regions & segmentation

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "regions & segmentation"

Transcript

1 regions & segmenttion Eleni Kldoudi Resercher, ICS-FORTH C-472: Mchine Vision Deprtment of Computer Science University of Crete t Herklion 20 Februry 1997

2 regions nd edges

3 imge rry - rectngulr tesseltion α[0,0] column j m columns j row i [i,j] 4-neighbours n rows [i,j] 8-neighbours i

4 number of pixels h(z) grey level histogrm grey level z

5 some definitions 4-pth 8-pth region boundry

6 segmenttion segmenttion is the process of prtitioning n imge F[i,j] into regions P 1,, P k, such tht: k P i = entire imge i=1 P i P j =, " i, j = 1, 2,, k, nd i j pixels in ech prtition stisfy logicl predicte pixels in djcent regions do not stisfy the predicte

7 segmenttion techniques discontinuity edges similrity thresholding regions

8 h(z) h(z) globl thresholding T = T ( i, j, P[i,j], F[i,j] ) h 1 (z) h 2 (z) 0 μ 1 μ 2 z 0 μ 1 μ 2 z

9 globl thresholding - exmple

10 locl thresholding T = T ( i, j, P[i,j], F[i,j] ) divide into subimges determine threshold for ech subimge process ech subimge seprtely

11 grey level dynmic thresholding T = T ( i, j, P[i,j], F[i,j] ) threshold surfce imge cross section through the imge

12 region-bsed segmenttion region growing region merging region splitting djcency connectivity homogeneity grey level shpe color size texture model

13 region growing b b b b b b b b b b b b b b b how do we select : seed points? similrity criteri? stopping rule? less thn 3 less thn 8

14 region splitting

15 region merging segment into mny smll regions merge two djcent regions if similr merge ll djcent regions tht re similr if no two regions cn be merged, stop

16 hybrid lgorithm for the segmenttion of 2D-3D imges 1. Κ. Χάρης Ένας Υβριδικός Αλγόριθμος για την Τμηματοποίηση Δισδιάστατων και Τρισδιάστατων Εικόνων Μεταπτυχιακό Δίπλωμα Εξειδίκευσης Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης, K. Hris, G. Tzirits, nd S. Orphnoudkis Smoothing of 2D nd 3D Imges Using Locl Clssifiction Signl Processing VII: Theories nd Applictions, M. Holt, C. Cown, P. Grnt, W. Sndhm (eds.), pp , S. Orphnoudkis, G. Tzirits, nd K. Hris A Hybrid Algorithm for the Segmenttion of 2D-3D Imges in: Proceedings of IPMI 95, Y. Bizis, C. Brillot, nd R. di Pol (eds), Informtion Processing in Medicl Imging, Kluwer Acdemic Publishers, Dordrecht, pp , 1995

17 segmenttion lgorithm overview input 2D or 3D imge edge-preserving smoothing grdient pproximtion wtershed detection hierrchicl region merging segmented imge

18 smoothing: method N(i,j) 5 5 N(i,j) is homogeneous if smple vrince C x noise vrince μ 1 if N(i,j) is heterogeneous estimte the prmeters of the two distributions μ 2 μ 3

19 smoothing: method for ech pixel, consider its neighbourhood ssume tht the neighbourhood is either homogeneous or two different regions exist ssign the pixel to one of mximum of two different distribution popultions present within the neighbourhood set the new vlue of the pixel equl to the rithmetic men of the popultion to which the pixel hs been ssigned

20 smoothing: exmple input imge smoothed imge

21 grdient pproximtion compute intensity grdient of smoothed imge pply thresholding on the grdient mgnitude imge G T (i,j) = G T (i,j), if G S (i,j)>t 0, otherwise G S : smoothed grdient imge T : threshold vlue

22 wtershed detection points of low grdient vlue sink first tesseltion of the input grdient imge into ctchment bsins unique lbel to ech ctchment bsin

23 wtershed detection rw rw smoothed wtersheds grdient superimposed

24 wtersheds: effect of grdient thresholding oversegmented imge fter wtershed detection T = 0 T = 2 T = 4 T: grdient threshold vlue input imge

25 region merging - RAG region djcency grph (RAG) prtition of n imge corresponding RAG for ech step merge the two most similr regions

26 region merging - RAG similrity mesure merge the pir of regions (R i,r k ) tht minimize the squre error of the men intensity in the resulting region 1,3 3 2, ,4 1,2 2,5 4 5 i.e, minimize: 3 N i N k N i + N k (μ i - μ k ) 2 N: number of pixels in region μ: men intensity of region 4 1,4 1,3 1,2 1,5 5

27 exmples input smoothed segmenttion (25) overly input 3556 regions 1536 regions 500 regions 50 regions

28 exmples

29 summry segmenttion thresholding dynmic, locl, globl region bsed region growing, splitting, merging edge detection to be continued

30 more detils in : 1. R. Jin, R. Ksturi, B.G. Schunk, Mchine Vision, McGrw-Hill, (chpter 3) 2. M. Sonk, V. Hlvc, R. Boyle, Imge Processing, Anlysis nd Mchine Vision, Chpmn & Hll Computing, NY, (chpter 5) 3. K.S. Fu, R.C. Gonzlez, C.S.G. Lee, Robotics: Control, Sensing, Vision, nd Intelligence, McGrw-Hill, NY, (chpter 8) 4. D.H. Bllrd, C.M. Brown, Computer Vision, Prentice Hll, NJ, (chpter 5) 5. Κ. Χάρης Ένας Υβριδικός Αλγόριθμος για την Τμηματοποίηση Δισδιάστατων και Τρισδιάστατων Εικόνων, Μεταπτυχιακό Δίπλωμα Εξειδίκευσης, Μεταπτυχιακό Δίπλωμα Εξειδίκευσης, L. Vincent, P. Soille, Wtersheds in Digitl Spces: An Efficient Algorithm Bsed on Immersion Simultions, IEEE PAMI, vol. 13(6), , 1991.

31 cite s Ε. Καλδούδη, Τεχνικές Τμηματοποίησης Ψηφιακών Εικόνων, Σεμινάριο στα πλαίσια του μαθήματος C-472: Μηχανική Όραση, Υπεύθυνος: καθ. Σ. Ορφανουδάκης, Τμήμα Επιστήμης Υπολογιστών του Πανεπιστημίου Κρήτης, 20 Φεβρουαρίου 1997

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας Τελική Εξέταση. Logic Operations () In the grid areas provided below, draw the results of the following binary operations a. NOT(NOT() OR ) (4) b. ( OR ) XOR ( ND ) (4) c. (( ND ) XOR ) XOR (NOT()) (4)

Διαβάστε περισσότερα

Detection and Recognition of Traffic Signal Using Machine Learning

Detection and Recognition of Traffic Signal Using Machine Learning 1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation

5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation 5 Industrial Vision Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation 5- Image processing Y (colomns) 35 3 38 3 5 35 69 8 3 38 3 3 69 79 39 3 3 33 9 37 6 77 X (rows) 7 38

Διαβάστε περισσότερα

Topic 4 Image Segmentation

Topic 4 Image Segmentation Topic 4 Image Segmentation What is Segmentation? Why? Segmentation important contributing factor to the success of an automated image analysis process What is Image Analysis: Processing images to derive

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE. Colin Dewey

BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE. Colin Dewey BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE Colin Dewey 2007.03.08 1 Importance of protein multiple alignment Phylogenetic tree estimation Prediction of protein secondary structure Critical residue

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Lecture 5: Numerical Integration

Lecture 5: Numerical Integration Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Το απόθεμα των σπόρων στο έδαφος σε λιβαδικά οικοσυστήματα του όρους Ψηλορείτη Κρήτης

Το απόθεμα των σπόρων στο έδαφος σε λιβαδικά οικοσυστήματα του όρους Ψηλορείτη Κρήτης Το απόθεμα των σπόρων στο έδαφος σε λιβαδικά οικοσυστήματα του όρους Ψηλορείτη Κρήτης Το απόθεμα των σπόρων στο έδαφος σε λιβαδικά οικοσυστήματα του όρους Ψηλορείτη Κρήτης Γ. Καζάκης 1 και Β. Π. Παπαναστάσης

Διαβάστε περισσότερα

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean The GFSDIDOT font fmily Antonis Tsolomitis Lbortory of Digitl Typogrphy nd Mthemticl Softwre Deprtment of Mthemtics University of the Aegen 28 Jnury 2006 Introduction TheDidotfmilyoftheGreekFontSocietywsmdevilbleforfreein

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P) ( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j

Διαβάστε περισσότερα

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B'' Chpter 7b, orsion τ τ τ ' D' B' C' '' B'' B'' D'' C'' 18 -rottion round xis C'' B'' '' D'' C'' '' 18 -rottion upside-down D'' stright lines in the cross section (cross sectionl projection) remin stright

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Computing Gradient. Hung-yi Lee 李宏毅

Computing Gradient. Hung-yi Lee 李宏毅 Computing Gradient Hung-yi Lee 李宏毅 Introduction Backpropagation: an efficient way to compute the gradient Prerequisite Backpropagation for feedforward net: http://speech.ee.ntu.edu.tw/~tkagk/courses/mlds_05_/lecture/

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1 1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite

Διαβάστε περισσότερα

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική Επιτροπή από την Χαρά Παπαγεωργίου

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

An Introduction to Spatial Statistics: Data Types, Statistical Tools and Computer Software

An Introduction to Spatial Statistics: Data Types, Statistical Tools and Computer Software An Introduction to Spatial Statistics: Data Types, Statistical Tools and Computer Software Moira A. Mugglestone MRC Institute for Environment and Health mam14@le.ac.uk http://www.le.ac.uk/ieh/ spatial.1

Διαβάστε περισσότερα

Εικονική Αναπαράσταση Νοηµατικής Γλώσσας στο ιαδίκτυο

Εικονική Αναπαράσταση Νοηµατικής Γλώσσας στο ιαδίκτυο ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Εικονική Αναπαράσταση Νοηµατικής Γλώσσας στο ιαδίκτυο ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7] Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

Synthetic Aperture Radar Processing

Synthetic Aperture Radar Processing Synthetic Apetue Rd Pocessing SAR nd IFSAR Giogio Fnceschetti Univesit Fedeico II Npoli Itly 1 REFERENCE TEXT Giogio Fnceschetti Riccdo Lni SYNTHETIC APERTURE RADAR PROCESSING TECHNIQUES CRC Pess BOCA

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Oracle SQL Developer An Oracle Database stores and organizes information. Oracle SQL Developer is a tool for accessing and maintaining the data

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 5: Tutorial on External Sorting Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών TUTORIAL ON EXTERNAL SORTING

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Θεωρία Πληροφορίας και Κωδίκων

Θεωρία Πληροφορίας και Κωδίκων Θεωρία Πληροφορίας και Κωδίκων Δρ. Νικόλαος Κολοκοτρώνης Λέκτορας Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης και Τεχνολογίας Υπολογιστών Τέρμα Οδού Καραϊσκάκη, 22100 Τρίπολη E mail: nkolok@uop.gr Web: http://www.uop.gr/~nkolok/

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο Ιόνιο Πανεπιστήμιο, Τμήμα Πληροφορικής, 2015 Κωνσταντίνος Οικονόμου, Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση

Διαβάστε περισσότερα

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ Πτυχιακή Εργασία Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους Εκπόνηση:

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 216 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 216 - Ι. ΜΗΛΗΣ 9 DP II 1 Dynamic Programming ΓΕΝΙΚΗ ΙΔΕΑ 1. Ορισμός υπο-προβλήματος/ων

Διαβάστε περισσότερα

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Notes on Tobin s. Liquidity Preference as Behavior toward Risk otes on Tobin s Liquidity Preference s Behvior towrd Risk By Richrd McMinn Revised June 987 Revised subsequently Tobin (Tobin 958 considers portfolio model in which there is one sfe nd one risky sset.

Διαβάστε περισσότερα

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Μετασχηματισμοί έντασης και χωρικό φιλτράρισμα Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)»

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)» ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΑΓΡΟΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΥΠΟΔΟΜΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ Εργαστήριο Γεωργικής Ζωολογίας & Εντομολογίας Αθήνα 2015 «Βιοδοκιμές αποτελεσματικότητας

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

EE434 ASIC & Digital Systems Arithmetic Circuits

EE434 ASIC & Digital Systems Arithmetic Circuits EE434 ASIC & Digital Systems Arithmetic Circuits Spring 25 Dae Hyun Kim daehyun@eecs.wsu.edu Arithmetic Circuits What we will learn Adders Basic High-speed 2 Adder -bit adder SSSSSS = AA BB CCCC CCCC =

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα