Απορρόφηση Αερίων (2)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Απορρόφηση Αερίων (2)"

Transcript

1 Απορρόφηση Αερίων (2) Λεπτομερής Ανάλυση Θεωρούμε έναν πύργο απορρόφησης που μπορεί να περιέχει δίσκους ή να είναι τύπου πληρωτικού υλικού ή άλλου τύπου. Τελικός σκοπός είναι να βρούμε το μέγεθος του πύργου. Αν είναι τύπου με δίσκους πρέπει να βρούμε τον αριθμό τους, Ν. Αν είναι άλλου τύπου, μπορούμε να θεωρήσουμε ισοδύναμες βαθμίδες ή μονάδες μεταφοράς, δηλ. φανταζόμαστε τον πύργο διαιρεμένο σε ισοϋψή τμήματα που το καθένα εκτελεί ένα μέρος της μεταφοράς μάζας όπως θα έκανε ένας πραγματικός δίσκος στη θέση του. Μπορεί να προσδιοριστεί το ύψος ενός τέτοιου τμήματος ή βαθμίδας ή η απόσταση μεταξύ πραγματικών δίσκων, έτσι ώστε τελικά να γνωρίζουμε το ύψος του πύργου που πρέπει να κατασκευάσουμε. Η διάμετρος του δίσκου μπορεί επίσης να υπολογιστεί με βάση τις παροχές που απαιτούνται για το ζητούμενο διαχωρισμό και τις ανάγκες της διεργασίας. Εδώ, θα ασχοληθούμε κυρίως με τον προσδιορισμό του αριθμού βαθμίδων ενός πύργου απορρόφησης. Όσον αφορά το συμβολισμό, θεωρούμε μία διατομή του πύργου όπως στο Σχ. 1, η οποία μπορεί να αντιστοιχεί σε ένα πραγματικό δίσκο ή μία μονάδα μεταφοράς, ανάλογα με τον τύπο συσκευής και έστω ότι αυτή είναι η υπ' αριθ. n βαθμίδα. Τότε, τα ρεύματα της υγρής και αέριας φάσης που εξέρχονται από αυτή τη βαθμίδα, καθώς και οι αντίστοιχες συστάσεις, αριθμούνται επίσης με το δείκτη n και η αρίθμηση αυξάνεται κατά τη φορά της κίνησης των ρευμάτων βλ. Σχ. 1. Σχ. 1 Σύμβαση αρίθμησης ρευμάτων και αντίστοιχων συστάσεων σε πύργους απορρρόφησης. Αν θεωρήσουμε τον πύργο απορρόφησης που απεικονίζεται στο Σχ. 2, τότε, εφαρμόζοντας και την παραπάνω σύμβαση αρίθμησης, μπορούμε να γράψουμε τα ισοζύγια για όλο τον πύργο ως εξής: Ολικό ισοζύγιο: G 1 + L N = G N+1 + L 0 Μερικό ισοζύγιο: y 1 G 1 + y N L N = y n+1 G N+1 + y 0 L 0 Για αραιά διαλύματα θα ισχύει G 1 G N+1 G και L 0 L N L. Θεωρούμε έναν όγκο ελέγχου (διακεκκομένη γραμμή στο Σχ. 2) που ορίζεται από τη διατομή 1 και μια τυχούσα διατομή κάπου στον πύργο, από την οποία διέρχονται τα ρεύματα G και L. Τότε, τα ισοζύγια γράφονται: Ολικό ισοζύγιο: G 1 + L = G + L 0 Μερικό ισοζύγιο: y 1 G 1 + y L = y G + y 0 L 0

2 Λύνοντας ως προς y βρίσκουμε τη γραμμή λειτουργίας και αν θεωρήσουμε αραιά μείγματα, αυτή έχει τη μορφή: y = (L/G) x + y 1 (L/G) x 0 Όπως ξέρουμε, αυτό που προκαλεί τη μεταφορά μάζας, δηλαδή η κινητήρια δύναμη της διεργασίας, είναι η διαφορά μεταξύ των συστάσεων ισορροπίας και αυτών που υπάρχουν πραγματικά στις δύο φάσεις. Για παράδειγμα, στην αέρια φάση έχουμε σύσταση y αντί για σύσταση ισορροπίας y eq και η διαφορά y y eq > 0 δρα ως κινητήρια δύναμη και έχουμε μεταφορά διαλυτού συστατικού από την αέρια στην υγρή φάση μέχρι η σύσταση να πέσει σε y eq. Αλλά και στην υγρή φάση, αν π.χ. θεωρήσουμε ότι ξεκινάμε με καθαρό διαλύτη (x = 0), αυτός ερχόμενος σε επαφή με το αέριο, θα απορροφά συστατικό όσο η σύσταση του είναι μικρότερη από κάποια τιμή ισορροπίας x eq οπότε και θα επέλθει δυναμική ισορροπία. Η ισορροπία προς την οποία τείνει το σύστημα περιγράφεται, για αραιά συστήματα, από το νόμο του Henry που μας δίνει την καμπύλη ισορροπίας: y eq = m x eq Σχ. 2 Πύργος απορρόφησης με Ν βαθμίδες. Η αρίθμηση γίνεται από την κορυφή προς τη βάση του πύργου. Έτσι, μαζί με τη γραμμή λειτουργίας, έχουμε δύο εξισώσεις στη διάθεσή μας που μπορούν να μας βοηθήσουν να λύσουμε το πρόβλημα διαστασιολόγησης της συσκευής απορρόφησης. Για να δούμε πώς ακριβώς γίνεται αυτό, ας αναλύσουμε αυτό που συμβαίνει όταν οι δύο φάσεις έρχονται σε επαφή. Σχ. 3 Θεωρητική βαθμίδα σε πύργο πληρώσεως.

3 Αν έχουμε πύργο με δίσκους, τότε σε κάθε δίσκο, τα δύο ρεύματα που έρχονται σε επαφή, τείνουν να έλθουν σε ισορροπία μεταξύ τους αλλά δε φτάνουν (δεν έχουμε 100% απόδοση). Για τη θεωρητική ανάλυση όμως θα πάρουμε την ιδανική περίπτωση όπου με την έξοδό τους από κάθε βαθμίδα, έχουν μόλις φτάσει σε ισορροπία. Επίσης, όταν έχουμε άλλους τύπους πύργων απορρόφησης (πληρωτικού υλικού, με ψεκασμό) θα ορίσουμε ως βαθμίδα ακριβώς εκείνο το τμήμα ή «φέτα» του πύργου όπου η κινητήρια δύναμη «καλύπτεται» δηλαδή η μεταβολή της σύστασης ενός ρεύματος ισούται με την απόκλιση από τη σύσταση ισορροπίας κατά την είσοδό του στο τμήμα αυτό. Άρα, έχουμε την εικόνα του Σχήματος 3. Τα ρεύματα εισέρχονται με συστάσεις που διαφέρουν από αυτές της ισορροπίας και καθώς διέρχονται μέσα από τη βαθμίδα ύψους Δh μεταφέρεται μάζα από το ένα στο άλλο και τελικά, κατά τη στιγμή της εξόδου τους από τη βαθμίδα έχουν φτάσει σε ισορροπία. Άρα, θεωρούμε ότι τα εξερχόμενα ρεύματα είναι σε ισορροπία μεταξύ τους και οι συστάσεις τους συνδέονται από μία σχέση της μορφής y out = m x out. Αντίστοιχα, είναι εύκολο να διαπιστώσουμε με τη βοήθεια των σχετικών εξισώσεων, ότι οι συστάσεις των ρευμάτων που βρίσκονται από την ίδια πλευρά της βαθμίδας, συνδέονται από τη σχέση που περιγράφει τη γραμμή λειτουργίας: y in = (L/G) x out + y 1 (L/G) x 0 Αν βλέπαμε σε μεγέθυνση τη «φέτα» του πληρωτικού υλικού και σχεδιάζαμε το προφίλ των συγκεντρώσεων του διαλυτού συστατικού στο υγρό και στο αέριο ρεύμα, θα παίρναμε την εικόνα του Σχήματος 4: Σχ. 4 Μεταβολή προφίλ συγκεντρώσεων στην υγρή και την αέρια φάση κατά μήκος βαθμίδας πύργου απορρόφησης με πληρωτικό υλικό. Τα διακεκκομένα βέλη υποδηλώνουν τη σταδιακή μεταφορά του διαλυτού συστατικού από την αέρια στην υγρή φάση. Ισχύει: y in > x out συνεπάγεται διάλυση στο υγρό y out > x in συνεπάγεται διάλυση στο υγρό y > x συνεπάγεται διάλυση στο υγρό Αλλά επίσης: x in < x < x out και y out < y < y in, δηλαδή το ανερχόμενο αέριο χάνει διαλυτό συστατικό και το κατερχόμενο υγρό εμπλουτίζεται σε αυτό.

4 Θεωρώ ότι η «φέτα» του πληρωτικού υλικού έχει ύψος Δh τέτοιο ώστε να επέλθει ισορροπία στα εξερχόμενα από αυτή ρεύματα, δηλαδή y out = m x out. Αυτή τότε, είναι η βαθμίδα ισορροπίας ή μονάδα μεταφοράς. Θεωρώ ότι εντός της βαθμίδας, το ρεύμα G έρχεται εξ ολοκλήρου σε επαφή με το L μέχρι να έρθουν σε ισορροπία, δηλ σα να έχω μια διεργασία τριών σταδίων: είσοδος των ρευμάτων με συστάσεις μακράν της ισορροπίας, επαφή μέχρι να αποκασταθεί η ισορροπία και έξοδος των ρευμάτων σε ισορροπία. Αυτό βέβαια, είναι μια θεωρητική αφαίρεση όπου προβαίνουμε για να αναδείξουμε τα ουσιώδη χαρακτηριστικά της διεργασίας. Αφού η σύσταση του αερίου είναι μεγαλύτερη από αυτή της ισορροπίας, y > y eq, για να έχουμε μεταφορά μάζας από το αέριο στο υγρό, συνεπάγεται ότι σε ένα διάγραμμα y-x των συστάσεων, η γραμμή λειτουργίας θα είναι πάνω από τη γραμμή ισορροπίας ενώ το αντίθετο θα ισχύει για μια διεργασία εκρόφησης. Το ζητούμενο, όπως είπαμε, είναι να προσδιοριστεί ο αριθμός των βαθμίδων ή μονάδων μεταφοράς. Αυτό μπορεί να γίνει με δύο τρόπους: γραφικά και αναλυτικά. Όταν οι σχέσεις για τη γραμμή λειτουργίας και την καμπύλη ισορροπίας είναι γραμμικές, ο αναλυτικός υπολογισμός καταλήγει σε μια κλειστή μαθηματική έκφραση. Γενικά, πάντως, η λογική είναι ότι δουλεύουμε αναδρομικά, δηλ. βρίσκουμε τις συστάσεις ισορροπίας στη μια βαθμίδα, από αυτή πάμε στις συστάσεις της επόμενης για να βρούμε τις αντίστοιχες για την ισορροπία κ. ο. κ. μέχρι να καλύψουμε όλο το εύρος των συστάσεων που μας ενδιαφέρουν από τη ζητούμενη σύσταση εξόδου μέχρι τη δεδομένη σύσταση εισόδου. Η γραφική μέθοδος απεικονίζεται με ένα παράδειγμα στο Σχήμα 5. Σχ. 5 Γραφική μέθοδος υπολογισμού βαθμίδων πύργου απορρόφησης Θεωρούμε ένα αέριο μείγμα σύστασης y (στο συγκεκριμένο παράδειγμα θα θεωρήσουμε ότι είναι ίση με τη y N+1 του σχήματος) που έρχεται σε επαφή με διαλύτη σύστασης x 0 και ζητείται η τελική σύσταση του εξερχόμενου αερίου να έχει πέσει στην τιμή y 1. Το εξερχόμενο ρεύμα με αυτή τη

5 σύσταση θα είναι σε ισορροπία με κατερχόμενο υγρό σύστασης x 1 = y 1 /m. Αυτή μπορεί να βρεθεί και γραφικά φέροντας οριζόντια γραμμή στο ύψος της σύστασης y 1 μέχρι να συναντήσει την καμπύλη ισορροπίας (βλ. Σχήμα). Η σύσταση του υγρού με τη σειρά της μπορεί να δώσει τη σύσταση του ανερχόμενου αερίου από την επόμενη βαθμίδα, μέσω της γραμμής λειτουργίας. Αυτό μπορεί να γίνει γραφικά, φέροντας κατακόρυφη στη θέση x 1 μέχρι να συναντήσει τη γραμμή λειτουργίας. Έτσι προκύπτει ότι κάθε βαθμίδα ισορροπίας αντιστοιχεί σε ένα «σκαλοπάτι» ανάμεσα από τη γραμμή λειτουργίας και την καμπύλη ισορροπίας. Συνεχίζουμε τα «σκαλοπάτια» με την ίδια λογική και μέχρι να καταλήξουμε σε σύσταση αερίου ίση ή μεγαλύτερη από τη σύσταση εισόδου του αερίου. Εκεί σταματάμε και ο αριθμός των «σκαλιών» είναι ο ζητούμενος αριθμός βαθμίδων ισορροπίας του πύργου απορρόφησης. Η γραφική μέθοδος μπορεί να εφαρμοστεί ανεξάρτητα από το αν οι γραμμές λειτουργίας και ισορροπίας είναι ευθείες ή μη. Αν όμως είναι ευθείες, π.χ. επειδή θεωρούμε αραιά μείγματα, τότε μπορούμε να προβούμε και σε αναλυτικό υπολογισμό των βαθμίδων. Αυτό γίνεται ως εξής: Κατ`αρχήν ισχύει ότι y N 1 = L G x N y 1 L G x 0 (γραμμή λειτουργίας) Θέτουμε A= L G m και b= y 1 L G x 0= y 1 m A x 0 και η παραπάνω σχέση γίνεται: y N 1 =m A x N b Αλλά επίσης ισχύει: y N =m x N (καμπύλη ισορροπίας) επομένως: y N 1 = A y N b= A m A x N 1 b b= A A y N 1 b b= A 2 y N 1 A 1 b και εφαρμόζοντας το ίδιο σκεπτικό για τη σύσταση αερίου ή υγρού που εμφανίζεται κάθε φορά στο δεξί μέλος (χρήση της σχέσης ισορροπίας), βρίσκουμε: y N 1 = A N y 1 A N 1 A N 2... A 2 A 1 b y N 1 = A N Am x 0 b A N 1 A N 2... A 2 A 1 b y N 1 =m A N 1 x 0 A N A N 1 A N 2... A 2 A 1 b y N 1 =m A N 1 x 0 AN 1 1 A 1 b Αν αφαιρέσω κατά μέλη το m x 0 παίρνω παραγοντοποιήσιμη έκφραση: y N 1 m x 0 =m A N 1 x 0 AN 1 1 A 1 m x 0 y N 1 m x 0 =m x 0 A N 1 1 A N 1 1 A 1 b= A N 1 1 m x 0 b A 1 και επειδή b= y 1 m A x 0 συνεπάγεται ότι y N 1 m x 0 = A N 1 1 m x 0 y 1 m A x 0 = A N 1 1 y 1 m x 0 A 1 A 1 Σε αυτή την έκφραση, όλα εκτός από το Ν είναι γνωστά (συστάσεις εισόδου, απαιτούμενη προδιαγραφή για σύσταση εξόδου και σταθερά ισορροπίας m). Λύνουμε ως προς Α Ν+1 : άρα y N 1 m x 0 y 1 m x 0 A 1 = A N 1 1

6 A N = y N 1 m x y 1 m x 0 A 1 A και λογαριθμίζω για να βρω τον αριθμό Ν, των βαθμίδων: log[ y N 1 m x y 1 m x 0 A 1 A ] N = log A

Απορρόφηση Αερίων. 1. Εισαγωγή

Απορρόφηση Αερίων. 1. Εισαγωγή 1. Εισαγωγή Απορρόφηση Αερίων Πρόκειται για διαχωρισμό συστατικών από μείγμα αερίου με τη βοήθεια υγρού διαλύτη. Κινητήρια δύναμη είναι η διαφορά διαλυτότητας στο διαλύτη. Στη συνέχεια θα ασχοληθούμε με

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης

ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης Πρόβληµα 36. Μια υγρή τροφοδοσία 3,5 kg/s, που περιέχει µια διαλυτή ουσία Β διαλυµένη σε συστατικό Α, πρόκειται να διεργαστεί µε ένα διαλύτη S σε µια µονάδα επαφής καθ

Διαβάστε περισσότερα

Προβλήματα εκχύλισης

Προβλήματα εκχύλισης Προβλήματα εκχύλισης Πηγή: Μαρίνου-Κουρή, Παρλιάρου-Τσάμη, Ασκήσεις Φυσικών Διεργασιών, εκδ. Παπασωτηρίου, Αθήνα, 1994 1. Εκχύλιση ακετόνης από νερό με χλωροβενζόλιο σε μονοβάθμιο εκχυλιστήρα. 100 kg διαλύματος

Διαβάστε περισσότερα

Φυσικές Διεργασίες Πέμπτη Διάλεξη

Φυσικές Διεργασίες Πέμπτη Διάλεξη Φυσικές Διεργασίες Πέμπτη Διάλεξη Δευτέρα, 12 Μαΐου 2008 Απορρόφηση αερίων 1. Ορισμός Τι είναι απορρόφηση; Είναι μεταφορά μέσω της διεπιφάνειας αερίου-υγρού ενός συστατικού από αέριο μίγμα σε έναν υγρό

Διαβάστε περισσότερα

Εναλλαγή θερμότητας. Σχ. 4.1 (α) Διάταξη εναλλάκτη θερμότητας καθ` ομορροή (πάνω) και αντίστοιχο θερμοκρασιακό προφίλ (κάτω)

Εναλλαγή θερμότητας. Σχ. 4.1 (α) Διάταξη εναλλάκτη θερμότητας καθ` ομορροή (πάνω) και αντίστοιχο θερμοκρασιακό προφίλ (κάτω) Εναλλαγή θερμότητας Σχ. 4.1 (α) Διάταξη εναλλάκτη θερμότητας καθ` ομορροή (πάνω) και αντίστοιχο θερμοκρασιακό προφίλ (κάτω) Σχ. 4.1 (β) Διάταξη εναλλάκτη θερμότητας καντ` αντιρροή (πάνω) και αντίστοιχο

Διαβάστε περισσότερα

Energy resources: Technologies & Management

Energy resources: Technologies & Management Πανεπιστήμιο Δυτικής Μακεδονίας Energ resources: echnologies & Management Τεχνολογίες άνθρακα Σχεδιασμός Στηλών Απορρόφησης Αερίων Δρ. Γεώργιος Σκόδρας Αν. Καθηγητής Περιεχόμενα Η διάλεξη που ακολουθεί

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Σχεδιασμού, Ανάλυσης & Ανάπτυξης Διεργασιών και Συστημάτων ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διευθυντής: Ι.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης

ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης Πρόβληµα 1. Ένα µίγµα αερίων που περιέχει 65% του Α, 5% Β, 8% C και % D βρίσκεται σε ισορροπία µ' ένα υγρό στους 350 Κ και 300 kn/m. Αν η τάση ατµών των καθαρών συστατικών

Διαβάστε περισσότερα

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption Παράγοντες που Επηρεάζουν Διεργασία Απορρόφησης Συνήθως δίνονται: Ρυθμός

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013 ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013 1 Ισορροπία Φάσεων Ανάλογα με τη φύση των συστατικών του μίγματος (ή της ολικής πίεσης του συστήματος) οι τάσεις διαφυγής υπολογίζονται - ανάλογα

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΚΠΛΥΣΗΣ. Πρόβληµα 30. Η καυστική σόδα παράγεται µε την επεξεργασία ενός διαλύµατος ανθρακικού νατρίου σε νερό (25 kg/s Na 2

ΠΡΟΒΛΗΜΑΤΑ ΕΚΠΛΥΣΗΣ. Πρόβληµα 30. Η καυστική σόδα παράγεται µε την επεξεργασία ενός διαλύµατος ανθρακικού νατρίου σε νερό (25 kg/s Na 2 ΠΡΟΒΛΗΜΑΤΑ ΕΚΠΛΥΣΗΣ Πρόβληµα 30. Η καυστική σόδα παράγεται µε την επεξεργασία ενός διαλύµατος ανθρακικού νατρίου σε νερό (25 kg/s Na 2 CO 3 ) µε τη θεωρητική απαίτηση σε υδροξείδιο του ασβεστίου. Αφού

Διαβάστε περισσότερα

Κεφάλαιο 6 Απορρόφηση

Κεφάλαιο 6 Απορρόφηση Κεφάλαιο 6 Απορρόφηση Σύνοψη Απορρόφηση αεριών ονομάζεται η φυσική διεργασία απομάκρυνσης ενός ή περισσοτέρων συστατικών ενός αερίου ρεύματος προς ένα μη πτητικό υγρό, το οποίο διαλύει αυτό(α) το(α) συστατικό(α).

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/02/7 ΕΠΙΜΕΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

Ισοζύγια (φορτίου και μάζας) Εισαγωγική Χημεία

Ισοζύγια (φορτίου και μάζας) Εισαγωγική Χημεία Ισοζύγια (φορτίου και μάζας) Εισαγωγική Χημεία 03-4 Κατά την διάλυση C moles/l άλατος ΜΑ, το οποίο διΐσταται πλήρως στο νερό: Ισοζύγια μάζας Ισοζύγιο φορτίου Ισοζύγιο πρωτονίων Να υπολογισθούν οι συγκεντρώσεις

Διαβάστε περισσότερα

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης Γενικά, όταν έχουμε δεδομένα συγκέντρωσης-χρόνου και θέλουμε να βρούμε την τάξη μιας αντίδρασης, προσπαθούμε να προσαρμόσουμε τα δεδομένα σε εξισώσεις

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΥΓΡΗΣ ΕΚΧΥΛΙΣΗΣ Ελένη Παντελή, Υποψήφια Διδάκτορας Γεωργία Παππά, Δρ. Χημικός Μηχανικός

Διαβάστε περισσότερα

Λύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού.

Λύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού. Παράδειγμα 1 Μια εγκατάσταση καθαρισμού νερού απομακρύνει χλωριούχο βινύλιο (vinyl cloride) από μολυσμένα υπόγεια ύδατα σε θερμοκρασία 25 C και πίεση 850 mmhg χρησιμοποιώντας στήλη εκρόφησης κατ αντιρροή.

Διαβάστε περισσότερα

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6 Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6 Δευτέρα, 14 Απριλίου 008 Οικονομική Ανάλυση Βιομηχανιών και Διεργασιών 1 Εισαγωγή Αριστοποίηση: ενός κριτηρίου (αντικειμενικής συνάρτησης) πολυκριτηριακή

Διαβάστε περισσότερα

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction ΕΚΧΥΛΙΣΗ ΙΣΟΡΡΟΠΙΑΣ ΓΙΑ ΜΕΡΙΚΩΣ ΑΝΑΜΙΞΙΜΑ ΣΥΣΤΗΜΑΤΑ Τριγωνικές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U A A N A B P Y T A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Σωλήνας U Γ U= B Θ.Ι. B Κατακόρυφος ισοπαχής σωλήνας σχήματος U περιέχει ιδανικό υγρό, δηλαδή, υγρό που σε κάθε επιφάνεια ασκεί δυνάμεις κάθετες στην

Διαβάστε περισσότερα

Enrico Fermi, Thermodynamics, 1937

Enrico Fermi, Thermodynamics, 1937 I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -

Διαβάστε περισσότερα

ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ. Σχεδιασµός της Στήλης µε Χρήση ενός Προσοµοιωτή. K.A. Μάτης

ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ. Σχεδιασµός της Στήλης µε Χρήση ενός Προσοµοιωτή. K.A. Μάτης ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Σχεδιασµός της Στήλης µε Χρήση ενός Προσοµοιωτή K.A. Μάτης Εισαγωγή Στη διεργασία της απορρόφησης ένα αέριο µίγµα έρχεται σε επαφή µε ένα υγρό (το διαλύτη ή απορροφητικό) ώστε να διαλυθεί

Διαβάστε περισσότερα

1. Εγκάρσιο αρμονικό κύμα διαδίδεται σε γραμμικό ελαστικό μέσο προς τη θετική κατεύθυνση του άξονα

1. Εγκάρσιο αρμονικό κύμα διαδίδεται σε γραμμικό ελαστικό μέσο προς τη θετική κατεύθυνση του άξονα Γραφικές παραστάσεις της εξίσωσης του κύματος. Εγκάρσιο αρμονικό κύμα διαδίδεται σε γραμμικό ελαστικό μέσο προς τη θετική κατεύθυνση του άξονα O με ταχύτητα 0,8 m/s. To υλικό σημείο που βρίσκεται στην

Διαβάστε περισσότερα

Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Ερωτήσεις Επανάληψης

Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Ερωτήσεις Επανάληψης Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ Ερωτήσεις Επανάληψης 1 0.8 0.6 x D = 0.95 y 0.4 x F = 0.45 0.2 0 0 0.2 0.4 0.6 0.8 1 x B = 0.05 Σχήμα 1. Δεδομένα ισορροπίας y-x για δυαδικό μίγμα συστατικών Α και Β και οι

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o Στις ασκήσεις Κινητικής υπάρχουν αρκετοί τρόποι για να δουλέψουμε. Ένας από αυτούς είναι με τη σωστή χρήση των εξισώσεων θέσης (κίνησης) και ταχύτητας των σωμάτων που περιγράφονται. Τα βήματα που ακολουθούμε

Διαβάστε περισσότερα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα θερµοκρασία που αντιπροσωπεύει την θερµοκρασία υγρού βολβού. Το ποσοστό κορεσµού υπολογίζεται από την καµπύλη του σταθερού ποσοστού κορεσµού που διέρχεται από το συγκεκριµένο σηµείο. Η απόλυτη υγρασία

Διαβάστε περισσότερα

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑ 16_10_2012 ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ 2.1 Απεικόνιση του ανάγλυφου Μια εδαφική περιοχή αποτελείται από εξέχουσες και εισέχουσες εδαφικές μορφές. Τα εξέχοντα εδαφικά τμήματα βρίσκονται μεταξύ

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

1. Δύο σύγχρονες πηγές αρμονικών κυμάτων βρίσκονται σε δύο σημεία της επιφάνειας ενός υγρού δημιουργώντας

1. Δύο σύγχρονες πηγές αρμονικών κυμάτων βρίσκονται σε δύο σημεία της επιφάνειας ενός υγρού δημιουργώντας ΣΥΜΒΟΛΗ ΚΥΜΑΤΩΝ. Δύο σύγχρονες πηγές αρμονικών κυμάτων βρίσκονται σε δύο σημεία της επιφάνειας ενός υγρού δημιουργώντας εγκάρσια κύματα τα οποία διαδίδονται στην επιφάνεια του υγρού με ταχύτητα 0,5 m/s.

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία. Εισαγωγή Έστω ιδιότητα Ρ. ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ α) Ρ = Ρ(r, t) => μη μόνιμη, μεταβατική κατάσταση. β) P = P(r), P =/= P(t) => μόνιμη κατάσταση (μη ισορροπίας). γ) P =/= P(r), P(t) σε μακροσκοπικό χωρίο =>

Διαβάστε περισσότερα

Ερώτηση Α.1 (α) (β) www.arnos.gr info@arnos.co.gr

Ερώτηση Α.1 (α) (β) www.arnos.gr info@arnos.co.gr Ερώτηση Α.1 Σε μια κλειστή οικονομία οι αγορές αγαθών και χρήματος βρίσκονται σε ταυτόχρονη ισορροπία (υπόδειγμα IS-LM). Να περιγράψετε και να δείξετε διαγραμματικά το πώς θα επηρεάσει την ισορροπία των

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Κεφάλαιο 1. Κίνηση σε μία διάσταση

Κεφάλαιο 1. Κίνηση σε μία διάσταση Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΠΟΡΡΟΦΗΣΗ- ΕΚΡΟΦΗΣΗ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 4 ΑΠΟΡΡΟΦΗΣΗ- ΕΚΡΟΦΗΣΗ ΑΕΡΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΑΠΟΡΡΟΦΗΣΗ- ΕΚΡΟΦΗΣΗ ΑΕΡΙΩΝ Η απορρόφηση αερίων είναι η διεργασία κατά την οποία μία ή περισσότερες συνιστώσες ενός αέριου μείγματος διαλύονται κατά την επαφή με ένα υγρό (Beet & Mers, 96).

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΟΜΑΛΗ ΚΙΝΗΣΗ Θα ακολουθούμε για όλες τις περιπτώσεις την παρακάτω σειρά διαδικασιών: i) Προσεκτική μελέτη της εκφώνησης και εξακρίβωσης του είδους της κίνησης ii) Αναδρομή στη θεωρία, προσεκτική μελέτη

Διαβάστε περισσότερα

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ 68 Να γράψετε τον τύπο που δίνει το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα, όταν για κάθε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ Άσκηση 4. Διαφράγματα. Θεωρία Στο σχεδιασμό οπτικών οργάνων πρέπει να λάβει κανείς υπόψη και άλλες παραμέτρους πέρα από το πού και πώς σχηματίζεται το είδωλο ενός

Διαβάστε περισσότερα

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2 ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ 1 Μια κυλινδρική δεξαμενή ακτίνας 6m και ύψους h=5m είναι γεμάτη με νερό, βρίσκεται στην κορυφή ενός πύργου ύψους 45m και χρησιμοποιείται για το πότισμα ενός χωραφιού α Ποια η παροχή

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς ελατηρίου

Υπολογισμός της σταθεράς ελατηρίου Εργαστηριακή Άσκηση 6 Υπολογισμός της σταθεράς ελατηρίου Βαρσάμης Χρήστος Στόχος: Υπολογισμός της σταθεράς ελατηρίου, k. Πειραματική διάταξη: Κατακόρυφο ελατήριο, σειρά πλακιδίων μάζας m. Μέθοδος: α) Εφαρμογή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας ΦΥΣ102 1 Δυναμική Ενέργεια και διατηρητικές δυνάμεις

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΣΤΗΝ ΦΘΙΝΟΥΣΑ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΤΑΛΑΝΤΩΣΗ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΣΤΗΝ ΦΘΙΝΟΥΣΑ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΤΑΛΑΝΤΩΣΗ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΣΤΗΝ ΦΘΙΝΟΥΣΑ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΤΑΛΑΝΤΩΣΗ 1. Στο σπίτι μας που βρίσκεται στον πρώτο όροφο μιας μονοκατοικίας θέλουμε να κατασκευάσουμε έναν πρωτότυπο ανελκυστήρα

Διαβάστε περισσότερα

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 1.1 Φυσικές Διεργασίες Διαχωρισμού 20 1.1.1 Μια γενική εποπτεία της παραγωγικής Χημικής Βιομηχανίας 21 1.1.2 Σύντομος

Διαβάστε περισσότερα

ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής. Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά)

ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής. Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά) ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής (Σηµείωση: Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά) Η απόσταξη στηρίζεται στη διαφορά που υπάρχει στη σύσταση ισορροπίας των

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 5 ο μάθημα ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών 2 Διεργασίες που περιλαμβάνουν μια

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

Μία μηχανή μεγάλου κυβισμού κινείται σε ευθύγραμμο δρόμο με σταθερή ταχύτητα υ=36 Km/ h.

Μία μηχανή μεγάλου κυβισμού κινείται σε ευθύγραμμο δρόμο με σταθερή ταχύτητα υ=36 Km/ h. ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ (Ε.Φ.Β.Ε.) Θέματα Εξετάσεων Β τάξης Γυμνασίου 2/4/2017 Θέμα 1 ο Μία μηχανή μεγάλου κυβισμού κινείται σε ευθύγραμμο δρόμο με σταθερή ταχύτητα υ=36 Km/ h. Α. Να υπολογίσετε

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ. Το τρίχωμα της τίγρης εμφανίζει ποικιλία χρωμάτων επειδή οι αντιδράσεις που γίνονται στα κύτταρα δεν καταλήγουν σε χημική ισορροπία.

ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ. Το τρίχωμα της τίγρης εμφανίζει ποικιλία χρωμάτων επειδή οι αντιδράσεις που γίνονται στα κύτταρα δεν καταλήγουν σε χημική ισορροπία. ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ Το τρίχωμα της τίγρης εμφανίζει ποικιλία χρωμάτων επειδή οι αντιδράσεις που γίνονται στα κύτταρα δεν καταλήγουν σε χημική ισορροπία. Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 Μονόδρομες

Διαβάστε περισσότερα

ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ Equilibrium or Flash Distillation

ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ Equilibrium or Flash Distillation Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ Equilibrium or Flash Distillation ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ 1. ΟΡΙΣΜΟΣ ΣΚΟΠΟΣ ΔΙΕΡΓΑΣΙΑΣ

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΘΕΜΑ Α Α1. Δ Α2. Γ Α3. Α Α4. Δ Α5. α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β Β1. α) Σωστή η ii. β) Στη θέση ισορροπίας (Θ.Ι.) του σώματος ισχύει η συνθήκη ισορροπίας: ΣF=0

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό.

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό. Βασικές Εξισώσεις Σχεδιασμού (ΣΔΟΥΚΟΣ 2-, 2-) t = n i dn i V n i R και V = n i dn i t n i R Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση

Διαβάστε περισσότερα

Διαφορικοί Ενισχυτές

Διαφορικοί Ενισχυτές Διαφορικοί Ενισχυτές Γενικά: Ο Διαφορικός ενισχυτής (ΔΕ) είναι το βασικό δομικό στοιχείο ενός τελεστικού ενισχυτή. Η λειτουργία ενός ΔΕ είναι η ενίσχυση της διαφοράς μεταξύ δύο σημάτων εισόδου. Τα αρχικά

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 1. Σε δοχείο σταθερού όγκου και σε σταθερή θερμοκρασία, εισάγονται κάποιες ποσότητες των αερίων Η 2(g) και Ι 2(g) τα οποία αντιδρούν σύμφωνα με

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 1.1- Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 015.

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ Ι. ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου)

ΗΛΕΚΤΡΟΝΙΚΑ Ι. ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου) ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου) 1 FET Δομή και λειτουργία Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού ρεύματος είναι ενός

Διαβάστε περισσότερα

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης Αρχές μεταφοράς μάζας Αρχές σχεδιασμού συσκευών μεταφοράς μάζας Διεργασίες μεταφοράς μάζας - Απορρόφηση - Απόσταξη - Εκχύλιση

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Απρίλιος Λύση: Σύνοψη των δεδομένων: P = 6at, V = 0.6F, L = 0.4F, F = 1 kmol/s. Ζητούμενα: x Fi, x Li

Απρίλιος Λύση: Σύνοψη των δεδομένων: P = 6at, V = 0.6F, L = 0.4F, F = 1 kmol/s. Ζητούμενα: x Fi, x Li Φυσικές Διεργασίες Προβλήματα στην απόσταξη που λύθηκαν στην τάξη Πηγή: Δ. Μαρίνος-Κουρής, Ε. Παρλιάρου-Τσάμη, Ασκήσεις Φυσικών Διεργασιών, Παπασωτηρίου, Αθήνα 1994 Απρίλιος 2008 Πρόβλημα 1 Διαχωριστήρας

Διαβάστε περισσότερα

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

Στατιστική, Άσκηση 2. (Κανονική κατανομή) Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται

Διαβάστε περισσότερα

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Q1-1 Δύο προβλήματα Μηχανικής (10 Μονάδες) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Μέρος A. Ο Κρυμμένος Δίσκος (3.5 Μονάδες)

Διαβάστε περισσότερα

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m; ΘΕΜΑ Γ 1. Ένα σώμα εκτελεί αρμονική ταλάντωση με εξίσωση 0,6 ημ 8 S.I.. α. Να βρείτε την περίοδο και τον αριθμό των ταλαντώσεων που εκτελεί το σώμα σε ένα λεπτό της ώρας. β. Να γράψετε τις εξισώσεις της

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS Α. Αναστροφέας MOSFET. Α.1 Αναστροφέας MOSFET µε φορτίο προσαύξησης. Ο αναστροφέας MOSFET (πύλη NOT) αποτελείται από

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 8: Εκχύλιση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Τύποι εκχύλισης

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 12/09/2013

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 12/09/2013 ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: /09/0 ΘΕΜΑ ο (4 μονάδες Στον ενισχυτή του παρακάτω σχήματος, το τρανζίστορ πολώνεται με συμμετρικές πηγές τάσης V και V των V Για το τρανζίστορ δίνονται:

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης

Διαβάστε περισσότερα

Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ.1) με τα εξής χαρακτηριστικά: R 2.3 k,

Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ.1) με τα εξής χαρακτηριστικά: R 2.3 k, Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ) με τα εξής χαρακτηριστικά: 3 k, 50, k, S k και V 5 α) Nα υπολογιστούν οι τιμές των αντιστάσεων β) Να επιλεγούν οι χωρητικότητες C, CC έτσι ώστε ο ενισχυτής

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

Μελέτη της συνάρτησης ψ = α χ 2

Μελέτη της συνάρτησης ψ = α χ 2 Μελέτη της συνάρτησης ψ = α χ Η γραφική της παράσταση είναι μια καμπύλη που λέγεται παραβολή. Ανάλογα με το πρόσημο του α έχω και τα αντίστοιχα συμπεράσματα. αν α > 0 1) Η γραφική της παράσταση είναι πάνω

Διαβάστε περισσότερα

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου. ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύματα. Ομάδα Δ.

2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Α d B Γ d Δ t 0 E Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Για να έχουμε επιτάχυνση, τι από τα παρακάτω πρέπει να συμβαίνει: i) Το μέτρο της ταχύτητας να

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 36, Δάφνη Τηλ. 10 9713934 & 10 9769376 ΘΕΜΑ Α ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ 1 ΤΥΠΟΛΟΓΙΟ ΚΥΜΑΤΩΝ ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ Μήκος κύματος Ταχύτητα διάδοσης Συχνότητα Εξίσωση αρμονικού κύματος Φάση αρμονικού κύματος Ταχύτητα ταλάντωσης, Επιτάχυνση Κινητική Δυναμική ενέργεια ταλάντωσης

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΗΛΕΚΤΡΟΛΟΙΑ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α. ια τις ημιτελείς προτάσεις Α. έως Α.4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα σε κάθε αριθμό,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ.

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ. ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15-1-017 ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ. ΒΑΘΜΟΣ: /100, /0 Θέμα 1ο 1. Αν η εξίσωση ενός αρμονικού κύματος είναι y =10ημ(6πt

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις

Διαβάστε περισσότερα