2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ"

Transcript

1 ΚΕΦΑΛΑΙΟ 3. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 3. Παραδοχές Σήραγγα κυκλικής διατοµής (ακτίνα ) Συνθήκες επίπεδης παραµόρφωσης (κατά τον άξονα της σήραγγας z) Ισότροπη γεωστατική ένταση (σ v σ h ) πριν τη διάνοιξη της σήραγγας Έδαφος ελαστικό-απολύτως πλαστικό. Αστοχία κατά Mh-Culmb µε παραµέτρους αντοχής, φ: σ σ3 + όπου tan 45 + () Παραµόρφωση υπό σταθερό όγκο µετά την αστοχία Μέθοδος προσοµοίωσης της εκσκαφής της σήραγγας: Η αρχική εσωτερική πίεση ( ) µειώνεται βαθµιαία σε () και τελικώς µηδενίζεται. Σχέσεις τάσεων-παραµορφώσεων στην ελαστική περιοχή (επίπεδη παραµόρφωση και κυλινδρικές συντεταγµένες): {& σ K & } ε {& σ K & σ } ε σ θ θ θ () Λ Λ όπου: ν E K, Λ ν ( + ν)( ν) και & σ σ, & σθ σθ Επιλύοντας τις σχέσεις () ως προς τις τάσεις προκύπτει: όπου: & σ D { ε + Kε θ } σ θ D{ εθ + K ε } E ( ν ) ( + ν )( ν ) & (3α) D (3β) dσ σ σ Εξίσωση ισορροπίας (κατά τον άξονα ): + θ 0 (4) d Σηµείωση: Λόγω συµµετρίας οι υπόλοιπες εξισώσεις ισορροπίας ικανοποιούνται αυτοµάτως. Σχέσεις παραµορφώσεων-µετακινήσεων: du ε ε d θ u ε z 0 (5) όπου (u) είναι η ακτινική µετακίνηση (θετική προς το εσωτερικό της σήραγγας). Μ. Καββαδάς, 3/5/004 3-

2 3. Επίλυση στην πλαστική περιοχή ( < < ) Γύρω από τη σήραγγα αναπτύσσεται βαθµιαία µια πλαστική περιοχή, δηλαδή µια περιοχή όπου ικανοποιείται το κριτήριο αστοχίας Mh-Culmb. ακτίνα της πλαστικής περιοχής, δηλαδή η παραµόρφωση του εδάφους είναι ελαστική για > και πλαστική για < <. dσ σ σ + θ 0 (ισορροπία) d σθ σ + (σχέση αστοχίας µε µέγιστη τάση στη σ θ ) Απαλειφή της σ θ : dσ ( ) σ 0 (6) d Η επίλυση της διαφορικής εξίσωσης (6) δίνει: 3.. Περίπτωση φ 0 (δηλαδή Ν φ ): Η διαφορική εξίσωση (6) έχει τη λύση (k σταθερά): [( ) σ ] ( ) ln + ln + k Συνοριακή συνθήκη: σ ( ) Οπότε: σ + (7α) σθ σ + (7β) 3.. Περίπτωση φ 0 (δηλαδή Ν φ ): Η διαφορική εξίσωση (6) δίνει: dσ σ ln + k d Συνοριακή συνθήκη: σ ( ) Άρα: σ + ln (8α) σθ σ + (8β) Παρατήρηση: σ σταθερά σ θ 3.3 Επίλυση στην ελαστική περιοχή ( > ) Εξίσωση ισορροπίας (σχέση 4): dσ σ σ d & σ & θ σ & σθ d d Επιπλέον ισχύουν (σχέσεις 3 και 5): σ D ε + K & σ D ε & [ ] [ ε ] ε θ θ θ + K 3- Μ. Καββαδάς, 3/5/004

3 du ε d ε θ u Από τις ανωτέρω, µε απαλειφή των τάσεων και παραµορφώσεων προκύπτει: du du u + d d 0 (9) Η σχέση αυτή επιλύεται και δίνει (, σταθερές): u + (0) Συνοριακή συνθήκη: u( ) 0, άρα: 0 ηλαδή: u () Συνεπώς η κατανοµή των τάσεων στην ελαστική περιοχή δίνεται από τις σχέσεις: σ D ( K ) (α) σ θ + D ( K) (β) Παρατήρηση : σ + σ θ σταθερά Παρατήρηση : Η σταθερά προσδιορίζεται από την απαίτηση ισότητας των τάσεων στο όριο µεταξύ ελαστικής και πλαστικής περιοχής. Στην περίπτωση που δεν υπάρχει πλαστική περιοχή, η σταθερά προσδιορίζεται από τη σχέση: σ ( ) (βλέπε παρακάτω). 3.4 Προσδιορισµός της σταθεράς (α) Περίπτωση όπου δεν υπάρχει πλαστική περιοχή, δηλαδή το σύνολο του εδάφους γύρω από την οπή παραµένει στην ελαστική περιοχή. ( ) σ ( ) (3) D K οπότε: u ( + ) E ν (4α) σ σ θ + (4β) (4γ) (β) Περίπτωση όπου υπάρχει πλαστική περιοχή, δηλαδή το κριτήριο αστοχίας Mh- Culmb ικανοποιείται για <, όπου είναι η ακτίνα της πλαστικής περιοχής (προφανώς το έδαφος παραµένει ελαστικό για > ). Στην περίπτωση αυτή, η ακτινική τάση (σ ) και η περιφερειακή τάση (σ θ ) στην θέση είναι ίδιες, είτε υπολογισθούν µε τη σχέση που ισχύει στην ελαστική περιοχή (σχέση 4) είτε υπολογισθούν µε τη σχέση που ισχύει στην πλαστική περιοχή (σχέση 7 εφόσον φ 0 και σχέση 8 εφόσον φ 0). Η εξίσωση των Μ. Καββαδάς, 3/5/

4 Μ. Καββαδάς, 3/5/ ανωτέρω τιµών δίνει δυο σχέσεις από τις οποίες υπολογίζονται οι τιµές των ( ) και ( ) ως κατωτέρω:. Περίπτωση φ 0 Η ακτίνα ( ) της πλαστικής περιοχής προσδιορίζεται από τη σχέση: (5α) Η ανωτέρω σχέση µπορεί να γραφεί και ως: (5β) όπου ο συντελεστής: m σ ονοµάζεται συντελεστής υπερφόρτισης (velad fat). Σηµειώνεται ότι σ m είναι η αντοχή της βραχόµαζας σε µοναξονική θλίψη. Η σταθερά ( ) προσδιορίζεται από τη σχέση: E ++ + ν (6) Στη συνέχεια, οι τάσεις (σ, σ θ ) υπολογίζονται ως εξής: Σχήµα : Κατανοµή τάσεων γύρω από κυκλική οπή. Παραδοχή γραµµικώς ελαστικού εδάφους.

5 Στην ελαστική περιοχή: Σχέσεις Στην πλαστική περιοχή: Σχέσεις 7 Παρατήρηση : Υπολογισµός της τιµής της εσωτερικής πίεσης ( e ) της οπής, για την οποία αρχίζει να παρουσιάζεται πλαστική περιοχή, δηλαδή υπολογισµός της τιµής της πίεσης () για την οποία. Από τη σχέση (5), για προκύπτει: e (7α) + Παρατήρηση : Υπολογισµός της ελάχιστης τιµής της συνοχής της βραχόµαζας για την οποία δεν εµφανίζεται πλαστική περιοχή γύρω από την οπή. Από τη σχέση (7α) προκύπτει: ( ) min + (7β) Η συνθήκη που πρέπει να ικανοποιείται ώστε να µην εµφανισθεί πλαστική περιοχή γύρω από την οπή ακόµη και για µηδενισµό της εσωτερικής πίεσης ( 0), δηλαδή για πλήρη εκσκαφή της οπής χωρίς καµία υποστήριξη είναι: Ο παράγων ( ) ισούται µε το ήµισυ της αντοχής του υλικού σε ανεµπόδιστη θλίψη (σ ). Πράγµατι: σ σ σ3 + (επειδή σ 3 0) Συνεπώς, η συνθήκη που πρέπει να ικανοποιείται ώστε να µην εµφανισθεί πλαστική περιοχή γύρω από την οπή ακόµη και για µηδενισµό της εσωτερικής πίεσης είναι: Σχήµα : Κατανοµή τάσεων γύρω από κυκλική οπή. Παραδοχή ελαστικού-απολύτως πλαστικού εδάφους. Μ. Καββαδάς, 3/5/

6 σ Σηµείωση: ο συντελεστής (Ν ) ονοµάζεται συντελεστής υπερφόρτισης (velad fat). Συνεπώς, η βραχόµαζα γύρω από τη σήραγγα παραµένει ελαστική εάν. Παρατήρηση 3: Γενικότερα, η συνθήκη µή-ανάπτυξης πλαστικής περιοχής γύρω από τη σήραγγα (δηλαδή ) για κάποια τιµή της εσωτερικής πίεσης () είναι (από τη σχέση 7β): (7γ) ( + ) Σηµείωση: Για 0, η σχέση αυτή δίνει:. Η σχέση (7γ) δίνει τη µέγιστη τιµή του συντελεστή υπερφόρτισης ( ) για τον οποίο δεν αναπτύσσονται πλαστικές περιοχές γύρω από τη σήραγγα συναρτήσει της εσωτερικής πίεσης (). Παράδειγµα εφαρµογής: ΜΕΓΙΣΤΕΣ ΤΙΜΕΣ ΤΟΥ ΓΙΑ ΜΗ ΑΝΑΠΤΥΞΗ ΠΛΑΣΤΙΚΗΣ ΠΕΡΙΟΧΗΣ ΓΥΡΩ ΑΠΟ ΤΗ ΣΗΡΑΓΓΑ φ Τιµές του / (µοίρες) * * * * * * * * δηλαδή δεν αναπτύσσεται πλαστική περιοχή γύρω από τη σήραγγα. Περίπτωση φ 0 Η ακτίνα ( ) της πλαστικής περιοχής προσδιορίζεται από τη σχέση: ex ex (8) Σηµείωση: Στην περίπτωση όπου φ 0, ο συντελεστής υπερφόρτισης είναι:. Συνεπώς, η βραχόµαζα γύρω από την οπή παραµένει ελαστική για 0 εάν. Η σταθερά ( ) προσδιορίζεται από τη σχέση: ( ) + ν (9) E Στη συνέχεια, οι τάσεις (σ, σ θ ) υπολογίζονται ως εξής: Στην ελαστική περιοχή: Σχέσεις Στην πλαστική περιοχή: Σχέσεις 7 Παρατήρηση : Υπολογισµός της τιµής της εσωτερικής πίεσης ( e ) της οπής, για την οποία αρχίζει να παρουσιάζεται πλαστική περιοχή, δηλαδή υπολογισµός της τιµής της πίεσης () για την οποία. Από τη σχέση (8), για προκύπτει: 3-6 Μ. Καββαδάς, 3/5/004

7 e (0α) Παρατήρηση : Υπολογισµός της ελάχιστης τιµής της συνοχής της βραχόµαζας για την οποία δεν εµφανίζεται πλαστική περιοχή γύρω από την οπή. Από τη σχέση (0α) προκύπτει: min (0β) 3.5 Υπολογισµός των εδαφικών µετακινήσεων Λόγω συµµετρίας, η µετακίνηση είναι µόνον ακτινική (u) Μετακίνηση στην ελαστική περιοχή Η µετακίνηση δίνεται από τη σχέση (): u () Η σχέση αυτή εξειδικεύεται ως εξής: (α) Περίπτωση όπου δεν υπάρχει πλαστική περιοχή, δηλαδή όταν το έδαφος γύρω από την οπή είναι ελαστικό (βλέπε σχέση 4α): u ( + ) E ν (α) Ειδικώς στο όριο της σήραγγας ( ): u ( + ν ) (β) E (β) Περίπτωση όπου υπάρχει και πλαστική περιοχή γύρω από τη σήραγγα: u (β.) Εάν φ 0: Η σταθερά ( ) υπολογίζεται από τις σχέσεις (6) και (5). (β.) Εάν φ 0: Η σταθερά ( ) υπολογίζεται από τις σχέσεις (9) και (8). Με βάση τα ανωτέρω, η µετακίνηση στο όριο της πλαστικής περιοχής ( ) δίνεται από τη σχέση (για οποιοδήποτε φ): u ( ) + ν + + E (3) 3.5. Μετακίνηση στην πλαστική περιοχή Με την παραδοχή ότι στην πλαστική περιοχή η µετακίνηση γίνεται υπό σταθερό όγκο, προκύπτει για < < : ( ) ( ) u u ( u) π π π u π u (4α) Συνεπώς η µετακίνηση στο τοίχωµα της σήραγγας ( ) δίνεται από τη σχέση: u u u (4β) Στις ανωτέρω σχέσεις, το (u ) υπολογίζεται από τη σχέση (3) και το ( ) από τις σχέσεις (5) (για φ 0) και (8) (για φ 0). Από τις σχέσεις (β) και (4β) µπορεί να υπολογισθεί η µετακίνηση (σύγκλιση) του τοιχώµατος της σήραγγας συναρτήσει της εσωτερικής πίεσης (), δηλαδή κατά τη µείωση της εσωτερικής πίεσης από την αρχική της τιµή ( ) έως το Μ. Καββαδάς, 3/5/

8 µηδενισµό της. Το διάγραµµα αυτό φαίνεται στο Σχήµα 3 και ονοµάζεται καµπύλη σύγκλισης-αποτόνωσης (nvegene-nfinement uve). Η γωνία (α) υπολογίζεται µέσω της σχέσης (β) ως εξής: u ( + ν) tanα tanα (5) E Η εσωτερική πίεση ( e ) για την οποία αρχίζει να αναπτύσσεται πλαστική περιοχή γύρω από τη σήραγγα δίνεται από τη σχέση (7α): e (6) + και η αντίστοιχη µετακίνηση του τοιχώµατος της σήραγγας στην κατάσταση αυτή είναι: u e ( + ) ( ) + E ( + ) ν Μετά την έναρξη ανάπτυξης πλαστικής περιοχής γύρω από τη σήραγγα, η σύγκλιση του τοιχώµατος αυξάνει µε ρυθµό µεγαλύτερο απ ότι στην ελαστική κατάσταση. Η µέγιστη τιµή (u ) της σύγκλισης προκύπτει για µηδενισµό της εσωτερικής πίεσης (πλήρης εκσκαφή της σήραγγας). Παρατήρηση: Η καµπύλη σύγκλισης-αποτόνωσης του Σχήµατος 3 αντιστοιχεί σε βραχόµαζα µε συµπεριφορά ελαστική-απολύτως πλαστική. Στην περίπτωση βραχόµαζας µε συµπεριφορά τύπου χαλάρωσης, η καµπύλη σύγκλισης αποτόνωσης φαίνεται στο Σχήµα 4. Σε περιπτώσεις έντονης χαλάρωσης, προκαλείται κατάρρευση της οροφής της σήραγγας όταν η εσωτερική πίεση µειωθεί πέραν κάποιας τιµής. Η ανωτέρω εκτίµηση των µετακινήσεων του τοιχώµατος της σήραγγας στην ελαστική και την πλαστική περιοχή επιτρέπει τον προσδιορισµό της καµπύλης σύγκλισης-αποτόνωσης της βραχόµαζας. Η καµπύλη αυτή χρησιµοποιείται στο σχεδιασµό των µέτρων υποστήριξης της σήραγγας όπως περιγράφεται στο επόµενο (7) Σχήµα 3: Καµπύλη σύγκλισης-αποτόνωσης κυκλικής σήραγγας (ακτίνα ). 3-8 Μ. Καββαδάς, 3/5/004

9 Κεφάλαιο. Σχήµα 4: Καµπύλες σύγκλισης-αποτόνωσης για διάφορους τύπους συµπεριφοράς τάσεων-παραµορφώσεων της βραχόµαζας. Στην περίπτωση έντονης χαλάρωσης προκαλείται κατάρρευση της οροφής της σήραγγας. Μ. Καββαδάς, 3/5/

10 3-0 Μ. Καββαδάς, 3/5/004

4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ

4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ ΚΕΦΑΛΑΙΟ 4 4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ 4. Μέθοδος ανάλυσης Κατά τη διάνοιξη σηράγγων οι µετακινήσεις του εδάφους αρχίζουν σε θέσεις αρκετά εµπρός από

Διαβάστε περισσότερα

ΑΝΤΙΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ & ΑΝΑΛΥΣΗ ΣΗΡΑΓΓΩΝ

ΑΝΤΙΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ & ΑΝΑΛΥΣΗ ΣΗΡΑΓΓΩΝ Αναπλ. Καθ. Αιμίλιος Κωμοδρόμος 1 Φορτίσεις Σεισμική Δράση Ιδιο Βάρος Ωθήσεις Γαιών Υδροστατική Φόρτιση Κινητά Φορτία Θερμοκρασιακές Μεταβολές Καταναγκασμοί Κινηματική Αλληλεπίδραση Αδρανειακές Δυνάμεις

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΙΙ

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΙΙ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΙΙ ΣΤΡΕΨΗ ΕΠΙΜΕΛΕΙΑ: ΔΡ Σ. Π. ΦΙΛΟΠΟΥΛΟΣ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Μηχανικές ιδιότητες Στρέψη κυλινδρικών ράβδων Ελαστική περιοχή Πλαστική

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο

Διαβάστε περισσότερα

ΔΙΗΜΕΡΙΔΑ "ΟΙ ΣΗΡΑΓΓΕΣ ΤΗΣ ΕΓΝΑΤΙΑΣ ΟΔΟΥ

ΔΙΗΜΕΡΙΔΑ ΟΙ ΣΗΡΑΓΓΕΣ ΤΗΣ ΕΓΝΑΤΙΑΣ ΟΔΟΥ ΔΙΗΜΕΡΙΔΑ "ΟΙ ΣΗΡΑΓΓΕΣ ΤΗΣ ΕΓΝΑΤΙΑΣ ΟΔΟΥ ΣΗΡΑΓΓΑ ΔΡΙΣΚΟΥ ΣΧΕΔΙΑΣΜΟΣ ΜΕΤΡΩΝ ΠΡΟΣΩΡΙΝΗΣ ΥΠΟΣΤΗΡΙΞΗΣ Εισηγητής : Ε. Στάρα Γκαζέτα Γ. Παρηγόρης Ιωάννινα, 15-16/10/99 ΕΓΝΑΤΙΑ ΟΔΟΣ ΑΕ & Ε.Ε.Σ.Υ.Ε. ΣΗΡΑΓΓΑ ΔΡΙΣΚΟΥ

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ:

ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ: ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ: Αντοχή Εδαφών Επιστημονικός Συνεργάτης: Δρ. Αλέξανδρος Βαλσαμής, Πολιτικός Μηχανικός Εργαστηριακός Υπεύθυνος: Παναγιώτης Καλαντζάκης, Καθηγητής Εφαρμογών Εργαστηριακοί

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Θεωρία Κρίσιμης Κατάστασης Αργιλικών Εδαφών

ΔΙΑΛΕΞΗ 2 Θεωρία Κρίσιμης Κατάστασης Αργιλικών Εδαφών ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ Μέρος» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ Θεωρία Κρίσιμης Κατάστασης Αργιλικών Εδαφών 0.0.006 ΔΙΑΛΕΞΗ Θεωρία Κρίσιμης Κατάστασης

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Τάσεις και παραμορφώσεις γύρω από κυκλικές σήραγγες. Κατανομές τάσεων και παραμορφώσεων γύρω από κυκλική σήραγγα - Παραδοχές

ΔΙΑΛΕΞΗ 2 Τάσεις και παραμορφώσεις γύρω από κυκλικές σήραγγες. Κατανομές τάσεων και παραμορφώσεων γύρω από κυκλική σήραγγα - Παραδοχές ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΕΙΔΙΚΑ ΓΕΩΤΕΧΝΙΚΑ ΕΡΓΑ - Γεωτεχνική Σηράγγων» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ Τάεις και παραμορφώεις γύρω από κυκλικές ήραγγες 5.8.5 Κατανομές τάεων και

Διαβάστε περισσότερα

Μάθημα : Σχεδιασμός Υπογείων Εργων (ΔΣΑΚ-Β12) Εαρινό εξάμηνο

Μάθημα : Σχεδιασμός Υπογείων Εργων (ΔΣΑΚ-Β12) Εαρινό εξάμηνο ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΣΧΕΔΙΑΣΜΟΣ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ (ΔΣΑΚ-Β12) Σειρά μεταπτυχιακών διαλέξεων στο ΕΜΠ Ακαδ. Ετος 2007-08 Μ. ΚΑΒΒΑΔΑΣ, Αναπλ. Καθηγητής ΕΜΠ

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4 Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 3 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

Επιρροή της Χαλάρωσης της βραχόμαζας στη Διάνοιξη σηράγγων. Effect of Strain Softening Behaviour of Rockmass on tunnel excavation

Επιρροή της Χαλάρωσης της βραχόμαζας στη Διάνοιξη σηράγγων. Effect of Strain Softening Behaviour of Rockmass on tunnel excavation Επιρροή της Χαλάρωσης της βραχόμαζας στη Διάνοιξη σηράγγων Effect of Strain Softening Behaviour of Rockmass on tunnel excavation ΣΙΤΑΡΕΝΙΟΣ, Π. ΚΑΒΒΑΔΑΣ, Μ. Πολιτικός Μηχανικός Π.Πατρών, Μ.Δ.Ε Ε.Μ.Π. Πολιτικός

Διαβάστε περισσότερα

Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ

Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ,

Διαβάστε περισσότερα

9 ΚΕΦΑΛΑΙΟ 9. ΚΑΔΕΤ-ΚΕΦΑΛΑΙΟ 9 ΕΚΔΟΣΗ 2η ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ

9 ΚΕΦΑΛΑΙΟ 9. ΚΑΔΕΤ-ΚΕΦΑΛΑΙΟ 9 ΕΚΔΟΣΗ 2η ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ 9 ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ Βλ. Κεφ. 4, Παρ. 4.4, για την λογική των ελέγχων. Το παρόν Κεφάλαιο περιλαμβάνει τα κριτήρια ελέγχου της ανίσωσης ασφαλείας, κατά την αποτίμηση ή τον ανασχεδιασμό,

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ

ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ Λυγισμός - Ευστάθεια Κρίσιμο φορτίο λυγισμού Δρ. Σ. Π. Φιλόπουλος Εισαγωγή Μέχρι στιγμής στην ανάλυση των κατασκευών επικεντρώσαμε

Διαβάστε περισσότερα

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων ΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ 9 Αξονική φόρτιση. Παραμορφώσεις ανομοιόμορφων ράβδων. Ελαστική ράβδος ΑΒ μήκους, Γ B μέτρου ελαστικότητας Ε και / συντελεστή θερμικής διαστολής α, είναι πακτωμένη στα σημεία Α και Β και

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ. 04 Ανάλυση της Μόνιμης Επένδυσης

ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ. 04 Ανάλυση της Μόνιμης Επένδυσης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ 9 ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 2013-14 04 Ανάλυση

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Αντικείμενο της Άσκησης Η ανάλυση ευστάθειας βραχώδους πρανούς,

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 5 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αργιλικά εδάφη 02.11.2005 Υπολογισμός καθιζήσεων

Διαβάστε περισσότερα

Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Method, Slab Analysis)

Η ΜΕΘΟ ΟΣ ΛΟΦΟΣ-ΤΡΙΒΗ ( Friction-Hill Method, Slab Analysis) Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Metod, Slab Analysis) Α. Προβλήµατα επίπεδης παραµορφωσιακής κατάστασης A. ιπλή συµµετρία γεωµετρίας και φόρτισης Θεωρούµε τη σφυρηλάτηση ορθογωνικής µπιγέτας µε

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

4.5 Αµφιέρειστες πλάκες

4.5 Αµφιέρειστες πλάκες Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

Σχεδιασµός κτηρίων Με και Χωρίς Αυξηµένες Απαιτήσεις Πλαστιµότητας: Συγκριτική Αξιολόγηση των δύο επιλύσεων

Σχεδιασµός κτηρίων Με και Χωρίς Αυξηµένες Απαιτήσεις Πλαστιµότητας: Συγκριτική Αξιολόγηση των δύο επιλύσεων Σχεδιασµός κτηρίων Με και Χωρίς Αυξηµένες Απαιτήσεις Πλαστιµότητας: Συγκριτική Αξιολόγηση των δύο επιλύσεων (βάσει των ΕΑΚ-ΕΚΩΣ) Μ.Λ. Μωρέττη ρ. Πολιτικός Μηχανικός. ιδάσκουσα Παν. Θεσσαλίας.. Παπαλοϊζου

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

Ανισοτροπία των πετρωμάτων

Ανισοτροπία των πετρωμάτων Ανισοτροπία των πετρωμάτων ΟΡΙΣΜΟΣ Το ανισότροπο πέτρωμα έχει διαφορετικές ιδιότητες σε διαφορετικές διευθύνσεις: π.χ. στην αντοχή, στην παραμορφωσιμότητα, στην περατότητα, στην πυκνότητα των ασυνεχειών,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ

ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ Βλ. Κεφ. 4, Παρ. 4.4, για την λογική των ελέγχων. 9.1.1 Το παρόν Κεφάλαιο περιλαµβάνει τα κριτήρια ελέγχου της ανίσωσης ασφαλείας, κατά την αποτίµηση ή τον ανασχεδιασµό,

Διαβάστε περισσότερα

1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι -

1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι - Ερωτήσεις πολλαπλής επιλογής. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο την ευθεία = α + β, µε α, όταν Α. ( Β. η f είναι συνεχής στο = α R Γ. η f δεν είναι συνεχής στο. το όριο Ε. το

Διαβάστε περισσότερα

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 105 Κεφάλαιο 5 ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 5.1 Εισαγωγή Στα προηγούμενα κεφάλαια αναλύσαμε την εντατική κατάσταση σε δομικά στοιχεία τα οποία καταπονούνται κατ εξοχήν αξονικά (σε εφελκυσμό ή θλίψη) ή πάνω

Διαβάστε περισσότερα

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Αναλυσης Θεωρία Μηχανισμών

Διαβάστε περισσότερα

ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ

ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Τομέας Β Δομοστατικού Σχεδιασμού ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΦΗΝΑΡΟΛΑΚΗ ΕΛΕΥΘΕΡΙΑ

Διαβάστε περισσότερα

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Βόλος 29-3/9 & 1/1 211 Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Δάφνη Παντούσα και Ευριπίδης Μυστακίδης Εργαστήριο

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 οκίμια εφελκυσμού

Διαβάστε περισσότερα

Μηχανική Συμπεριφορά Εδαφών. Νικόλαος Σαμπατακάκης Νικόλαος Δεπούντης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Μηχανική Συμπεριφορά Εδαφών. Νικόλαος Σαμπατακάκης Νικόλαος Δεπούντης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Μηχανική Συμπεριφορά Εδαφών Νικόλαος Σαμπατακάκης Νικόλαος Δεπούντης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Σκοποί ενότητας Η κατανόηση των βασικών χαρακτηριστικών του εδάφους που οριοθετούν τη μηχανική

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται

Διαβάστε περισσότερα

Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Method, Slab Analysis)

Η ΜΕΘΟ ΟΣ ΛΟΦΟΣ-ΤΡΙΒΗ ( Friction-Hill Method, Slab Analysis) Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Metod, Slab Analysis) Α. Προβλήµατα επίπεδης παραµορφωσιακής κατάστασης A. ιπλή συµµετρία γεωµετρίας και φόρτισης Θεωρούµε τη σφυρηλάτηση ορθογωνικής µπιγέτας µε

Διαβάστε περισσότερα

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011 ΕΔΑΦΟΜΗΧΑΝΙΚΗΔ Α Φ Ο Μ Α Ν Ι Κ Η Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος Ι Ελέγξτε τις γνώσεις σας με τις παρακάτω ερωτήσεις οι οποίες συνοψίζουν τα βασικά σημεία του κάθε κεφαλαίου. Γ. Μπουκοβάλας

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ

ΑΝΤΟΧΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ ΑΝΤΟΧΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ ΟΡΙΣΜΟΙ ΑΝΤΟΧΗ = Οριακή αντίδραση ενός στερεού μέσου έναντι ασκούμενης επιφόρτισης F F F F / A ΑΝΤΟΧΗ [Φέρουσα Ικανότητα] = Max F / Διατομή (Α) ΑΝΤΟΧΗ = Μέτρο (δείκτης) ικανότητας

Διαβάστε περισσότερα

( Σχόλια) (Κείµ ενο) Κοντά Υποστυλώµατα Ορισµός και Περιοχή Εφαρµογής. Υποστυλώµατα µε λόγο διατµήσεως. α s 2,5

( Σχόλια) (Κείµ ενο) Κοντά Υποστυλώµατα Ορισµός και Περιοχή Εφαρµογής. Υποστυλώµατα µε λόγο διατµήσεως. α s 2,5 ( Σχόλια) (Κείµ ενο) 18.4.9 Κοντά Υποστυλώµατα 18.4.9 Κοντά Υποστυλώµατα 18.4.9.1 Ορισµός και Περιοχή Εφαρµογής N Sd Υποστυλώµατα µε λόγο διατµήσεως V Sd M Sd1 h N Sd M Sd2 V Sd L l s =M Sd /V Sd M Sd

Διαβάστε περισσότερα

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe 3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe 67 3.2 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe Στις επόμενες σελίδες παρουσιάζεται βήμα-βήμα ο τρόπος με τον οποίο μπορεί

Διαβάστε περισσότερα

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,, ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ Θεωρούµε ινώδες σύνθετο υλικό ενισχυµένο µονοδιευθυντικά µε συνεχείς ίνες. Για τη µελέτη της µηχανικής συµπεριφοράς µιας τυχαίας στρώσης, πρέπει να είναι γνωστές οι

Διαβάστε περισσότερα

Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών

Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών Γραπτή εξέταση περιόδου Ιουνίου 011 διάρκειας,0 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική (ΜΕ0011), 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επ.Συν.Τμ.Πολ.Εργ.Υποδ.

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ«ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» «ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΜΗΧΑΝΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΒΡΑΧΟΜΑΖΑΣ ΜΕ ΜΙΑ ΚΑΙ ΔΥΟ ΟΙΚΟΓΕΝΕΙΕΣ ΑΣΥΝΕΧΕΙΩΝ»

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΜΑΖΑΣ

ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΜΑΖΑΣ ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΜΑΖΑΣ Σημειώσεις παραδόσεων Καθηγητή Σ Κ Μπαντή Τμήμα Πολιτικών Μηχανικών Τομέας Γεωτεχνικής Μηχανικής 2010 Η ΒΡΑΧΟΜΑΖΑ ΩΣ ΔΟΜΙΚΟ ΥΛΙΚΟ ΓΕΩΚΑΤΑΣΚΕΥΩΝ σ 1 σ 1 σ 3 ΑΡΧΙΚΗ

Διαβάστε περισσότερα

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης

Διαβάστε περισσότερα

Λυγισμός Ευστάθεια (Euler και Johnson)

Λυγισμός Ευστάθεια (Euler και Johnson) Λυγισμός Ευστάθεια (Euler και Johnson) M z P z EI z P z P z z 0 και αν EI k EI P 0 z k z Η λύση της διαφορικής εξίσωσης έχει την μορφή: 1 sin z C kz C cos kz Αν οι οριακές συνθήκες είναι άρθρωση άρθρωση

Διαβάστε περισσότερα

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013 ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 017 Πρόβλημα Α Ένα σημειακό σωματίδιο μάζας m βάλλεται υπό γωνία ϕ και με αρχική ταχύτητα μέτρου v 0 από το έδαφος Η κίνηση εκτελείται στο ομογενές

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 17 Β7. Λεπτότοιχα Δοχεία Πίεσης Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Β7. Λεπτότοιχα Δοχεία Πίεσης 1 Σκοποί ενότητας Να συμφιλιωθεί με τις βασικές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέµα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Στήριξη Στρωσιγενούς Πετρώματος πέριξ σήραγγας

Στήριξη Στρωσιγενούς Πετρώματος πέριξ σήραγγας Εργαστήριο Τεχνολογίας Διάνοιξης Σηράγγων, ΕΜΠ Στήριξη Στρωσιγενούς Πετρώματος πέριξ σήραγγας ΔΠΜΣ/ΣΚΥΕ Σήραγγα Καλυδώνας. Υπερεκσκαφή 2 Φυσικό ομοίωμα υπόγειας εκσκαφής εντός στρωσιγενούς πετρώματος Υποστήριξη

Διαβάστε περισσότερα

Εδαφομηχανική. Εισηγητής: Αλέξανδρος Βαλσαμής

Εδαφομηχανική. Εισηγητής: Αλέξανδρος Βαλσαμής Εισηγητής: Αλέξανδρος Βαλσαμής Εδαφομηχανική Μηχανική συμπεριφορά: - Σχέσεις τάσεων και παραμορφώσεων - Μονοδιάστατη Συμπίεση - Αστοχία και διατμητική αντοχή Παραμορφώσεις σε συνεχή μέσα ε vol =-dv/v=ε

Διαβάστε περισσότερα

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως. Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Θεµελιώδες Θεώρηµα Θεωρίας Επιφανειών Αφορά στην ανάπτυξη τριών διαφορετικών εξισώσεων (Gauss-Cdazzi)

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

«Αλληλεπίδραση Εδάφους Κατασκευής»

«Αλληλεπίδραση Εδάφους Κατασκευής» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «Αηεπίδραη Εδάφους Κατακευής» 8ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ Διάνοιξη και προωρινή

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Μ. Nεραντζάκη Αναπλ.

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Ισοδύναμες παράμετροι αντοχής ψαθυρής βραχόμαζας Mohr-Coulomb και Hoek-Brown κατά τη διάνοιξη σηράγγων σε διαξονικό εντατικό πεδίο

Ισοδύναμες παράμετροι αντοχής ψαθυρής βραχόμαζας Mohr-Coulomb και Hoek-Brown κατά τη διάνοιξη σηράγγων σε διαξονικό εντατικό πεδίο Ισοδύναμες παράμετροι αντοχής ψαθυρής βραχόμαζας Mohr-Coulomb και Hoek-Brown κατά τη διάνοιξη σηράγγων σε διαξονικό εντατικό πεδίο Equivalent strength parameters of a Mohr-Coulomb and Hoek-Brown brittle

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

ΑΚΡΟΒΑΘΡΟ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/8

ΑΚΡΟΒΑΘΡΟ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/8 ΑΚΡΟΒΑΘΡΟ ver.1 Πρόκειται για ένα υπολογιστικό φύλλο που αναλύει και διαστασιολογεί ακρόβαθρο γέφυρας επί πασσαλοεσχάρας θεμελίωσης. Είναι σύνηθες να επιλύεται ένα φορέας ανωδομής επί εφεδράνων, να λαμβάνονται

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 14-15, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: Πρόβλημα 1. Για κάθε μια από τις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε λύσεις

Διαβάστε περισσότερα

6/5/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Θλίψη Σκυροδέματος. Πολιτικός Μηχανικός (Λέκτορας Π.Δ.

6/5/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Θλίψη Σκυροδέματος. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. Σημειώσεις Εργαστηριακής Άσκησης Θλίψη Σκυροδέματος Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Έως τώρα Καταστατικός νόμος όλκιμων υλικών (αξονική καταπόνιση σε μία διεύθυνση) σ ε Συμπεριφορά

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Ανάλυσης Θεωρία Μηχανισμών

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 13 Θεμελιώσεις με πασσάλους : Εγκάρσια φόρτιση πασσάλων 1.05.005 1. Κατηγορίες πασσάλων. Αξονική φέρουσα ικανότητα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση Α.1. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει

Διαβάστε περισσότερα

0 είναι η παράγωγος v ( t 0

0 είναι η παράγωγος v ( t 0 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f(, όταν f

Διαβάστε περισσότερα

5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80)

5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) 1 Βασική αρχή εργαστηριακής άσκησης Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α Σ 5. Σ. Σ β Σ 6. Λ.

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

Πρέσσες κοχλία. Κινηματική Δυνάμεις Έργο. Πρέσσες κοχλία. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ

Πρέσσες κοχλία. Κινηματική Δυνάμεις Έργο. Πρέσσες κοχλία. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες κοχλία Κινηματική Δυνάμεις Έργο Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες κοχλία Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων

Μέθοδος των Δυνάμεων Μέθοδος των Δυνάμεων Εισαγωγή Μέθοδος των Δυνάμεων: Δ07-2 Η Μέθοδος των Δυνάμεων ή Μέθοδος Ευκαμψίας είναι μία μέθοδος για την ανάλυση γραμμικά ελαστικών υπερστατικών φορέων. Ανκαιημέθοδοςμπορείναεφαρμοστείσεπολλάείδηφορέων

Διαβάστε περισσότερα

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών Ασκήσεις για λύση Η ράβδος του σχήματος είναι ομοιόμορφα μεταβαλλόμενης κυκλικής 1 διατομής εφελκύεται αξονικά με δύναμη Ρ. Αν D d είναι οι διάμετροι των ακραίων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ).

0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ). Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ 8 ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται

Διαβάστε περισσότερα

Κρούσεις. 1 ο ΘΕΜΑ.

Κρούσεις. 1 ο ΘΕΜΑ. ο ΘΕΜΑ Κρούσεις Α. Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε κάθε κρούση ισχύει

Διαβάστε περισσότερα

«Επί πτυχίω» εξέταση στο μάθημα «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιανουάριος 2018

«Επί πτυχίω» εξέταση στο μάθημα «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιανουάριος 2018 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 (25 μονάδες) (Καθ. Β.Ζασπάλης) Σε μια φυσική διεργασία αέριο υδρογόνο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α (μονάδες 25) Α1. Σε μια Α.Α.Τ. η εξίσωση της απομάκρυνσης είναι x=a.συνωt. Τη χρονική στιγμή

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα