ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
|
|
- Πανδώρα Δαμασκηνός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
2 Εύρεση ελάχιστων μονοπατιών Αλγόριθμος του ijkstra
3 Θέματα μελέτης Πρόβλημα εύρεσης ελάχιστων μονοπατιών σε γραφήματα (shortest path problem) Αλγόριθμος του ijkstra
4 Αλγόριθμος του ijkstra Απόσταση μιας κορυφής v από μία κορυφή s = μήκος συντομότερου μονοπατιού μεταξύ των s και v Ο αλγόριθμος του ijkstra υπολογίζει τις ελάχιστες αποστάσεις όλων των κορυφών από δοσμένη αρχική κορυφή s με τις εξής υποθέσεις: Το γράφημα είναι συνεκτικό (μπορώ από οποιαδήποτε κορυφή να φτάσω σε οποιαδήποτε άλλη) Οι ακμές είναι μη κατευθυνόμενες Τα βάρη στις ακμές είναι μη αρνητικά Αν τα βάρη σε όλες τις ακμές είναι ίδια είναι ο αλγόριθμος S dsger Wybe ijkstra 193-
5 Αλγόριθμος του ijkstra Φτιάχνουμε σταδιακά σύννεφο από κορυφές, ξεκινώντας από την s και τελικά καλύπτοντας όλες τις κορυφές Αποθηκεύουμε με κάθε κορυφή v μια ετικέτα d(v) που δείχνει την απόσταση της v από την s στο υπογράφημα που αποτελείται από το σύννεφο και τις γειτονικές του κορυφές Σε κάθε βήμα Προσθέτουμε στο σύννεφο την εκτός του σύννεφου κορυφή u με τη μικρότερη απόσταση d(u) Ενημερώνουμε τις ετικέτες των κορυφών που είναι γειτονικές στη u
6 Απλούστευση για τις ακμές Έστω μια ακμή e = (u,z) τέτοια ώστε u είναι η κορυφή που προστέθηκε τελευταία στο σύννεφο s d(u) = u e 1 d(z) = 7 z z είναι κορυφή έξω από το σύννεφο Η απλούστευση για την ακμή e ενημερώνει την απόσταση d(z) ως εξής: d(z) min{d(z),d(u) + weight(e)} s d(u) = u e 1 d(z) = 6 z
7 Παράδειγμα εκτέλεσης του αλγορίθμου του ijkstra 7 1 Αρχικά δίνεται το γράφημα και τα βάρη των ακμών δηλ., οι αποστάσεις των κορυφών?? 7 1?? Δίνεται η αρχική κορυφή (Α) και η ετικέτα της (με τιμή ) και υπολογίζουμε τις ετικέτες των άλλων κορυφών του γραφήματος?
8 Παράδειγμα εκτέλεσης του αλγορίθμου του ijkstra Αρχικά, αναθέτουμε ετικέτες στις κορυφές που δείχνουν την άμεση απόστασή τους από την αρχική κορυφή. Κορυφή v με τιμή ετικέτας : δεν υπάρχει ακμή από την αρχική κορυφή (Α) προς τη v. Μετά, αρχίζουμε να δημιουργούμε το «σύννεφο» ξεκινώντας από την αρχική κορυφή
9 Παράδειγμα εκτέλεσης του αλγορίθμου του ijkstra Προσθέτουμε στο «σύννεφο» την κορυφή που μπορούμε να φτάσουμε από την αρχική (Α) με το μικρότερο κόστος Από την Α, μπορούμε να φτάσουμε -- την Β με κόστος -- την με κόστος -- την με κόστος Επιλέγουμε την κορυφή Μετά, ενημερώνουμε τις ετικέτες των κορυφών έξω από το «σύννεφο» ώστε να δείχνουν την ελάχιστη απόστασή τους από αυτό
10 Παράδειγμα εκτέλεσης του αλγορίθμου του ijkstra Από τις κορυφές έξω από το «σύννεφο» -- η Β έχει απόσταση -- η Ε έχει απόσταση -- η έχει απόσταση η έχει απόσταση 3 Επιλέγουμε να προσθέσουμε στο «σύννεφο» την κορυφή Μετά, ενημερώνουμε τις ετικέτες των κορυφών έξω από το «σύννεφο» ώστε να δείχνουν την ελάχιστη απόστασή τους από αυτό Συνεχίζουμε όμοια μέχρι να μην υπάρχουν κορυφές έξω από το «σύννεφο» 3
11 Παράδειγμα εκτέλεσης του αλγορίθμου του ijkstra
12 Παράδειγμα εκτέλεσης του αλγορίθμου του ijkstra
13 Αλγόριθμος του ijkstra Ο αλγόριθμος του ijkstra είναι παράδειγμα άπληστου (greedy) αλγόριθμου: προσθέτει κορυφές με αυξανόμενη απόσταση (ή διαφορετικά σε κάθε βήμα προσθέτει την κορυφή που αυξάνει όσο το δυνατό λιγότερο τη συνολικό μήκος μονοπατιού) Άπληστοι αλγόριθμοι για ένα πρόβλημα βασίζονται στην ιδέα: σε κάθε βήμα κάνω ό,τι καλύτερο μπορώ με βάση τα ζητούμενα του προβλήματος Αν θέλω να πάω από το Αγρίνιο στη Θεσσαλονίκη όσο πιο γρήγορα γίνεται, θα μεταφερθώ προς τους συντομότερους ενδιάμεσους προορισμούς Αν θέλω να πάω από το Αγρίνιο στη Θεσσαλονίκη όσο πιο φθηνά γίνεται, θα μεταφερθώ προς ενδιάμεσους προορισμούς που διασφαλίζουν κάθε φορά το φθηνότερο εισιτήριο
14 Αλγόριθμος του ijkstra: ορθότητα Ισχυριζόμαστε ότι ο αλγόριθμος προσθέτει κάθε φορά στο σύννεφο (άπληστα) την κορυφή με τη μικρότερη απόσταση από αυτό Υποθέτουμε ότι ΔΕΝ βρήκε όλες τις μικρότερες αποστάσεις και έστω η πρώτη λάθος κορυφή που επέλεξε ο αλγόριθμος Όταν ο αλγόριθμος ασχολήθηκε με την προηγούμενη κορυφή στο πραγματικά συντομότερο μονοπάτι η απόσταση της ήταν σωστή Αλλά έγινε απλούστευση για την ακμή (,) τότε! Επομένως, αφού ισχύει ότι d() d(), η απόσταση της δεν μπορεί να είναι λάθος
15 Αλγόριθμος του ijkstra: χρόνος εκτέλεσης Για κάθε κορυφή, διαλέγω τη γειτονική της με τη μικρότερη ετικέτα Αν οι κορυφές είναι αποθηκευμένες σε μη ταξινομημένη λίστα βρίσκω τη γειτονική κορυφή με τη μικρότερη ετικέτα σε Ο( V ) βήματα Αν οι κορυφές είναι αποθηκευμένες σε ταξινομημένη λίστα βρίσκω τη γειτονική κορυφή με τη μικρότερη ετικέτα σε Ο(log V ) βήματα Πόσες φορές μπορεί να χρειαστεί να κάνω το παραπάνω; Το πολύ τόσες φορές όσες είναι οι ακμές στο γράφημα, δηλ., Ο( Ε ) φορές Συνολικά: απαιτείται χρόνος Ο( V * ) ή Ο( *log V ) αν χρησιμοποιηθούν ειδικές δομές αποθήκευσης (που καλούνται σωροί-heaps) ή Ο( + V *log V ) με χρήση ειδικών σωρών (ibonacci heaps) (redman & Tarjan, 19)
16 Κατηγορίες αλγορίθμων
17 Online vs offline Φανταστείτε ότι καλείστε σε συνέντευξη και γνωρίζετε εκ των προτέρων τις ερωτήσεις που θα σας τεθούν Έχετε τη δυνατότητα να μελετήσετε από πριν το σύνολο των ερωτήσεων και να δώσετε τις καλύτερες δυνατές απαντήσεις χωρίς να γνωρίζετε εκ των προτέρων τις ερωτήσεις που θα σας τεθούν Πρέπει να απαντάτε αμέσως σε κάθε ερώτηση Χωρίς να γνωρίζετε τις επόμενες ερωτήσεις (Συνήθως) δεν μπορείτε να αναιρέσετε ό,τι ήδη είπατε
18 Online vs offline Φανταστείτε ότι καλείστε σε συνέντευξη [OLIN] και γνωρίζετε εκ των προτέρων τις ερωτήσεις που θα σας τεθούν Έχετε τη δυνατότητα να μελετήσετε από πριν το σύνολο των ερωτήσεων και να δώσετε τις καλύτερες δυνατές απαντήσεις χωρίς να γνωρίζετε εκ των προτέρων τις ερωτήσεις που θα σας τεθούν [ONLIN] Πρέπει να απαντάτε αμέσως σε κάθε ερώτηση Χωρίς να γνωρίζετε τις επόμενες ερωτήσεις (Συνήθως) δεν μπορείτε να αναιρέσετε ό,τι ήδη είπατε
19 Online vs offline αλγόριθμοι OLIN: Γνωρίζουν το σύνολο της εισόδου μπορούν να κάνουν βέλτιστες επιλογές ONLIN: Π.χ., δρομολόγηση σε παράλληλο υπολογιστή Η είσοδος τους αποκαλύπτεται σταδιακά πρέπει σε κάθε βήμα να λαμβάνουν απόφαση (συνήθως μη αναστρέψιμη) χωρίς να γνωρίζουν το μέλλον, έχοντας μόνο πλήρη ή μερική γνώση του παρελθόντος Ανάθεση συχνοτήτων σε χρήστες κυψελικού δικτύου
20 Ντετερμινιστική vs πιθανοτική προσέγγιση Υπάρχουν 7 ντουλαπάκια και ένα ζάρι με 7 όψεις Διαλέγετε πάντα το κόκκινο ντουλαπάκι με ετικέτα 1 Διαθέτετε πολλές επιλογές και εσείς προτιμάτε πάντα (δηλ., με πιθανότητα= 1) μία συγκεκριμένη επιλογή (ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) Ρίχνετε το ζάρι και ανάλογα με το τι θα φέρει διαλέγετε ντουλαπάκι με την αντίστοιχη ετικέτα Διαθέτετε πολλές επιλογές και προτιμάτε όποια σας υποδεικνύει μια πηγή τυχαιότητας, π.χ., ένα ζάρι (ΠΙΘΑΝΟΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) Αν το ζάρι «φέρνει» υποδεικνύει πάντα την ίδια επιλογή ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ
21 Ντετερμινιστικοί vs πιθανοτικοί αλγόριθμοι Ντετερμινιστικοί αλγόριθμοι: όποτε καλούνται να αποφασίσουν μεταξύ διαφορετικών επιλογών, προτιμούν σίγουρα μια συγκεκριμένη επιλογή Επιλέγω πάντα το μικρότερο από τα k στοιχεία ενός συνόλου αριθμών Πιθανοτικοί αλγόριθμοι: όποτε καλούνται να αποφασίσουν μεταξύ διαφορετικών επιλογών, προτιμούν ό,τι τους υποδεικνύει κάποια πηγή τυχαιότητας Επιλέγω ισοπίθανα κάποιο από τα k στοιχεία ενός συνόλου αριθμών
22 Άπληστοι (greedy) αλγόριθμοι Κάνουν τη βέλτιστη επιλογή σε κάθε βήμα ελπίζοντας ότι αυτό θα οδηγήσει σε βέλτιστη λύση στο μέλλον Παράδειγμα: Έχουμε Μ UR για να αγοράσουμε γλυκά Υπάρχουν Ν τεμάχια γλυκών και το καθένα έχει κάποιο κόστος Ταξινομούμε τα γλυκά από το φθηνότερο στο ακριβότερο και αγοράζουμε από την αρχή προς το τέλος της λίστας μέχρι να τελειώσουν χρήματα Αν κάθε φορά αγοράζουμε το φθηνότερο, ελπίζουμε πως συνολικά θα αγοράσουμε τα περισσότερα δυνατά γλυκά με βάση τον προϋπολογισμό μας
23 Online αλγόριθμοι Αλγόριθμοι που πρέπει να λάβουν αποφάσεις χωρίς πλήρη γνώση της εισόδου Διαθέτουν πλήρη (ή μερική) γνώση του παρελθόντος αλλά καμία (ή μερική) γνώση του μέλλοντος Για τέτοιου είδους προβλήματα σχεδιάζονται αλγόριθμοι που είναι ανταγωνιστικοί σε σχέση με κάποιον βέλτιστο offline αλγόριθμο, δηλ., τον αλγόριθμο που έχει πλήρη γνώση του μέλλοντος
24 Το πρόβλημα του σακιδίου (the knapsack problem) Ποια κουτιά θα διαλέγατε για να συγκεντρώσετε το μέγιστο χρηματικό ποσό και να μην ξεπεράσετε τη χωρητικότητα της τσάντας σας; Το πρόβλημα αυτό συχνά ανακύπτει σε προβλήματα ανάθεσης (κατανομής) πόρων Είναι ένα δύσκολο πρόβλημα, δηλ., δεν έχει βρεθεί αλγόριθμος καλύτερος από το να ψάξουμε όλες τις πιθανές λύσεις
25 Το πρόβλημα του σακιδίου (the knapsack problem) Άπληστος (προσεγγιστικός) αλγόριθμος Διάταξε τα αντικείμενα σε φθίνουσα σειρά χρηματικής αξίας: κίτρινο (1), πράσινο (), μπλε/γκρι (), πορτοκαλί (1) Χρηματική αξία ίδια; Διάταξε τα αντικείμενα σε αύξουσα σειρά βάρους: κίτρινο (1), πράσινο (), γκρι (,1), μπλε (,), πορτοκαλί (1) Πάρε όσα περισσότερα αντικείμενα μπορείς με βάση την παραπάνω λίστα ώστε να μην ξεπεράσεις τη χωρητικότητα του σακιδίου: Υπάρχουν πολλά τεμάχια από κάθε αντικείμενο; Υπάρχει ένα τεμάχιο ανά αντικείμενο;
26 Το πρόβλημα του σακιδίου (the knapsack problem) Υπάρχουν πολλά τεμάχια από κάθε αντικείμενο Κίτρινο (1,), Κίτρινο (1,), Κίτρινο (1,), Γκρι (,1), Γκρι (,1), Γκρι (,1): 36$,1kg Πετυχαίνουμε πάντα τουλάχιστον % από το καλύτερο που θα μπορούσε να γίνει Υπάρχει ένα τεμάχιο από κάθε αντικείμενο Κίτρινο (1,), Γκρι (,1), Μπλε (,), Πορτοκαλί (1,1): 1$,kg 1kg, 36$
27 Το πρόβλημα του σακιδίου (the knapsack problem) Υπάρχουν πολλά τεμάχια από κάθε αντικείμενο Κίτρινο (1,), Κίτρινο (1,), Κίτρινο (1,), Γκρι (,1), Γκρι (,1), Γκρι (,1): 36$,1kg Πετυχαίνουμε πάντα τουλάχιστον % από το καλύτερο που θα μπορούσε να γίνει Υπάρχει ένα τεμάχιο από κάθε αντικείμενο Κίτρινο (1,), Γκρι (,1), Μπλε (,), Πορτοκαλί (1,1): 1$,kg kg, 36$
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα
Εισαγωγή στους Αλγόριθμους
Εισαγωγή στους Αλγόριθμους Ενότητα 14: Εύρεση ελάχιστων μονοπατιών σε γραφήματα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα. (μέρος Ι)
Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα (μέρος Ι) Online vs offline Φανταστείτε ότι καλείστε σε συνέντευξη και γνωρίζετε εκ των προτέρων τις ερωτήσεις
Ειδικά θέματα σε κινητά και ασύρματα δίκτυα
Ειδικά θέματα σε κινητά και ασύρματα δίκτυα Ενότητα 4: Ανάθεση συχνοτήτων και έλεγχος αποδοχής κλήσεων σε ασύρματα κυψελικά δίκτυα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης
Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα. (μέρος ΙΙ)
Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα (μέρος ΙΙ) Ανάθεση συχνοτήτων Ο αλγόριθμος σταθερών αναθέσεων FA (Fixed Allocation) Ο άπληστος (Greedy) αλγόριθμος
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους -Ο αλγόριθμος ijkstraγια εύρεση της βραχύτερης απόστασης -Ο αλγόριθμος
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος
Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα
Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα (μέρος ΙIΙ) Έλεγχος αποδοχής κλήσεων Οάπληστος(Greedy) αλγόριθμος ελέγχου αποδοχής κλήσεων Ο αλγόριθμος ταξινόμησης
Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)
Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για ένα γράφημα G είναι ένα υπογράφημα του G που είναι δέντρο (δηλ., είναι συνεκτικό και δεν
Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους
Διάλεξη 2: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους - Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1
ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου
Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;
Άπληστοι Αλγόριθμοι ΙΙI Αλγόριθμοι γραφημάτων Ελάχιστο Γεννητικό Δένδρο Παράδειγμα Κατασκευή δικτύων Οδικά, επικοινωνίας Έχουμε ένα συνεκτικό γράφημα (V,E) και ένας βάρος we σε κάθε ακμή e. Να βρεθεί υποσύνολο
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 3/2/2019 1 / 37 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον i ανάμεσα σε όλους
Συντομότερες Διαδρομές
Συντομότερες Διαδρομές Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη Διαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 7 Φεβρουαρίου 2017 1 / 38 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Αλγόριθμοι Γραφημάτων Τοπολογική Διάταξη
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα
Θεωρία Γραφημάτων 6η Διάλεξη
Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη ιαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής Απόσταση d(u,
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Αλγόριθμοι και πολυπλοκότητα Τα συντομότερα μονοπάτια(shortest Paths)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Τα συντομότερα μονοπάτια(shortest Paths) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Τα συντομότερα Μονοπάτια(Shortest Paths) A 2 7 2
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
Σημειωματάριο Δευτέρας 4 Δεκ. 2017
Σημειωματάριο Δευτέρας 4 Δεκ. 2017 Ο αλγόριθμος Floyd-Warshall για την έυρεση όλων των αποστάσεων σε ένα γράφημα με βάρη στις ακμές Συνεχίσαμε σήμερα το θέμα της προηγούμενης Τετάρτης. Έχουμε ένα γράφημα
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Διατύπωση Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη από κλέφτες. Σε
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 23: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Βραχύτερα Μονοπάτια σε γράφους Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης Ο αλγόριθμος
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη
Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026
Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing
Δρομολόγηση μιας οντότητας ανάμεσα σε δύο σημεία ενός δικτύου έτσι ώστε να ελαχιστοποιήσουμε ένα κόστος, μια διάρκεια, κτλ.
Προβλήματα βέλτιστων μονοπατιών Δρομολόγηση μιας οντότητας ανάμεσα σε δύο σημεία ενός δικτύου έτσι ώστε να ελαχιστοποιήσουμε ένα κόστος, μια διάρκεια, κτλ. Εφαρμογές: Χρονοπρογραμματισμός (διαχείριση εργασιών,
Δρομολόγηση μιας οντότητας ανάμεσα σε δύο σημεία ενός δικτύου έτσι ώστε να ελαχιστοποιήσουμε ένα κόστος, μια διάρκεια, κτλ.
Προβλήματα βέλτιστων μονοπατιών Δρομολόγηση μιας οντότητας ανάμεσα σε δύο σημεία ενός δικτύου έτσι ώστε να ελαχιστοποιήσουμε ένα κόστος, μια διάρκεια,, κτλ. Εφαρμογές: Χρονοπρογραμματισμός (διαχείριση
Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
Συντομότερες Διαδρομές
Συντομότερη Διαδρομή Συντομότερες Διαδρομές Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κατευθυνόμενο G(V, E, w) με μήκη Μήκος
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Εισαγωγή στους Αλγορίθμους Ενότητα 7η
Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Κατανεμημένα Συστήματα Ι
Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη
Αλγοριθμικές Τεχνικές
Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
(n + r 1)! (n 1)! (n 1)!
Στοιχειώδης συνδυαστική Διανομή αντικειμένων σε υποδοχές Διανομή Αντικειμένων σε Υποδοχές Με πόσους τρόπους μπορούμε να διανείμουμε r αντικείμενα (διακεκριμένα ή όχι) σε n υποδοχές. Διακρίνουμε περιπτώσεις:
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Εισαγωγή στους Αλγόριθμους
Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91
Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο
ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
Το πρόβλημα του σταθερού γάμου
Το πρόβλημα του σταθερού γάμου Γάμος και Θεωρία Γραφημάτων Γάμος πρόβλημα ταιριάσματος Θα δούμε έναν αλγόριθμο ταιριάσματος (matching algorithm) που χρησιμοποιείται σε πολλές εφαρμογές Γνωριμίες (γραφεία,
ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.
Τυχαιοκρατικοί Αλγόριθμοι
Πιθανότητες και Αλγόριθμοι Ανάλυση μέσης περίπτωσης Μελέτα τη συμπεριφορά ενός αλγορίθμου σε μια «μέση» είσοδο (ως προς κάποια κατανομή) Τυχαιοκρατικός αλγόριθμος Λαμβάνει τυχαίες αποφάσεις καθώς επεξεργάζεται
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο
Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Εισαγωγή στους Αλγορίθμους Ενότητα 10η
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Φροντιστήριο 11 Λύσεις
Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,
Στοιχεία Θεωρίας Γράφων (Graph Theory)
Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,
ροµολόγηση πακέτων σε δίκτυα υπολογιστών
ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου
Αλγόριθµοι Γραφηµάτων
Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
Ελάχιστα Γεννητορικά ένδρα
λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,
ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα 9: Διαχείριση Εφοδιαστικής Αλυσίδας: Προβλήματα Μεταφοράς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,
u v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 9: Άπληστοι Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Outline. 6 Edit Distance
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι και Δυναμικός Προγραμματισμός Ασκήσεις CoReLab ΣΗΜΜΥ - Ε.Μ.Π. 16 Νοεμβρίου 216 (CoReLab - NTUA) Αλγόριθμοι - Ασκήσεις 16 Νοεμβρίου 216 1 / 52 Outline 1
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 6 Μαΐου 2015 1 / 42 Εύρεση Ελάχιστου Μονοπατιού
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
Outline 1 Άσκηση 1 2 Άσκηση 2 3 Άσκηση 3 4 Άσκηση 4 5 Άσκηση 5 6 Προγραμματιστική Άσκηση 1 7 Προγραμματιστική Άσκηση 2 (CoReLab - NTUA) Αλγόριθμοι - 3
Αλγόριθμοι και Πολυπλοκότητα 3η Σειρά Γραπτών και Προγραμματιστικών Ασκήσεων CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Ιανουάριος 2019 (CoReLab - NTUA) Αλγόριθμοι - 3η σειρά ασκήσεων Ιανουάριος 2019 1 / 54 Outline 1 Άσκηση
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου
Άσκηση 1. Ψευδοκώδικας Kruskal. Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα.
Άσκηση 1 Ψευδοκώδικας Kruskal Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα. Αντιστοιχίζω τους κόμβους με αριθμούς από το 0 έως το 4. 2Η ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ - MAY 2018
3η Σειρά Γραπτών Ασκήσεων
1/48 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/48 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών
Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών Αλγόριθμοι και πολυπλοκότητα Στάθης Ζάχος, Δημήτρης Φωτάκης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα
Εισαγωγικά στοιχεία Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα Κατευθυνόμενο γράφημα (directed graph ή digraph): (V,A) V: πεπερασμένο σύνολο κορυφών που σημειώνονται ως σημεία A: σύνολο διατεταγμένων
Διάλεξη 13: D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων πο
Διάλεξη 13: 25.11.26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Καλλιόπη Πατερομιχελάκη & Σ. Κ. 13.1 Εναγόμενοι κύκλοι Ορισμός 13.1 Ενας κύκλος του γραφήματος G = (V, E), καλείται εναγόμενος
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Χρωματισμός γραφημάτων
Χρωματισμός γραφημάτων Χρωματισμός γραφημάτων Έστω γράφημα G Αποδίδουμε 1 ακριβώς χρώμα σε κάθε κορυφή του G έτσι ώστε κορυφές που συνδέονται με ακμή να λαμβάνουν διαφορετικά χρώματα Χρωματισμός γραφημάτων
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο