIPLE POINT DATA FOR STEAM Temperature = 73.6 K (0.0 o C) Pressure = bar Phase Specific volume Specific enthalpy Specific entropy m 3 /kg kj/kg kj/kg K Ice Water Steam CRITICAL POINT DATA FOR STEAM Temperature = K ( C) Pressure = 0.64 bar Density = 3 kg/m 3 06/09/04 6

18 PROPERTIES OF SATURATED WATER & STEAM: Temperatures from the triple point to the critical point Temp. Pressure Specific volume Spec. int. energy Specific enthalpy Specific entropy Temp. o C bar m 3/ kg kj/kg kj/kg kj/kg K o C T p v f v g u f u g h f h fg h g s f s g T T p v f v g u f u g h f h fg h g s f s g T 06/09/04 7

19 Properties of Saturated Water & Steam continued: Temperatures from the triple point to the critical point Temp. Pressure Specific volume Spec. int. energy Specific enthalpy Specific entropy Temp. o C bar m 3/ kg kj/kg kj/kg kj/kg K o C T p v f v g u f u g h f h fg h g s f s g T T p v f v g u f u g h f h fg h g s f s g T 06/09/04 8

20 PROPERTIES OF SATURATED WATER & STEAM: Pressures from the triple point to the critical point Pressure Temp. Specific volume Spec. int. energy Specific enthalpy Specific entropy Pressure bar o C m 3/ kg kj/kg kj/kg kj/kg K bar p T v f v g u f u g h f h fg h g s f s g p p T v f v g u f u g h f h fg h g s f s g p 06/09/04 9

21 Properties of Saturated Water & Steam continued: Pressures from the triple point to the critical point Pressure Temp. Specific volume Spec. int. energy Specific enthalpy Specific entropy Pressure bar o C m 3/ kg kj/kg kj/kg kj/kg K bar p T v f v g u f u g h f h fg h g s f s g p p T v f v g u f u g h f h fg h g s f s g p 06/09/04 0

22 Properties of Saturated Water & Steam continued: Pressures from the triple point to the critical point Pressure Temp. Specific volume Spec. int. energy Specific enthalpy Specific entropy Pressure bar o C m 3/ kg kj/kg kj/kg kj/kg K bar p T v f v g u f u g h f h fg h g s f s g p p T v f v g u f u g h f h fg h g s f s g p 06/09/04

23 Properties of Saturated Water & Steam continued: Pressures from the triple point to the critical point Pressure Temp. Specific volume Spec. int. energy Specific enthalpy Specific entropy Pressure bar o C m 3/ kg kj/kg kj/kg kj/kg K bar p T v f v g u f u g h f h fg h g s f s g p p T v f v g u f u g h f h fg h g s f s g p 06/09/04

24 Pressure (bar) SPECIFIC ENTHALPY OF WATER AND STEAM kj/kg Critical Isobar Temp ( o C) /09/04 3

25 Pressure (bar) SPECIFIC ENTROPY OF WATER AND STEAM kj/kg K Critical Isobar Temp ( o C) /09/04 4

26 Pressure (bar) DENSITY OF WATER AND STEAM kg/m Critical Isobar Temp ( o C) /09/04 5

27 Pressure (bar) SPECIFIC INTERNAL ENERGY OF WATER AND STEAM kj/kg Critical Isobar Temp ( o C) /09/04 6

28 Temp. C TRANSPORT PROPERTIES OF SATURATED WATER & STEAM Specific volume m 3 /kg v f vg Isobaric specific heat capacity kj/kg K c p f c pg Thermal conductivity W/m K λ f 3 λg µ f /0 Dynamic viscosity kg/s m 6 µ /0 g f Prandtl number = µ c p λ Pr Prg Temp. C 06/09/04 7

29 Temp. C TRANSPORT PROPERTIES OF STEAM Isobaric sp. heat capacity kj/kg K Thermal conductivity W/m K Dynamic viscosity kg/s m Prandtl number c λ 6 µ /0 Pr = µ c p λ p Values for water at atmospheric pressure between 0 C and 00 C are given with sufficient accuracy by the saturated values in the previous table. The above values are correct for a pressure of atm =.035 bar but may be used with sufficient accuracy at other pressures. Temp. C TRANSPORT PROPERTIES OF AIR Isobaric sp. heat capacity kj/kg K Thermal conductivity W/m K Dynamic viscosity kg/s m Prandtl number c λ 6 µ /0 Pr = µ c p λ p This table may be used with reasonable accuracy for values of c p, γ, µ and Pr of N, O and CO. The above values are correct for a pressure of atm =.035 bar but may be used with sufficient accuracy at other pressures. 06/09/04 8

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)] d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin. Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

Διαβάστε περισσότερα

STEAM TABLES. Mollier Diagram

STEAM TABLES. Mollier Diagram STEAM TABLES and Mollier Diagram (S.I. Units) dharm \M-therm\C-steam.pm5 CONTENTS Table No. Page No. 1. Saturated Water and Steam (Temperature) Tables I (ii) 2. Saturated Water and Steam (Pressure) Tables

Διαβάστε περισσότερα

APPENDIX A. Summary of the English Engineering (EE) System of Units

APPENDIX A. Summary of the English Engineering (EE) System of Units Appendixes A. Summary of the English Engineering (EE) System of Units B. Summary of the International System (SI) of Units C. Friction-Factor Chart D. Oblique-Shock Charts (γ = 1.4) (Two-Dimensional) E.

Διαβάστε περισσότερα

2. Chemical Thermodynamics and Energetics - I

2. Chemical Thermodynamics and Energetics - I . Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]

Διαβάστε περισσότερα

PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES

PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES M. CONDE ENGINEERING, 2002 M. CONDE ENGINEERING, Zurich 2002 Properties of ordinary water substance

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Pof moist air and uses these properties to analyze conditions and

Pof moist air and uses these properties to analyze conditions and CHAPTER 6 PSYCHROMETRICS Composition of Dry and Moist Air... 6.1 United States Standard Atmosphere... 6.1 Thermodynamic Properties of Moist Air... 6.2 Thermodynamic Properties of Water at Saturation...

Διαβάστε περισσότερα

Thermodynamic Tables to accompany Modern Engineering Thermodynamics

Thermodynamic Tables to accompany Modern Engineering Thermodynamics Thermodynamic Tables to accompany Modern Engineering Thermodynamics This page intentionally left blank Thermodynamic Tables to accompany Modern Engineering Thermodynamics Robert T. Balmer AMSTERDAM BOSTON

Διαβάστε περισσότερα

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased. Q1.This question is about the reaction given below. O(g) + H 2O(g) O 2(g) + H 2(g) Enthalpy data for the reacting species are given in the table below. Substance O(g) H 2O(g) O 2(g) H 2(g) ΔH / kj mol

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

CH 3 CH 2 COOCH 2 CH 2 CH 3 + H 2 O

CH 3 CH 2 COOCH 2 CH 2 CH 3 + H 2 O Q1.An experiment was carried out to determine the equilibrium constant, K c, for the following reaction. CH 3 CH 2 COOH + CH 3 CH 2 CH 2 OH CH 3 CH 2 COOCH 2 CH 2 CH 3 + H 2 O A student added measured

Διαβάστε περισσότερα

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16 Ύγρανση και Αφύγρανση Ψυχρομετρία η μελέτη των ιδιοτήτων του υγρού αέρα δηλαδή του μίγματος αέρα-ατμού-νερού. Ένα βασικό πρόβλημα: Δεδομένων των P (bar) Πίεση T ( o C) Θερμοκρασία Υ (kg/kg ξβ) Υγρασία

Διαβάστε περισσότερα

By R.L. Snyder (Revised March 24, 2005)

By R.L. Snyder (Revised March 24, 2005) Humidity Conversion By R.L. Snyder (Revised March 24, 2005) This Web page provides the equations used to make humidity conversions and tables o saturation vapor pressure. For a pd ile o this document,

Διαβάστε περισσότερα

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics apter - Heat Engines, Entropy, and te Seond Law o ermodynamis.1 (a).0 J e 0.069 4 or 6.94% 60 J (b) 60 J.0 J J. e eat to melt 1.0 g o Hg is 4 ml 1 10 kg 1.18 10 J kg 177 J e energy absorbed to reeze 1.00

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

RECIPROCATING COMPRESSOR CALCULATION SHEET

RECIPROCATING COMPRESSOR CALCULATION SHEET Gas properties, flowrate and conditions 1 Gas name Air RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER ( Sheet : 1. f 4.) Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure,

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6 1 Τ.Ε.Ι. ΑΘΗΝΑΣ / Σ.ΤΕ.Φ. ΤΜΗΜΑ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΟΣ Οδός Αγ.Σπυρίδωνος,12210 Αιγάλεω,Αθήνα Τηλ.: 2105385355, email: ptsiling@teiath.gr H ΕΠΙΔΡΑΣΗ ΠΑΡΟΧΗΣ ΟΓΚΟΥ ΣΤΗΝ

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

titanium laser beam volume to be heated joint titanium Fig. 5.1

titanium laser beam volume to be heated joint titanium Fig. 5.1 1 Lasers are often used to form precision-welded joints in titanium. To form one such joint it is first necessary to increase the temperature of the titanium to its melting point. Fig. 5.1 shows the joint

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Contents of Appendix

Contents of Appendix Contents of Appendix A SI UNITS: SINGLE-STATE PROPERTIES 755 Table A.1 Conversion Factors, 755 Table A.2 Critical Constants, 758 Table A.3 Properties of Selected Solids at 25 C, 759 Table A.4 Properties

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

RECIPROCATING COMPRESSOR CALCULATION SHEET

RECIPROCATING COMPRESSOR CALCULATION SHEET RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER Gas properties, flowrate and conditions 1 Gas name Air Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure, ps 1.013 bar A

Διαβάστε περισσότερα

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet RECIPRCATING CMPRESSR CALCULATIN SHEET ISTHERMAL CMPRESSIN Gas properties, flowrate and conditions 1 Gas name Air Item or symbol Quantity Unit Item or symbol Quantity Unit Formula 2 Suction pressure, ps

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

TSOKOS CHAPTER 6 TEST REVIEW

TSOKOS CHAPTER 6 TEST REVIEW PHYSICS I HONORS/PRE-IB PHYSICS Name: DEVIL PHYSICS Period: Date: # Marks: XX Raw Score: IB Curve: BADDEST CLASS ON CAMPUS TSOKOS CHAPTER 6 TEST REVIEW S1. Thermal energy is transferred through the glass

Διαβάστε περισσότερα

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΕΡΕΥΝΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΜΟΚΡΙΤΟΣ / DEMOKRITOS NATIONAL CENTER FOR SCIENTIFIC RESEARCH ΕΡΓΑΣΤΗΡΙΟ ΟΚΙΜΩΝ ΗΛΙΑΚΩΝ & ΑΛΛΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ LABORATORY OF TESTIN SOLAR & OTHER ENERY

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Correction Table for an Alcoholometer Calibrated at 20 o C

Correction Table for an Alcoholometer Calibrated at 20 o C An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

PETROSKILLS COPYRIGHT

PETROSKILLS COPYRIGHT Contents Specific Gravity... 2 Formation Volume Factor... 3 Compressibility Equation... 4 Pseudo-Reduced Variables... 5 Pseudo-Critical Variables... 6 SI Conversions... 6 Output... 6 Input... 6 Viscosity...

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

FLAME-X 950 (N)HXCH FE180/E90 0,6/1kV DIN VDE 0266, DIN

FLAME-X 950 (N)HXCH FE180/E90 0,6/1kV DIN VDE 0266, DIN Halogen- free low smoke fire resistant security power cables with copper concentric conductor CONSTRUCTION Conductors: bare copper conductor, circular solid class 1 (RE) or stranded circular or circular

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

of the methanol-dimethylamine complex

of the methanol-dimethylamine complex Electronic Supplementary Information for: Fundamental and overtone virational spectroscopy, enthalpy of hydrogen ond formation and equilirium constant determination of the methanol-dimethylamine complex

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

PETROSKILLS COPYRIGHT

PETROSKILLS COPYRIGHT Contents Solution Gas-Oil Ratio... 2... 2... 2... 2 Formation Volume Factor... 3... 3... 3... 3 Viscosity... 4... 4... 4... 4 Density... 5 Bubble Point Pressure... 5... 6... 6... 6 Compressibility... 6

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Group 30. Contents.

Group 30. Contents. Group 30 Contents Pump type Page Pump type Page Pump type Page 30A(C)...X002H 4 30A(C)...X013H 5 30A(C)...X068H 6 30A(C)...X068HU 7 30A(C)...X136H 8 30A(C)...X136Y 9 30A(C)...X146H 10 30A(C)...X160H 11

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Free Energy and Phase equilibria

Free Energy and Phase equilibria Free Energy and Phase equilibria Thermodynamic integration 7.1 Chemical potentials 7.2 Overlapping distributions 7.2 Umbrella sampling 7.4 Application: Phase diagram of Carbon Why free energies? Reaction

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ξενόγλωσση Τεχνική Ορολογία Ενότητα: Principles of an Internal Combustion Engine Παναγιώτης Τσατσαρός Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3 Table S1. Rotational constants and vibrational frequencies of Reactants, Complexes, Transition States and Products Computed at the MP2/6-311G(d,p) level. Species I a, I b, I c (GHZ) Frequencies (cm -1

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides Supplementary Materials for Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides Indrek Kalvet, a Karl J. Bonney, a and Franziska Schoenebeck a * a Institute of Organic

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine

Διαβάστε περισσότερα

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

Proses = 0 / 0 Proses = 0 / 36 16 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2 A BALANCE Proses = 120 / 31 391 t/h T Gun = 29 T Gun = 31 [38oC] A-101-JCA 443 / 2.46 10" TG = 31 05 November 2012 Rate 102.075% Proses = 0 / 33 349 t/h T Gun = 29 T Gun = 37 [38oC] A-101-JCB 261 / 1.42

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα