ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013"

Transcript

1 ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ,

2 Ισορροπία Φάσεων Ανάλογα με τη φύση των συστατικών του μίγματος (ή της ολικής πίεσης του συστήματος) οι τάσεις διαφυγής υπολογίζονται - ανάλογα και με τη φάση - ως: Μη πολικά συστατικά Υψηλές πιέσεις: όπου οι συντελεστές τάσης διαφυγής υπολογίζονται με κυβικές καταστατικές εξισώσεις (π.χ. PR ή SRK). Antone με Vral με, s s v P φ φ P x f P y f L l v v φ φ = = s s l v v Pe P x f P y f ) ( φ γ φ = = l v f = f x y = K Η βασική εξίσωση για όλους τους υπολογισμούς ισορροπίας φάσεων ατμούυγρού είτε σε υψηλές είτε σε χαμηλές πιέσεις είναι η ισότητα των τάσεων διαφυγής για όλα τα συστατικά του μίγματος: Η ποσοτική περιγραφή της ισορροπίας ατμού-υγρού εκφράζεται συνήθως με τους λόγους ισορροπίας K : Πολικά συστατικά - Χαμηλές πιέσεις: όπου : UNIFAC Van Laar, Wlson, με ) ( exp ) ( s l P P RT v Pe γ = 2

3 Οι βασικοί υπολογισμοί που ενδιαφέρουν τον χημικό μηχανικό είναι οι ακόλουθοι : σημείο φυσαλίδας σημείο δρόσου εκτόνωση (flash) αποστακτικές στήλες 3

4 ΜΕΤΑΒΛΗΤΕΣ ΣΧΕΔΙΑΣΜΟΥ Σε κάθε φυσικό σύστημα ορίζονται: Ν Μ Ν Π : Ο συνολικός αριθμός των Μεταβλητών : Ο συνολικός αριθμός των Περιορισμών (εξισώσεων) Οι βαθμοί ελευθερίας (Ν Ε ) ή μεταβλητές σχεδιασμού ή ελεύθερες μεταβλητές είναι: ΜΕΤΑΒΛΗΤΕΣ ΣΧΕΔΙΑΣΜΟΥ 4 Ν Ε = Ν Μ Ν Π Ο καθορισμός των μεταβλητών σχεδιασμού είναι ένα από τα δυσκολότερα θέματα κατά το σχεδιασμό ενός συστήματος. Απαιτεί γνώσεις, εμπειρία και εφευρετικότητα. Συνήθως οι μεταβλητές σχεδιασμού επιλέγονται ώστε να ικανοποιούνται παράγοντες όπως: Ελαχιστοποίηση του συνολικού κόστους Ασφάλεια της εγκατάστασης Προστασία του περιβάλλοντος Ευκολία στη λειτουργία του συστήματος Ευκολία στη συντήρηση του συστήματος Προσαρμογή σε υπάρχοντα εξοπλισμό Πρόβλεψη για δυνατότητα επεκτάσεων ή μετατροπών Αλλά και ευκολία στην επίλυση του συστήματος των εξισώσεων, κ.α. Οι βέλτιστες τιμές τους προσδιορίζονται με χρήση συναρτήσεων κόστους (ή κέρδους) των οποίων επιζητούμε την ελαχιστοποίηση (ή μεγιστοποίηση).

5 ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΣΥΣΤΗΜΑΤΟΣ ΣΕ Ι.Φ. Έστω ένα σύστημα Ν Φ φάσεων σε ισορροπία. Κάθε φάση περιέχει Ν Σ συστατικά. ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΣΥΣΤΗΜΑΤΟΣ ΣΕ Ι.Φ. Προσδιορισμός Μεταβλητών Ν Μ Κάθε φάση σε ορισμένη πίεση και θερμοκρασία είναι πλήρως ορισμένη όταν οριστούν οι Ν Σ -1 συστάσεις της. Άρα για το σύστημα των Ν Φ φάσεων πρέπει να οριστούν Ν Μ μεταβλητές: Ν Μ = Ν Φ (Ν Σ -1) + 2 (Το 2 για την κοινή πίεση και θερμοκρασία των φάσεων) Προσδιορισμός Περιορισμών (Εξισώσεων) Ν Π Κάθε συστατικό βρίσκεται σε ισορροπία σε όλες τις φάσεις. Άρα πρέπει να γραφούν Ν Φ -1 εξισώσεις ισορροπίας. Συνεπώς για τα Ν Σ συστατικά ο συνολικός αριθμός περιορισμών (εξισώσεων) Ν Π, είναι: Ν Π = Ν Σ (Ν Φ -1) Προσδιορισμός Μεταβλητών Σχεδιασμού Ν Ε 5 Οι βαθμοί ελευθερίας (Ν Ε ) ή μεταβλητές σχεδιασμού ή ελεύθερες μεταβλητές είναι: Ν Ε = Ν Μ Ν Π = Ν Σ Ν Φ + 2 (Κανόνας των Φάσεων του Gbbs: F=C-P+2).

6 ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΑΠΛΩΝ ΜΟΝΑΔΩΝ ΟΡΙΣΜΟΙ 6 Ν Ε : Οι βαθμοί ελευθερίας (μεταβλητές σχεδιασμού) ενός απλού στοιχείου ή μονάδας Ν Μ Ν Π : Ο συνολικός αριθμός των Μεταβλητών: συστάσεις, θερμοκρασίες, πιέσεις, παροχές : Ο συνολικός αριθμός των Περιορισμών (εξισώσεων): Ισοζύγια μάζας Ισοζύγια ενέργειας Εξισώσεις ισορροπίας Ενδογενείς περιορισμοί (πχ ίδιες θερμοκρασίες ρευμάτων σε Ι.Φ)

7 ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΑΠΛΗ ΜΟΝΑΔΑ ΠΕΡΙΓΡΑΦΗ ΜΕΤΑΒΛΗΤΕΣ (Ν Μ ) ΠΕΡΙΟΡΙΣΜΟΙ (Ν Π ) ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ - ΜΕΤΑΒΛΗΤΕΣ ΣΧΕΔΙΑΣΜΟΥ (Ν Ε = Ν Μ Ν Π ) ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ 7 ΑΠΛΟ ΡΕΥΜΑ (ΜΙΑ ΦΑΣΗ) Ν Σ ΣΥΣΤΑΤΙΚΑ ΑΝΑΜΙΚΤΗΣ ΡΕΥΜΑΤΩΝ ΔΙΑΧΩΡΙΣΤΗΣ ΡΕΥΜΑΤΟΣ Ν Σ +2 Συστάσεις (Ν Σ -1) Θερμοκρασία Πίεση Παροχή 3 (Ν Σ +2) + 1 Ν Σ + 1 Συστάσεις (Ν Σ -1), Θερμοκρασία, Πίεση, Παροχή των 3 ρευμάτων Θερμότητα (1) Ισοζύγια μάζας (N Σ ) Ισοζύγιο ενέργειας (1) 3 (Ν Σ +2) Ν Σ + 2 Συστάσεις (Ν Σ -1), Θερμοκρασία, Πίεση, Παροχή των 3 ρευμάτων Θερμότητα (1) 0 Ν Σ +2 - Ίδια σύσταση και στα 3 ρεύματα [2 (N Σ -1)] - Κοινές P, T στα ρεύματα εξόδου (2) - Ολικό ισοζύγιο μάζας (1) - Ισοζύγιο ενέργειας (1) 2 Ν Σ + 6 Ν Σ + 5

8 ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΑΠΛΗ ΜΟΝΑΔΑ ΠΕΡΙΓΡΑΦΗ ΜΕΤΑΒΛΗΤΕΣ (Ν Μ ) ΠΕΡΙΟΡΙΣΜΟΙ (Ν Π ) ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ - ΜΕΤΑΒΛΗΤΕΣ ΣΧΕΔΙΑΣΜΟΥ (Ν Ε = Ν Μ Ν Π ) ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΔΟΧΕΙΟ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ ΔΙΑΧΩΡΙΣΤΗΣ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ 2 Ν Σ Ν Σ Συστάσεις των 2 Φάσεων: 2(Ν Σ -1) Θερμοκρασία Πίεση Εξισώσεις ισορροπίας φάσεων των συστατικών (N Σ ) Ν Σ 3 (Ν Σ +2) Ν Σ + 3 Ν Σ + 4 Συστάσεις (Ν Σ -1), Θερμοκρασία, Πίεση, Παροχή των 3 ρευμάτων: 3(Ν Σ +2) Θερμότητα (1) Ισοζύγια μάζας συστατικών (Ν Σ ) Εξισώσεις ισορροπίας φάσεων των συστατικών (N Σ ) Κοινές P, T στα ρεύματα εξόδου (2) Ισοζύγιο ενέργειας (1) Τυπικά είναι γνωστό το ρεύμα της τροφοδοσίας (Ν Σ +2) και είτε τα P,T είτε κάποιες συστάσεις ή ανακτήσεις στα προϊόντα 8

9 ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΑΠΛΗ ΜΟΝΑΔΑ ΠΕΡΙΓΡΑΦΗ ΜΕΤΑΒΛΗΤΕΣ (Ν Μ ) ΠΕΡΙΟΡΙΣΜΟΙ (Ν Π ) ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ - ΜΕΤΑΒΛΗΤΕΣ ΣΧΕΔΙΑΣΜΟΥ (Ν Ε = Ν Μ Ν Π ) ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΟΛΙΚΟΣ ΣΥΜΠΥΝΚΩΤΗΡΑΣ ή ΑΝΑΒΡΑΣΤΗΡΑΣ ΜΕΡΙΚΟΣ ΣΥΜΠΥΝΚΩΤΗΡΑΣ ή ΑΝΑΒΡΑΣΤΗΡΑΣ (Ισοδυναμεί με διαχωριστή ισορροπίας φάσεων) 2 (Ν Σ +2) + 1 Ν Σ + 1 Συστάσεις, Τ, P, F των 2 ρευμάτων: 2(Ν Σ +2) Θερμότητα Ισοζύγια μάζας συστατικών (Ν Σ ) Ισοζύγιο ενέργειας (1) Ν Σ (Ν Σ +2) Ν Σ + 3 Ν Σ + 4 Συστάσεις (Ν Σ -1), Θερμοκρασία, Πίεση, Παροχή των 3 ρευμάτων: 3(Ν Σ +2) Θερμότητα (1) Ισοζύγια μάζας συστατικών (Ν Σ ) Εξισώσεις ισορροπίας φάσεων των συστατικών (N Σ ) Κοινές P, T στα ρεύματα εξόδου (2) Ισοζύγιο ενέργειας (1) Τυπικά είναι γνωστό το ένα ρεύμα εξόδου (Ν Σ +2) και τα P, T 9

10 ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΑΠΛΗ ΜΟΝΑΔΑ ΠΕΡΙΓΡΑΦΗ ΜΕΤΑΒΛΗΤΕΣ (Ν Μ ) ΠΕΡΙΟΡΙΣΜΟΙ (Ν Π ) ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ - ΜΕΤΑΒΛΗΤΕΣ ΣΧΕΔΙΑΣΜΟΥ (Ν Ε = Ν Μ Ν Π ) 4 (Ν Σ +2) Ν Σ + 3 ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ 10 ΒΑΘΜΙΔΑ ΙΣΟΡΡΟΠΙΑΣ ΔΙΣΚΟΣ ΤΡΟΦΟΔΟΣΙΑΣ Συστάσεις, Τ, P, F των 4 ρευμάτων: 4(Ν Σ +2) Θερμότητα (Q) Ισοζύγια μάζας συστατικών (Ν Σ ) Εξισώσεις ισορροπίας φάσεων των συστατικών (N Σ ) Κοινές P, T στα ρεύματα εξόδου (2) Ισοζύγιο ενέργειας (1) 5 (Ν Σ +2) Ν Σ + 3 Συστάσεις, Τ, P, F των 5 ρευμάτων: 5(Ν Σ +2) Θερμότητα (1) Ισοζύγια μάζας συστατικών (Ν Σ ) Εξισώσεις ισορροπίας φάσεων των συστατικών (N Σ ) Κοινές P, T στα ρεύματα εξόδου (2) Ισοζύγιο ενέργειας (1) 2 Ν Σ Ν Σ + 8

11 ΣΥΝΔΥΑΣΜΟΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ ΣΥΝΘΕΤΩΝ ΔΙΕΡΓΑΣΙΩΝ ΟΡΙΣΜΟΙ Ν Εολ : Οι βαθμοί ελευθερίας (μεταβλητές σχεδιασμού) της σύνθετης μονάδας Ν Α : Ο αριθμός των Αποφάσεων για το πόσες φορές επαναλαμβάνεται ένα στοιχείο ή μια απλή μονάδα. Π.χ. ορίζοντας τον αριθμό των βαθμίδων σε μια αποστακτική στήλη ή τη θέση της βαθμίδας τροφοδοσίας λαμβάνουμε μια απόφαση, δηλ Ν Α =1: Ν Π Μ : Ο συνολικός αριθμός των Μεταβλητών που ορίζονται δυο φόρες λόγω επικαλύψεων (π.χ. το ρεύμα εξόδου μιας μονάδας είναι ρεύμα εισόδου μιας άλλης) 11 Ν Εολ = ΣΝ Ε + N A - N M Π

12 ΠΥΡΓΟΣ ΑΠΟΡΡΟΦΗΣΗΣ ΜΕ ΔΙΣΚΟΥΣ 12 ΣΥΝΔΥΑΣΜΟΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ ΣΥΝΘΕΤΩΝ ΔΙΕΡΓΑΣΙΩΝ Αποτελείται από μια σειρά βαθμίδων ισορροπίας. Για κάθε βαθμίδα: Ν Ει = 2 Ν Σ + 6 Ορίζουμε τον αριθμό των βαθμίδων = n. Αυτό αποτελεί μια απόφαση, άρα N A =1 Για όλες τις βαθμίδες του πύργου ΣΝ Ε = n(2n Σ +6). Τα ρεύματα μεταξύ των διαδοχικών βαθμίδων μετρούνται δυο φορές (μία για κάθε βαθμίδα). Υπάρχουν n-1 χώροι μεταξύ των n βαθμίδων. Άρα τα επικαλυπτόμενα ρεύματα είναι: 2(n-1) και κάθε ρεύμα έχει (Ν Σ +2) μεταβλητές. Συνεπώς: Ν Π Μ = 2(n-1)(N Σ +2) Τελικά οι βαθμοί ελευθερίας για τον πύργο απορρόφησης (σύνθετη μονάδα) είναι: Ν Εολ = n(2ν Σ +6)+1-2(n-1)(N Σ +2) = 2Ν Σ +2n+5 Για να μπορεί να επιλυθεί ο προσομοιωτής του πύργου ορίζονται συνήθως: Αριθμός βαθμίδων: 1 Ρεύματα εισόδου (L o και V n+1 ) 2(Ν Σ +2) Απώλεια θερμότητας σε κάθε βαθμίδα (συνήθως q=0) n Πίεση σε κάθε βαθμίδα (συνήθως σταθερή) n ΣΥΝΟΛΟ 2Ν Σ +2n+5

13 ΣΥΝΔΥΑΣΜΟΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ ΣΥΝΘΕΤΩΝ ΔΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ 13 Χωρίζουμε τη στήλη σε έξι απλές μονάδες: 1. Ολικός συμπυκνωτήρας : Ν Ε1 =Ν Σ Διαχωριστής αναρροής : Ν Ε2 =Ν Σ Τμήμα εμπλουτισμού : Ν Ε3 =2Ν Σ +2m+5 (πύργος απορρόφησης με m βαθμίδες) 4. Βαθμίδα τροφοδοσίας : Ν Ε4 =3Ν Σ Τμήμα εξάντλησης : Ν Ε5 =2Ν Σ +2(n-m-2)+5 (πύργος απορρόφησης με [(n-1)-(m+1)] βαθμίδες) 6. Μερικός αναβραστήρας : Ν Ε6 =Ν Σ +4 ΣΝ E = 10N Σ +2n+27

14 ΣΥΝΔΥΑΣΜΟΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ ΣΥΝΘΕΤΩΝ ΔΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ 14 Υπάρχουν 9 ρεύματα που υπολογίζονται 2 φορές: Ν Μ Π =9(Ν Σ +2) Ο αριθμός αποφάσεων που εδώ παίρνουμε είναι: Ν Α =0 καθότι ο αριθμός των βαθμίδων στα τμήματα εμπλουτισμού και εξάντλησης έχει οριστεί κατά τον υπολογισμό των επιμέρους βαθμών ελευθερίας τους. Τελικά: Ν Εολ =ΣΝ E + Ν Α - Ν ΜΠ = 10N Σ +2n+27-9(Ν Σ +2) = Ν Σ +2n+9 Για να μπορεί να επιλυθεί ο προσομοιωτής της αποστακτικής στήλης ορίζονται συνήθως: Ρεύμα τροφοδοσίας (Ν Σ +2) Απώλεια θερμότητας σε κάθε βαθμίδα (συνήθως q=0) n-1 Απομάκρυνση θερμότητας στο διαχωριστή ρεύματος αναρροής 1 Πίεση σε κάθε βαθμίδα (συνήθως σταθερή) n Πίεση λειτουργίας (συμπυκνωτή) 1 Πίεση στο διαχωριστή ρεύματος αναρροής 1 ΣΥΝΟΛΟ Ν Σ +2n+4

15 ΣΥΝΔΥΑΣΜΟΣ ΑΠΛΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ ΣΥΝΘΕΤΩΝ ΔΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ 15 Ο ορισμός των υπόλοιπων 5 μεταβλητών εξαρτάται από το σκοπό της προσομοίωσης της στήλης: Α. Έλεγχος Δεδομένης στήλης (ελέγχουμε την ποιότητα προϊόντων για δεδομένη τροφοδοσία) Συνολικός αριθμός δίσκων 1 Θέση βαθμίδας τροφοδοσίας 1 Παροχή αποστάγματος 1 Θερμοκρασία αναρροής 1 Μέγιστη επιτρεπόμενη ροή ατμών 1 Β. Σχεδιασμός νέας αποστακτικής στήλης Ο αριθμός των δίσκων και η θέση της τροφοδοσίας είναι ζητούμενα. Αντί αυτών, όπως και αντί της παροχής αποστάγματος, μπορούμε να ορίσουμε την ανάκτηση ή τη συγκέντρωση κάποιων συστατικών στο απόσταγμα ή στο υπόλειμμα.

16 16 Αποστακτικές στήλες

17 17 Ροή ρευστών σε αποστακτική στήλη με δίσκους

Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013

Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013 Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013 1 ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ ΘΧΜ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των απαραίτητων υπολογιστικών-μεθοδολογικών

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΙΦ - ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013

ΒΑΣΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΙΦ - ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013 ΒΑΣΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΙΦ - ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013 1 Βασικοί Υπολογισμοί Ισορροπίας Φάσεων Ατμών Υγρού Οι βασικοί υπολογισμοί που ενδιαέρουν τον χημικό μηχανικό είναι οι ακόλουθοι : σημείο

Διαβάστε περισσότερα

Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Ερωτήσεις Επανάληψης

Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Ερωτήσεις Επανάληψης Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ Ερωτήσεις Επανάληψης 1 0.8 0.6 x D = 0.95 y 0.4 x F = 0.45 0.2 0 0 0.2 0.4 0.6 0.8 1 x B = 0.05 Σχήμα 1. Δεδομένα ισορροπίας y-x για δυαδικό μίγμα συστατικών Α και Β και οι

Διαβάστε περισσότερα

Αυτόματη ρύθμιση αποστακτικών στηλών

Αυτόματη ρύθμιση αποστακτικών στηλών Αυτόματη ρύθμιση αποστακτικών στηλών Στόχοι-Αναγκαιότητα Παραγωγή προϊόντων επιθυμητών προδιαγραφών και ποσοτήτων Ασφάλεια εγκατάστασης (όρια πίεσης και θερμοκρασίας) Διατήρηση λειτουργικών συνθηκών (αποφυγή

Διαβάστε περισσότερα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ Μ. Κροκίδα ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓ. ΣΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Βασικές αρχές Η διεργασία της απόσταξης στηρίζεται

Διαβάστε περισσότερα

Πρόρρηση Ισορροπίας Φάσεων. Υψηλές Πιέσεις

Πρόρρηση Ισορροπίας Φάσεων. Υψηλές Πιέσεις Πρόρρηση Ισορροπίας Φάσεων Υψηλές Πιέσεις 1 Ισορροπία Φάσεων Η βασική εξίσωση για όλους τους υπολογισμούς ισορροπίας φάσεων ατμού-υγρού είτε σε υψηλές είτε σε χαμηλές πιέσεις είναι η ισότητα των τάσεων

Διαβάστε περισσότερα

3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ

3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ 3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 23.12.2015 ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ Ένα τυπικό φυσικό αέριο έχει την ακόλουθη σύσταση σε % mol: 0.5% Ν 2,

Διαβάστε περισσότερα

ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ Equilibrium or Flash Distillation

ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ Equilibrium or Flash Distillation Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ Equilibrium or Flash Distillation ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ 1. ΟΡΙΣΜΟΣ ΣΚΟΠΟΣ ΔΙΕΡΓΑΣΙΑΣ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Σχεδιασμού, Ανάλυσης & Ανάπτυξης Διεργασιών και Συστημάτων ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διευθυντής: Ι.

Διαβάστε περισσότερα

Ογκομετρική (PVT) συμπεριφορά καθαρών ρευστών

Ογκομετρική (PVT) συμπεριφορά καθαρών ρευστών Ογκομετρική (PT) συμπεριφορά καθαρών ρευστών Ογκομετρική (PvT) συμπεριφορά Α.Θ Παπαϊωάννου, Θερμοδυναμική: ΤΟΜΟΣ I, Αθήνα, 007 PvT ιάγραμμα για το νερό 3 ιαγράμματα φάσεων καθαρών ουσιών Α.Θ. Παπαϊωάννου,

Διαβάστε περισσότερα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ Μ. Κροκίδα ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓ. ΣΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διαφορική (batch) Rectifying column Stripping column

Διαβάστε περισσότερα

ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής. Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά)

ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής. Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά) ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής (Σηµείωση: Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά) Η απόσταξη στηρίζεται στη διαφορά που υπάρχει στη σύσταση ισορροπίας των

Διαβάστε περισσότερα

Είδη ΙΦΥΥ δυαδικών μιγμάτων

Είδη ΙΦΥΥ δυαδικών μιγμάτων Είδη ΙΦΥΥ δυαδικών μιγμάτων T A X 1 X 1 ΙΦΥΥ τριαδικών μιγμάτων Τριγωνικά διαγράμματα C 0.1 0.2 0.3 0.4 0.5 P 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.6 0.7 0.8 0.9 κλάσμα βάρους του B κλάσμα βάρους του C

Διαβάστε περισσότερα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ Μ. Κροκίδα ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓ. ΣΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Στόχος: Επεξεργασία συγκεκριμένης τροφοδοσίας (ροή

Διαβάστε περισσότερα

Απρίλιος Λύση: Σύνοψη των δεδομένων: P = 6at, V = 0.6F, L = 0.4F, F = 1 kmol/s. Ζητούμενα: x Fi, x Li

Απρίλιος Λύση: Σύνοψη των δεδομένων: P = 6at, V = 0.6F, L = 0.4F, F = 1 kmol/s. Ζητούμενα: x Fi, x Li Φυσικές Διεργασίες Προβλήματα στην απόσταξη που λύθηκαν στην τάξη Πηγή: Δ. Μαρίνος-Κουρής, Ε. Παρλιάρου-Τσάμη, Ασκήσεις Φυσικών Διεργασιών, Παπασωτηρίου, Αθήνα 1994 Απρίλιος 2008 Πρόβλημα 1 Διαχωριστήρας

Διαβάστε περισσότερα

Ανάπτυξη στατικού προτύπου επίλυσης προβλημάτων αξιολόγησης αποστακτικών στηλών.

Ανάπτυξη στατικού προτύπου επίλυσης προβλημάτων αξιολόγησης αποστακτικών στηλών. Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Χημικών Μηχανικών Τομέας ΙΙ : Ανάλυσης, Σχεδιασμού και Ανάπτυξης Διεργασιών και Συστημάτων Ανάπτυξη στατικού προτύπου επίλυσης προβλημάτων αξιολόγησης αποστακτικών στηλών.

Διαβάστε περισσότερα

Τεχνοοικονομική Μελέτη

Τεχνοοικονομική Μελέτη Τμήμα Μηχανολόγων Μηχανικών Τεχνοοικονομική Μελέτη Ενότητα 10: Σχεδιασμός εγκαταστάσεων Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ

ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ Έργο - Θερμότητα ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΞΩΤΕΡΙΚΗ (Κινητική, Δυναμική) ΕΣΩΤΕΡΙΚΗ (Εσωτερική [U], Ενθαλπία [Η]) Χαρακτηριστικά και Σύμβαση

Διαβάστε περισσότερα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ Μ. Κροκίδα ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓ. ΣΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Ορισμός Βασικές έννοιες Απόσταξη (Distillation) είναι

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΥΓΡΗΣ ΕΚΧΥΛΙΣΗΣ Ελένη Παντελή, Υποψήφια Διδάκτορας Γεωργία Παππά, Δρ. Χημικός Μηχανικός

Διαβάστε περισσότερα

(β) Εύρεση του αριθμού των θεωρητικών βαθμίδων με τη μέθοδο McCabe-Thiele

(β) Εύρεση του αριθμού των θεωρητικών βαθμίδων με τη μέθοδο McCabe-Thiele Κεφάλαιο 2 Απόσταξη 3 (β) Εύρεση του αριθμού των θεωρητικών βαθμίδων με τη μέθοδο McCabe-Thiele Παρακάτω περιγράφουμε τα βήματα που ακολουθούμε με τη μέθοδο McCabe- Thiele για να καθορίσουμε τον αριθμό

Διαβάστε περισσότερα

Κεφάλαιο 4 Κλασματική Απόσταξη

Κεφάλαιο 4 Κλασματική Απόσταξη Κεφάλαιο 4 Κλασματική Απόσταξη Σύνοψη Η κλασματική απόσταξη ή απλά απόσταξη αποτελεί τη διεργασία διαχωρισμού ενός πτητικού συστατικού από ένα λιγότερο πτητικό ή, γενικότερα, ενός μίγματος συστατικών που

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΞΗΣ ΤΡΙΩΝ ΦΑΣΕΩΝ ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ. Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ), Θέρμη, Θεσσαλονίκη

ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΞΗΣ ΤΡΙΩΝ ΦΑΣΕΩΝ ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ. Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ), Θέρμη, Θεσσαλονίκη ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΞΗΣ ΤΡΙΩΝ ΦΑΣΕΩΝ ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ Θ. Δαμαρτζής, Π. Σεφερλής,2 Ινστιτούτο Τεχνικής Χημικών Διεργασιών (ΙΤΧΗΔ, Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης

Διαβάστε περισσότερα

Διάλεξη 4β. Συστοιχίες διαχωρισμών

Διάλεξη 4β. Συστοιχίες διαχωρισμών Διάλεξη 4β Συστοιχίες διαχωρισμών Διαχωρισμός σε απλή στήλη Απλή τροφοδοσία Δύο ρεύματα εξόδου Προσκείμενα κλειδιά διαχωρισμού Στήλη με απλό αναβραστήρα και συμπυκνωτήρα Φθίνουσα πτητικότητα E () Ελαφρύ

Διαβάστε περισσότερα

Απορρόφηση Αερίων (2)

Απορρόφηση Αερίων (2) Απορρόφηση Αερίων (2) Λεπτομερής Ανάλυση Θεωρούμε έναν πύργο απορρόφησης που μπορεί να περιέχει δίσκους ή να είναι τύπου πληρωτικού υλικού ή άλλου τύπου. Τελικός σκοπός είναι να βρούμε το μέγεθος του πύργου.

Διαβάστε περισσότερα

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ 1 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Μέρος 1 ο : Εισαγωγικά (διαστ., πυκν., θερμ., πίεση, κτλ.) Μέρος 2 ο : Ισοζύγια μάζας Μέρος 3 ο : 7 ο μάθημα Εκτός ύλης ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Κεφάλαιο Πρόλογος i Κατάλογος Σχημάτων και Εικόνων v Ενότητα 1: Εισαγωγή 1-1 1.1 Το μαθηματικό πρότυπο: ισοζύγια και άλλες σχέσεις. 1-1 1.2 Αριστοποίηση 1-2 1.3 Αλλαγή κλίμακας (scale

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΣΧΕ ΙΑΣΜΟΣ ΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΞΗΣ ΤΡΙΩΝ ΦΑΣΕΩΝ ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΗΜΙΚΗ ΑΝΤΙ ΡΑΣΗ Θ. αµαρτζής 1, Π. Σεφερλής 1,2

ΒΕΛΤΙΣΤΟΣ ΣΧΕ ΙΑΣΜΟΣ ΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΞΗΣ ΤΡΙΩΝ ΦΑΣΕΩΝ ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΗΜΙΚΗ ΑΝΤΙ ΡΑΣΗ Θ. αµαρτζής 1, Π. Σεφερλής 1,2 ΒΕΛΤΙΣΤΟΣ ΣΧΕ ΙΑΣΜΟΣ ΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΞΗΣ ΤΡΙΩΝ ΦΑΣΕΩΝ ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΗΜΙΚΗ ΑΝΤΙ ΡΑΣΗ Θ. αµαρτζής, Π. Σεφερλής,2 Ινστιτούτο Τεχνικής Χηµικών ιεργασιών (ΙΤΧΗ ), Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Διδάσκοντες:Ν. Καλογεράκης Π. Παναγιωτοπούλου Γραφείο: K.9 Email: ppanagiotopoulou@isc.tuc.gr Μέρες/Ώρες διδασκαλίας: Δευτέρα (.-3.)-Τρίτη (.-3.) ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία. Εισαγωγή Έστω ιδιότητα Ρ. ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ α) Ρ = Ρ(r, t) => μη μόνιμη, μεταβατική κατάσταση. β) P = P(r), P =/= P(t) => μόνιμη κατάσταση (μη ισορροπίας). γ) P =/= P(r), P(t) σε μακροσκοπικό χωρίο =>

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Εργαστηριακές Ασκήσεις Διδάσκων: Α.

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:

Διαβάστε περισσότερα

Ε. Παυλάτου, 2017 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ

Ε. Παυλάτου, 2017 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 1 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 2 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ Βασικές έννοιες Στοιχειομετρία-Στοιχειομετρικοί συντελεστές-στοιχειομετρική αναλογία Περιοριστικό αντιδρών Αντιδρών σε περίσσεια Μετατροπή (κλάσμα,

Διαβάστε περισσότερα

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 1.1 Φυσικές Διεργασίες Διαχωρισμού 20 1.1.1 Μια γενική εποπτεία της παραγωγικής Χημικής Βιομηχανίας 21 1.1.2 Σύντομος

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 5 ο μάθημα ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών 2 Διεργασίες που περιλαμβάνουν μια

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Πρόρρηση. Φυσικών Ιδιοτήτων Μιγμάτων

Πρόρρηση. Φυσικών Ιδιοτήτων Μιγμάτων Πρόρρηση Φυσικών Ιδιοτήτων Μιγμάτων Συντελεστής συμπιεστότητας, Ζ Αρχή Αντιστοίχων Καταστάσεων Τριών παραμέτρων Ptzer : z z (0) + ω z (1) Lee-Kesler: z (0), z (1) f(t r,p r ) Εξίσωση Ptzer Κανόνες Ανάμειξης

Διαβάστε περισσότερα

Τεχνολογίες Εκμετάλλευσης και Αξιοποίησης Υδρογονανθράκων

Τεχνολογίες Εκμετάλλευσης και Αξιοποίησης Υδρογονανθράκων Τεχνολογίες Εκμετάλλευσης και Αξιοποίησης Υδρογονανθράκων Μάθημα 3 ο Εισαγωγή στο διυλιστήριο Τύποι διεργασιών Απόσταξη (ατμοσφαιρική και υπό κενό) Δρ. Στέλλα Μπεζεργιάννη Διύλιση Το αργό πετρέλαιο δεν

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Μέρος ο : Εισαγωγικά (διαστ., πυκν., θερμ., πίεση, κτλ.) Μέρος 2 ο : Ισοζύγια μάζας Μέρος 3 ο : 9 ο μάθημα Εκτός ύλης ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών

Διαβάστε περισσότερα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα θερµοκρασία που αντιπροσωπεύει την θερµοκρασία υγρού βολβού. Το ποσοστό κορεσµού υπολογίζεται από την καµπύλη του σταθερού ποσοστού κορεσµού που διέρχεται από το συγκεκριµένο σηµείο. Η απόλυτη υγρασία

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ Εισαγωγή Διαδικασία σχεδιασμού αντιδραστήρα: Καθορισμός του τύπου του αντιδραστήρα και των συνθηκών λειτουργίας. Εκτίμηση των χαρακτηριστικών για την ομαλή λειτουργία του αντιδραστήρα. μέγεθος σύσταση

Διαβάστε περισσότερα

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption Παράγοντες που Επηρεάζουν Διεργασία Απορρόφησης Συνήθως δίνονται: Ρυθμός

Διαβάστε περισσότερα

Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Μιγμάτων

Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Μιγμάτων Πρόρρηση Θερμοδυναμικών Ιδιοτήτων Μιγμάτων 1 Χημικό Δυναμικό μ d = dg U = N V,S,N Για 1 mole καθαρής ουσίας: SdT +Vd j H = N S,,N j A = N V,T,N j G = N ( T, ) ( T,) = T T T,,N j SdT + όπου μ(t',') είναι

Διαβάστε περισσότερα

ΣΤ' Εξάμηνο ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΚΑΙ ΔΙΕΡΓΑΣΙΩΝ. Ερωτήσεις Επανάληψης Δεύτερο Μέρος

ΣΤ' Εξάμηνο ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΚΑΙ ΔΙΕΡΓΑΣΙΩΝ. Ερωτήσεις Επανάληψης Δεύτερο Μέρος ΣΤ' Εξάμηνο ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΚΑΙ ΔΙΕΡΓΑΣΙΩΝ 2008 2009 Ερωτήσεις Επανάληψης Δεύτερο Μέρος 0 Ερώτηση: Σε αντιδραστήρα για τη μετατροπή κυκλοεξανόλης σε κυκλοεξανόνη, παρέχεται και μίγμα αντιδρώντος

Διαβάστε περισσότερα

Παράδειγμα 2-1. Διαχωρισμός νερού- αιθανόλης

Παράδειγμα 2-1. Διαχωρισμός νερού- αιθανόλης Παράδειγμα 2-1. Διαχωρισμός νερού- αιθανόλης Μια αποστακτική στήλη που λειτουργεί σε πίεση 101,3 kpa, διαχωρίζει ένα μίγμα νερούαιθανόλης. Η σύσταση του μίγματος αποτελείται 40 mol% αιθανόλη και η τροφοδοσία

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013

ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013 ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013 1 2 Αποστακτικές στήλες 3 Ροή ρευστών σε αποστακτική στήλη με δίσκους Βασικοί Υπολογισμοί Ισορροπίας Φάσεων Ατμών Υγρού Οι βασικοί υπολογισμοί που ενδιαφέρουν τον

Διαβάστε περισσότερα

Μηχανική και Ανάπτυξη Διεργασιών 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ ΥΓΡΗ ΕΚΧΥΛΙΣΗ

Μηχανική και Ανάπτυξη Διεργασιών 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ ΥΓΡΗ ΕΚΧΥΛΙΣΗ Μηχανική και Ανάπτυξη Διεργασιών 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ ΥΓΡΗ ΕΚΧΥΛΙΣΗ Η υγρή εκχύλιση βρίσκει εφαρμογή όταν. Η σχετική πτητικότητα των συστατικών του αρχικού διαλύματος είναι κοντά στη

Διαβάστε περισσότερα

ΕΤΚΛ ΕΜΠ. Τεχνολογία Πετρελαίου και Και Λιπαντικών ΕΜΠ

ΕΤΚΛ ΕΜΠ. Τεχνολογία Πετρελαίου και Και Λιπαντικών ΕΜΠ Φυσικού Αερίου Στήλες Απόσταξης Πετρελαίου Ιστορικά, η παλιότερη διεργασία επεξεργασίας πετρελαίου Αποτελεί το πρώτο μόνο στάδιο της επεξεργασίας Σκοπός Ανάκτηση ελαφρών συστατικών Κλασμάτωση σε κλάσματα

Διαβάστε περισσότερα

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 1.1 Φυσικές Διεργασίες Διαχωρισμού 20 1.1.1 Μια γενική εποπτεία της παραγωγικής Χημικής Βιομηχανίας 21 1.1.2 Σύντομος

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ 2016-2017 2 Ο ΕΞΑΜΗΝΟ Ε. ΠΑΥΛΑΤΟΥ ΑΝΑΠΛ. ΚΑΘΗΓΗΤΡΙΑ ΕΜΠ 2 ΣΚΟΠΟΣ ΜΑΘΗΜΑΤΟΣ Ε. Παυλάτου, 2017 ΓΝΩΣΤΙΚΟ ΕΠΙΠΕΔΟ Η διδασκαλία και εμπέδωση θεμελιακών εννοιών που σχετίζονται

Διαβάστε περισσότερα

Απορρόφηση Αερίων. 1. Εισαγωγή

Απορρόφηση Αερίων. 1. Εισαγωγή 1. Εισαγωγή Απορρόφηση Αερίων Πρόκειται για διαχωρισμό συστατικών από μείγμα αερίου με τη βοήθεια υγρού διαλύτη. Κινητήρια δύναμη είναι η διαφορά διαλυτότητας στο διαλύτη. Στη συνέχεια θα ασχοληθούμε με

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Εργαστηριακές Ασκήσεις Διδάσκων: Α.

Διαβάστε περισσότερα

Φυσικές Διεργασίες Πέμπτη Διάλεξη

Φυσικές Διεργασίες Πέμπτη Διάλεξη Φυσικές Διεργασίες Πέμπτη Διάλεξη Δευτέρα, 12 Μαΐου 2008 Απορρόφηση αερίων 1. Ορισμός Τι είναι απορρόφηση; Είναι μεταφορά μέσω της διεπιφάνειας αερίου-υγρού ενός συστατικού από αέριο μίγμα σε έναν υγρό

Διαβάστε περισσότερα

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6 Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6 Δευτέρα, 14 Απριλίου 008 Οικονομική Ανάλυση Βιομηχανιών και Διεργασιών 1 Εισαγωγή Αριστοποίηση: ενός κριτηρίου (αντικειμενικής συνάρτησης) πολυκριτηριακή

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ 2015-2016 2 Ο ΕΞΑΜΗΝΟ Ε. ΠΑΥΛΑΤΟΥ ΑΝ. ΚΑΘΗΓΗΤΡΙΑ ΕΜΠ ΜΟΝΑΔΕΣ ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 3 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 4 ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 5 Επιφάνεια

Διαβάστε περισσότερα

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 5

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 5 Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 5 Δευτέρα, 7 Απριλίου 2008 Τρίτη, 8 Απριλίου 2008 Σύνθεση Διεργασιών Διαχωρισμού 1 Εισαγωγή Τα βιομηχανικά προβλήματα διαχωρισμού γενικά περιλαμβάνουν

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου. ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Εξαναγκασμένη Συναγωγή Ροή Πάνω από μία Επίπεδη Επιφάνεια Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Εξαναγκασμένη συναγωγή: Στρωτή ροή σε επίπεδες πλάκες (orced convection

Διαβάστε περισσότερα

Μοντελοποίηση Προσομοίωση

Μοντελοποίηση Προσομοίωση Μοντελοποίηση Προσομοίωση Σχεδιασμός είναι η διαδικασία μετατροπής των φυσικών νόμων σε μαθηματικές εξισώσεις είναι το κατάλληλο λογισμικό το οποίο χρησιμοποιώντας το μαθηματικό μοντέλο προβλέπει τη συμπεριφορά

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Κ. Μάτης ΤΟ ΠΡΟΒΛΗΜΑ ΠΕΡΙΛΑΜΒΑΝΕΙ ΕΝΑ ΣΥΝΕΧΗ ΠΛΗΡΩΣ ΑΝΑΜΙΓΝΥΟΜΕΝΟ ΑΝΤΙΔΡΑΣΤΗΡΑ (CSTR) ΜΕ ΔΥΝΑΤΟΤΗΤΑ ΕΝΑΛΛΑΓΗΣ ΘΕΡΜΟΤΗΤΑΣ ΕΣΩΤΕΡΙΚΑ ΜΕ ΜΙΑ ΣΠΕΙΡΑ. Σημ. Η σωστή απάντηση κάθε

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Κεφάλαιο 5: Διεργασίες απόσταξης

Κεφάλαιο 5: Διεργασίες απόσταξης 92 Κεφάλαιο 5: Διεργασίες απόσταξης Σύνοψη Το κεφάλαιο αυτό συνιστά την πρώτη ολοκληρωμένη ανάλυση μίας διεργασίας. Παρουσιάζονται στην αρχή οι απλές αποστάξεις και στη συνέχεια αναλύεται διεξοδικά η κλασματική

Διαβάστε περισσότερα

Ισοζύγια Μάζας. 1. Eισαγωγή

Ισοζύγια Μάζας. 1. Eισαγωγή Ισοζύγια Μάζας 1. Eισαγωγή Οποιαδήποτε χηµική διεργασία όπου υπάρχουν αλληλεπιδράσεις µεταξύ δύο ή περισσότερων υλικών µπορεί να αναλυθεί µε βάση τα ισοζύγια υλικών. Γενικά, υπάρχουν δύο διαφορετικές περιπτώσεις

Διαβάστε περισσότερα

Ανάκτηση Ακετόνης από ρεύμα αέρα (κεφάλαιο 12)

Ανάκτηση Ακετόνης από ρεύμα αέρα (κεφάλαιο 12) Ανάκτηση Ακετόνης από ρεύμα αέρα (κεφάλαιο 12 1 Διδάσκων: Β. Ράπτης Πρόβλημα: αποβαλλόμενο ρεύμα αέρα F = 0.2kg ξηρού α./s με P F = 1 bar και T F = 80 o C περιέχει ακετόνη σε συγκέντρωση Χ F =0.1kg ακετόνης

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης

ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης Πρόβληµα 1. Ένα µίγµα αερίων που περιέχει 65% του Α, 5% Β, 8% C και % D βρίσκεται σε ισορροπία µ' ένα υγρό στους 350 Κ και 300 kn/m. Αν η τάση ατµών των καθαρών συστατικών

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση α: Συντελεστής Joule Thomson (Τζουλ Τόμσον ) Αθανάσιος Τσεκούρας Τμήμα Χημείας Θεωρία 3 Μετρήσεις 6 3 Επεξεργασία Μετρήσεων 6 Σελίδα Θεωρία Η καταστατική εξίσωση

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Διδάσκοντες: Κώστας Περράκης, Δημοσθένης Γεωργίου http://eclass.upatras.gr/ p Βιβλιογραφία Advanced Thermodynamics for Engineers, Kenneth, Jr. Wark Advanced thermodynamics engineering

Διαβάστε περισσότερα

Enrico Fermi, Thermodynamics, 1937

Enrico Fermi, Thermodynamics, 1937 I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -

Διαβάστε περισσότερα

Θεωρία και πράξη της Αριστοποίησης

Θεωρία και πράξη της Αριστοποίησης Ενότητα 2 Θεωρία και πράξη της Αριστοποίησης 2.1 Το άριστο ως ενότητα των αντιθέτων Στην προηγούμενη ενότητα αναφερθήκαμε στην παραμετρική αριστοποίηση ως επιλογή (μέσω μαθηματικών τεχνικών ή εμπειρικών

Διαβάστε περισσότερα

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης Γενικά, όταν έχουμε δεδομένα συγκέντρωσης-χρόνου και θέλουμε να βρούμε την τάξη μιας αντίδρασης, προσπαθούμε να προσαρμόσουμε τα δεδομένα σε εξισώσεις

Διαβάστε περισσότερα

Energy resources: Technologies & Management

Energy resources: Technologies & Management Πανεπιστήμιο Δυτικής Μακεδονίας Energ resources: echnologies & Management Τεχνολογίες άνθρακα Σχεδιασμός Στηλών Απορρόφησης Αερίων Δρ. Γεώργιος Σκόδρας Αν. Καθηγητής Περιεχόμενα Η διάλεξη που ακολουθεί

Διαβάστε περισσότερα

Λύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού.

Λύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού. Παράδειγμα 1 Μια εγκατάσταση καθαρισμού νερού απομακρύνει χλωριούχο βινύλιο (vinyl cloride) από μολυσμένα υπόγεια ύδατα σε θερμοκρασία 25 C και πίεση 850 mmhg χρησιμοποιώντας στήλη εκρόφησης κατ αντιρροή.

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:

Διαβάστε περισσότερα

1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης

1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Ετερογενή Μείγματα & Συστήματα Καύσης 1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης Δ. Κολαΐτης Μ. Φούντη Δ.Π.Μ.Σ. «Υπολογιστική Μηχανική»

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα : Εξάτμιση (2/2), 2ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Ισοζύγια μάζας

Διαβάστε περισσότερα

ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ. Το τρίχωμα της τίγρης εμφανίζει ποικιλία χρωμάτων επειδή οι αντιδράσεις που γίνονται στα κύτταρα δεν καταλήγουν σε χημική ισορροπία.

ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ. Το τρίχωμα της τίγρης εμφανίζει ποικιλία χρωμάτων επειδή οι αντιδράσεις που γίνονται στα κύτταρα δεν καταλήγουν σε χημική ισορροπία. ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ Το τρίχωμα της τίγρης εμφανίζει ποικιλία χρωμάτων επειδή οι αντιδράσεις που γίνονται στα κύτταρα δεν καταλήγουν σε χημική ισορροπία. Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 Μονόδρομες

Διαβάστε περισσότερα

Μηχανική και Ανάπτυξη Διεργασιών

Μηχανική και Ανάπτυξη Διεργασιών Μηχανική και Ανάπτυξη Διεργασιών Κωστής Μαγουλάς, Καθηγητής Επαμεινώνδας Βουτσάς, Επ. Καθηγητής 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ . ΟΡΙΣΜΟΣ Οι διαχωρισμοί είναι οι πιο συχνά παρατηρούμενες διεργασίες

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 8: Εκχύλιση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Τύποι εκχύλισης

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) ώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας ΚΕΦΑΛΑΙΟ 6 ο ΘΕΡΜΟΤΗΤΑ 6.1 Θερμόμετρα και μέτρηση θερμοκρασίας 1. Τι ονομάζεται θερμοκρασία; Το φυσικό μέγεθος που εκφράζει πόσο ζεστό ή κρύο είναι ένα σώμα ονομάζεται θερμοκρασία. 2. Πως μετράμε τη θερμοκρασία;

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα

Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα Μάθημα κατεύθυνσης 8 ου εξαμήνου

Διαβάστε περισσότερα

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης Αρχές μεταφοράς μάζας Αρχές σχεδιασμού συσκευών μεταφοράς μάζας Διεργασίες μεταφοράς μάζας - Απορρόφηση - Απόσταξη - Εκχύλιση

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 5: Διαγράμματα σημείων ζέσεως συνθέσεως Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 Σελίδα 2 1. Θεωρία

Διαβάστε περισσότερα

Κεφάλαιο 3 Απόσταξη Ισορροπίας

Κεφάλαιο 3 Απόσταξη Ισορροπίας Κεφάλαιο 3 Απόσταξη Ισορροπίας Σύνοψη Η απόσταξη ισορροπίας ή στιγμιαία απόσταξη αποτελεί μία απλή διεργασία διαχωρισμού, η εφαρμογή της οποίας βασίζεται στην ατμοποίηση μέρους της τροφοδοσίας εντός δοχείου

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης

ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης Πρόβληµα 36. Μια υγρή τροφοδοσία 3,5 kg/s, που περιέχει µια διαλυτή ουσία Β διαλυµένη σε συστατικό Α, πρόκειται να διεργαστεί µε ένα διαλύτη S σε µια µονάδα επαφής καθ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Η Επιστήμη της Θερμοδυναμικής ασχολείται με την ποσότητα της θερμότητας που μεταφέρεται σε ένα κλειστό και απομονωμένο σύστημα από μια κατάσταση ισορροπίας σε μια άλλη

Διαβάστε περισσότερα

ΕΤΚΛ ΕΜΠ. Τεχνολογία Πετρελαίου και Και Λιπαντικών ΕΜΠ

ΕΤΚΛ ΕΜΠ. Τεχνολογία Πετρελαίου και Και Λιπαντικών ΕΜΠ Φυσικού Αερίου Στόχοι Απομάκρυνση Ανεπιθύμητων Συστατικών Νερό Βαρείς Υδρογονάνθρακες Υδρόθειο Διοξείδιο του Άνθρακα Στοιχειακό Θείο Άλλα Συστατικά Ανάκτηση Συστατικών με Οικονομική Αξία Ήλιο Υδρογονάνθρακες

Διαβάστε περισσότερα

Χημικές Διεργασίες: Εισαγωγή

Χημικές Διεργασίες: Εισαγωγή : Εισαγωγή Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση - Αφυδρογόνωση - Πυρόλυση - Ενυδάτωση κλπ Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση

Διαβάστε περισσότερα

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1

Διαβάστε περισσότερα

ΕΤΚΛ ΕΜΠ. Αργό Πετρέλαιο Χαρακτηριστικά Ιδιότητες. Τεχνολογία Πετρελαίου και. Εργαστήριο Τεχνολογίας Καυσίμων Και Λιπαντικών ΕΜΠ

ΕΤΚΛ ΕΜΠ. Αργό Πετρέλαιο Χαρακτηριστικά Ιδιότητες. Τεχνολογία Πετρελαίου και. Εργαστήριο Τεχνολογίας Καυσίμων Και Λιπαντικών ΕΜΠ Φυσικού Αερίου Σύσταση Αργού Πετρελαίου Σύνθετο Μίγμα Υδρογονανθράκων Περιέχει αέρια διαλελυμένα στα υγρά συστατικά Υδρογονάνθρακες C 1 C 90+ Στοιχειακή Ανάλυση: Αρκετά Ομοιόμορφη Στοιχεία Περιεκτικότητα

Διαβάστε περισσότερα

Προβλήματα εκχύλισης

Προβλήματα εκχύλισης Προβλήματα εκχύλισης Πηγή: Μαρίνου-Κουρή, Παρλιάρου-Τσάμη, Ασκήσεις Φυσικών Διεργασιών, εκδ. Παπασωτηρίου, Αθήνα, 1994 1. Εκχύλιση ακετόνης από νερό με χλωροβενζόλιο σε μονοβάθμιο εκχυλιστήρα. 100 kg διαλύματος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 3 : Ιδανικά Αέρια Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρία και Μεθοδολογία

Θεωρία και Μεθοδολογία Θεωρία και Μεθοδολογία Εισαγωγή/Προαπαιτούμενες γνώσεις (κάθετη δύναμη) Πίεση p: p = F A (εμβαδόν επιφάνειας) Μονάδα μέτρησης πίεσης στο S.I. είναι το 1 Ν m2, που ονομάζεται και Pascal (Pa). Συνήθως χρησιμοποιείται

Διαβάστε περισσότερα

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction ΕΚΧΥΛΙΣΗ ΙΣΟΡΡΟΠΙΑΣ ΓΙΑ ΜΕΡΙΚΩΣ ΑΝΑΜΙΞΙΜΑ ΣΥΣΤΗΜΑΤΑ Τριγωνικές

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ος θερμοδυναμικός νόμος 1. α. Αέριο απορροφά θερμότητα 2500 και παράγει έργο 1500. Να υπολογισθεί η μεταβολή της εσωτερικής του ενέργειας. β. Αέριο συμπιέζεται ισόθερμα και αποβάλλει

Διαβάστε περισσότερα