GeoGebra. P osljednjih se godina sve više nameće potreba. Prvi softver dinamične geometrije na hrvatskom jeziku. Zašto program GeoGebra?

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "GeoGebra. P osljednjih se godina sve više nameće potreba. Prvi softver dinamične geometrije na hrvatskom jeziku. Zašto program GeoGebra?"

Transcript

1 Matematika i računalo GeoGebra Prvi softver dinamične geometrije na hrvatskom jeziku Šime Šuljić, Pazin Čeka nas svijet u kojem će sav softver biti slobodan i dostupan poput matematike, fizike ili filozofije, u kojem će društva prepoznati punu tehnološku i gospodarsku vrijednost slobode misli: :: Mislim da je budućnost slobodnog softvera u Hrvatskoj, kao i u drugim tranzicijskim zemljama, da on postane sredstvo socijalnog i tehnološkog razvitka: :: Eben Moglen, profesor prava i povijesti na Sveučilištu Columbia u New Yorku i stalni pravni savjetnik Fondacije za slobodni softver P osljednjih se godina sve više nameće potreba za uvodenjem računala i informacijskokomunikacijske tehnologije u nastavu. Nastava matematike od tog suvremenog zahtjeva naravno nije izuzeta. U mnoge se faze nastavnog procesa, od obrade nastavnih jedinica preko uvježbavanja do ispitivanja, može integrirati računalo i upotrijebiti mnoštvo različitih aplikacija. Nas će posebno zanimati moželiseračunalo upotrijebiti kao pomoć u spoznajnom procesu matematičkih istina. Odgovor je potvrdan, jer se već više od desetljeća razvijaju specijalizirani programi namijenjeni nastavi matematike. Ti programi pokrivaju razna područja matematike, ali možda je najdubljeg traga na nastavu matematike ostavio softver dinamične geometrije koji prožima sve stupnjeve matematičkog obrazovanja. Tu nije riječ o uobičajenom obrazovnom računalnom programu koji korisnika poučava i ispituje ograničen skup činjenica pohranjenih u bazu podataka. Radi se o nečem puno uzbudljivijem. Stvoren je jedan virtualni laboratorij, odnosno istraživački poligon za ispitivanje geometrijskih činjenica, svojstava geometrijskih objekata i mnogih matematičkih tvrdnji koje se mogu dovesti u vezu s geometrijom. Posljednjih godina softver dinamične geometrije nije više samo alat za geometrijske konstrukcije, nego se proteže i na druga područja matematike. Zašto program GeoGebra? Postoje razni računalni programi dinamične geometrije: The Geometer s Sketchpad, Cabri Geometre, Cinderella, Euklides, C.a.R., Wingeom, Geonext, GeoGebra, EucliDraw, Descartes i drugi. Sketchpad je uz Cabri najpoznatiji u svijetu, a i u našoj zemlji je vodeći. Taj izvanredan program je u mnogočemu najbolji i svakako zaslužuje vrlo visoke ocjene. Sjetimo se da smo na stranicama ovog časopisa skovali naziv skečpedoljupci za poklonike tog programa, a takvih je podosta jer je program naprosto zarazan. No, kako se u nas nije pristupilo organiziranoj nabavi softvera za potrebe škola taj komercijalni program i nije tako jeftin. Mnoge su mi se kolegice i kolege obratili s pitanjem kako kupiti i koja je Sketchpadu cijena. A, Godina VI., br. 28,

2 ona nije mala u našoj zemlji zbog kupovanja preko posrednika. Tako mnoge škole nisu kupile za nastavnike i učenike taj izvanredan program. Želimo li zaista da se na svakom školskom računalu, na nastavnikovom i svakom učenikovom osobnom računalu nade bar jedan program dinamične geometrije, zašto onda ne posegnuti za besplatnim rješenjem tzv. friverom? Medu prije navedenim programima više je besplatnih, ali GeoGebru treba izdvojiti jer: to je vrlo profesionalno napravljen program, dobitnik je više europskih nagrada za softver, uključjući nagrade za obrazovni softver, u potpunosti je preveden na hrvatski jezik, dobro pokriva program matematike naše osnovne i srednjih škola, više nego drugi programi povezuje algebru i geometriju, ima intuitivan algebarski zapis jednadžbi, npr. za kružnicu k: (x ; 3) 2 +(y + 2) 2 = 25, vrlo je jednostavan za uporabu nastavniku i učeniku, učenik može raditi s ovim programom od petog razreda osnovne pa do studija, grafika mu je visoke kvalitete, pogotovo za projekciju u razredu, vrlo jednostavno generira dinamični crtež na web stranici (aplet), crteži su pogodni za prijenos u druge prezentacije i programe, uključivšilat E X. jeziku! Koliko je to značajan dogadaj teško je prosuditi, ali sa zadovoljstvom možemo reći, da sada svaki učenik koji ima računalo može spoznavati matematiku u sasvim drugačijem okružju. Ovaj program je u razvoju, tako da nama preostaje daljnji rad, a svaka vaša sugestija glede prijevoda je dobrodošla. Valja uzeti u obzir da ovaj mali, ali moćan program u svakom trenutku rada možete prebaciti na bilo koji od devet raspoloživih jezika. Zbog poliglotskog karaktera programa, nije bilo moguće izbjeći rečenične nezgrapnosti u nekim porukama koje generira program iz pojedinih riječi. No to ne bi trebala biti prepreka ugodnom radu s ovim programom. Program GeoGebra kao i ostali programi dinamične geometrije konstruira točke, vektore, dužine, pravce, zrake, mnogokute, konike i crta grafove funkcija, njihove ekstreme i nultočke, tangente i derivacije. S druge strane parametre, jednadžbe, koordinate i naredbe možemo unositi izravno i kada njih mijenjamo tu promjenu prate i svi zavisni konstruirani geometrijski objekti sa svojim definiranim svojstvima i algebarskim opisima. Ova dva pristupa su obilježja programa GeoGebra: izraz u algebarskom prozoru odgovara objektu u geometrijskom prozoru i obrnuto. Autorova ideja je bila ujediniti mogućnosti grafičkih kalkulatora, softvera dinamične geometrije i programa namijenjenih algebri kao što su Maple i Derive. Što je program GeoGebra? Instalacija programa GeoGebra Program GeoGebra je matematički softver koji povezuje geometriju, algebru i analizu. Razvio ga je Markus Hohenwarter na Sveučilištu u Salzburgu za poučavanje matematike u školama. Prlagodbu programa hrvatskom jeziku radio sam zajedno s kolegicom Elom Rac Marinić Kragić sa zagrebačke V. gimnazije. Ponukani upravo time da mnogi nastavnici nemaju mogućnosti doći do softvera dinamične geometrije ili da im je jezik prepreka odlučili smo se na prilagodbu ovog programa hrvatskom jeziku. Tako smo dobili prvi softver dinamične geometrije i na hrvatskom Za instalaciju je najbolje da uvijek preuzmete najnoviju inačicu programa Geogebra izravno s web adrese Ako na svom računalu nemate instaliranu Java virtual machine 1.4 ili noviju inačicu, preuzmite datoteku koja uključuje Javu. Nakon preuzimanja jednostavno dvaput kliknite na geogebra setup.exe i program će se sam instalirati na vaše računalo. Ako želite samo upoznati program bez instalacije možete ga pokrenuti tzv. online klikom na tipku WebStart na stranicama programa. 124 Matematika i škola

3 Rad s programom Nakon instalacije dvostrukim klikom na ikonu na radnoj površini računala pokreće se program. Program se takoder može pokrenuti iz izbornika Svi programi. U otvorenom programu uočavamo podjelu na dva glavna dijela: lijevi, algebarski prozor i desni, geometrijski prozor. Pored dva glavna prozora program ima traku izbornika, traku s alatima i polje unosa za izravne naredbe. Ovaj kratki opis programa nema za cilj uputiti vas u sve tajne rada s programom, jer za to nema potrebe. Mnoge ćete mogućnosti otkriti u samom radu s programom, a za namjeravane korake najbolje je potražiti pomoć u izborniku Pomoć. Osim toga tamo gdje ste instalirali program, recimo u C:nProgram FilesnGeoGebra, naći ćete dokument docuhr.pdf s kompletnim helpom na hrvatskom jeziku u formatu pogodnom za ispis. Algebarski i geometrijski prozor U algebarskom prozoru vide se koordinate točaka, koordinate vektora, jednadžbe pravaca i grafova, duljine dužina, površine mnogokuta, veličine kutova, vrijednosti parametara i razni korisnikovi proračuni ili mjerenja. U desnom se prozoru nalaze konstruirani objekti: točke, dužine, pravci, zrake, vektori, kružnice, konike, mnogokuti, grafovi funkcija i još neki složeniji objekti. U ovaj se prozor može upisivati i tekst. Geometrijskom prozoru, odnosno crtaćoj plohi pridružene su koordinatne osi, a možemo im pridružiti i koordinatnu mrežu (izbornik Prikaz). Točke koje crtamo ili pomičemo mogu se vezivati na čvorove koordinatne mreže ako je tako podešeno u izborniku Odrednice. Koordinatne osi, koordinatnu mrežu i algebarski prozor možemo ukloniti ako nam je potrebna samo crtaća ploha bez koordinatnog sustava. Raspoloživi alati Ispod trake s izbornicima nalazi se alatna traka. Tipke su ugniježdene pa je potrebno kliknuti na tipku da bi se otvorio padajući izbornik i vidjelo sve alate jedne skupine. U padajućem izborniku pored svake tipke imamo i kratak naziv alata. Naziv alata javlja se i kada pokazivač miša zadržimo nad pojedinom tipkom. Izborom pojedinog alata izabran je takozvani način rada i u statusnoj traci, na dnu crtaće plohe, piše izabrani način. Godina VI., br. 28,

4 PREGLED ALATA: Dugme Naziv Opis Pomicanje objekta Nova točka Sjecište dvaju objekata Pravac kroz dvije točke Dužina izmedu dviju točaka Slično kao i pravac. Klikom na objekt izabran je način. Povlačenjem se pomiče objekt. Objekt se može pomicati i tipkama + i ; ili sa strelicama na tipkovnici. Pomicati se mogu samo nezavisni objekti. Klikom na crtaću plohu kreira se nova točka. Klikom na dužinu, zraku, pravac, kružnicu: ::crta se točka koja pripada tom objektu. Klikom na sjecište dvaju objekata crta presječna točka. Kliknuti na jedan pa na drugi objekt ili na samo presječno mjesto. Kliknuti na jednu pa drugu točku ili kliknuti na dva nova mjesta na crtaćoj plohi. Zraka kroz dvije točke Vektor izmedu dviju točaka Mnogokut Okomica Usporednica Simetrala dužine Slično kao i pravac samo je potrebno voditi računa o početnoj točki. Klikom odabrati početak i kraj vektora. Odabrati najmanje tri točke i ponovo kliknuti na početnu. U algebarskom prozoru prikazuje se površina mnogokuta. Kliknuti na odabranu točku pa na odabrani pravac ili obrnuto. Kliknuti na odabranu točku pa na odabrani pravac ili obrnuto. Kliknuti na rubne točke dužine ili na samu dužinu. 126 Matematika i škola

5 Dugme Naziv Opis Simetrala kuta Tangente Kružnica odredena središtem i jednom točkom Kružnica kroz tri točke Kliknuti na tri točke koje odreduju kut. Voditi računa o redoslijedu i orijentaciji. Može i odabir dvaju pravaca ili dužina. Odabir točke A i konike c daje sve tangente na c koje prolaze kroz A. Odabir pravca g i konike c daje sve tangente na c koje su usporedne s g. Odabir točke A i funkcije f proizvodi sve tangente od f u diralištu x = x(a). Prvo kliknuti na željeno središte, a potom na rubnu točku. Odabirom triju točaka odreduje se kružnica kroz te tri točke. Konika kroz pet točaka Tekst Veza medu objektima Pomicanje crtaće plohe Odabirom postojećih ili crtanjem novih pet točaka dobiva se konika kroz njih. Klikom na crtaću plohu kreira se novi tekst na tom mjestu. Klikom na točku kreira se tekst čiji je položaj vezan uz tu točku. U navodnike se upisuje željeni tekst. Izvan navodnika se može dodati znak + i neka vrijednost iz algebarskog prozora koja se onda dinamički mijenja. Primjeri: polumjer = +r ili opseg = +2 r pi. Označe se dva objekta da se dobije informacija o njihovom medusobnom odnosu. Povlačenje i ispuštanje da bi se promijenio položaj ishodišta koordinatnog sustava. Crtaću plohu možete pomicati i istovremenim pritiskom tipke Ctrl i povlačenjem miša. Polje za unos Na dnu prozora nalazi se polje unosa u koje se može izravno upisivati koordinate točaka i vektora, jednadžba pravaca i funkcija, vrijednosti parametara, ali i naredbe. PRIMJERI (2 3)! crta točku s tim koordinatama i dodjeljuje joj ime; α = 45! u mapu Nezavisni objekti algebarskog prozora prikazuje kut zadane vrijednosti; 2! u mapu Nezavisni objekti algebarskog prozora prikazuje parametar kojem pridružuje ime, recimo a = 2; x! crta graf funkcije f (x) =x i pridružuje mu jednadžbu u algebarskom prozoru; ax(razmak ili znak za množenje!)! crta graf funkcije f (x) = ax. Kliknemo li na parametar a, pa na tipke +=; mijenja se parametar, a i izgled grafa; O = r 2 π! izračunava opseg kruga polumjera r i upisuje ga u mapu Zavisni objekti algebarskog prozora; Polovište[A B]! crta polovište dužine AB; Dužina[(1 2) (3 4)]! crta dužinu bez rubnih točaka; A 0 =Zrcali[A p]! crta osno simetričnu točku točki A s obzirom na pravac p. Posljednja tri retka predstavljaju opis naredbi o kojima ćemo se više pozabaviti u narednom broju -a. Skočni izbornik Značajnu ulogu u ovom programu ima desna tipka miša. Desnim klikom na objekt u geometrijskom prozoru ili na njegov ekvivalent u algebarskom prozoru otvara skočni izbornik koji izgleda otprilike kao na sljedećoj slici. Osim imena i definicije objekta tu je niz naredbi koje su razumljive same po sebi. Osvrnimo se samo na neke. Uključi trag znači da objekt Godina VI., br. 28,

6 Svojstva objekata prilikom gibanja (animacije) ostavlja tragove na svojim prethodnim pozicijama. Uključiti opciju Pomoćni objekt znači preseliti algebarski zapis o objektu u mapu Pomoćni objekti. Samu tu mapu može se sakriti (izbornik Prikaz) što je važno onda kada želimo da učenici ne usmjeruju svoju pažnju na manje važne detalje konstrukcije. Svaki se objekt može dodatno urediti. Izgled crteža nekada nije bio toliko važan. Danas, vrijeme naglašenog vizualnog komuniciranja nije potrebno posebno naglašavati važnost te komponente komunikacije, već treba iskoristiti izvanredne mogućnosti koje pruža ovaj program. Do kartice Svojstva dolazimo do iz skočnog izbornika ili izbornika Uredivanje. Svojstva koja se mogu mijenjati su različita za različite objekte. Obično su to boja i veličina. Naročito je korisno što se nudi izbor samo oznake, oznake i vrijednosti, samo vrijednosti ili uopće bez ikakve oznake ili vrijednosti. Korak se odnosi na korak gibanja pri animaciji. Uključimo li opciju Nepomičan objekt on se neće moći pomicati niti mišem niti strelicama na tipkovnici. Posebno je korisno znati da više objekata možemo uredivati odjednom. Pritisnemo tipku Ctrl i istovremeno kliknemo na svaki objekt u popisu objekata kartice Svojstva, a zatim pristupimo uredivanju. 128 Matematika i škola

7 Primjeri jednostavne konstrukcije 1. Konstrukcija pravokutnika Prvi način. Makar bismo u potpunosti mogli imitirati konstruiranje pravokutnika ravnalom išestarom na papiru, možda je bolje da postupak prilagodimo alatima koje nam program nudi. 1. Alatom Dužina izmedu dviju točaka nacrtamo dužinu AB. 2. Alatom Okomica konstruiramo okomicu u točki B. Potrebno je kliknuti na točku B i na dužinu. 3. Alatom Nova točka nacrtamo točku C na okomici. 4. Alatom Okomica konstruiramo okomicu u točki C i okomicu na dužinu AB u točki A. 5. Alatom Nova točka kliknemo na sjecište dviju posljednjih okomica da dobijemo točku D ili koristimo alat Sjecište dvaju objekata. 6. Skrijemo sve pravce. Alatom Dužina izmedu dviju točaka nacrtamo stranice pravokutnika. Ili još bolje alatom Mnogokut kliknemo na sve točke redom i ponovo na početnu točku. Sada u algebarskom prozoru dobivamo pored duljina stranica i iznos površine pravokutnika. Drugi način. Ovaj način koristi koordinatni sustav crtaće plohe i može značajno uštedjeti vrijeme. Koordinatni sustav crtaće plohe je aktivan bez obzira na skrivenost koordinatnih osi. Najprije definiramo dužinu i širinu pravokutnika kao parametre, koje kasnije možemo proizvoljno mijenjati klikom na njih u algebarskom prozoru i tipkama +=;. Izravno unosimo naredbe u polja za unos: 1. d = š = A =(0 0), a može i samo (0 0) pa će program sam pridružiti oznaku točki. 4. B =(d 0). 5. C =(d š). 6. D =(0 š). 7. Mnogokut[A B C D]. 2. Konstrukcija trokutu opisane kružnice (zadatak za samostalan rad učenika) Onoštojeucrtanjuravnalomišestaromna papiru dosta složeno i često neprecizno, u GeoGebri može biti vrlo jednostavno i posvema precizno. Iako konstrukcija trokutu opisane kružnice ne spada u obvezan dio gradiva osnovne škole, možemo ponuditi učeniku da sam istraži, odnosno otkrije ovo lijepo svojstvo simetrala stranica trokuta. Velik broj učenika ima računalo i dovoljno je dati kratku uputu za rad s programom. U ovoj uputi koriste se više tipki iz alatne trake jer su učenici s njima snalažljiviji. 1. Klikni na tipku pa s njim nacrtaj trokut. Lijevo, u algebarskom prozoru vide se duljine stranica i površina trokuta. 2. Uzmi alat i klikni na svaku stranicu trokuta. Dobiju se simetrale stranica trokuta. 3. Sijeku li se simetrale stranica u jednoj točki? A, ako alatom pomičemo vrhove trokuta i ako trokut mijenja oblik? 4. Alatom klikni na dvije simetrale da bi konstruirao sjecište simetrala. 5. Spoji sjecište simetrala s vrhovima trokuta alatom. Pogledaj u algebarskom prozoru kolike su duljine tih spojnica i usporedi ih. Mijenjaj trokutu oblik i promatraj udaljenost sjecišta simetrala od vrhova trokuta. Što zaključuješ? Iskaži tu tvrdnju riječima i pokušaj je matematički dokazati. 6. Alatom nacrtaj kružnicu sa središtem u sjecištu simetrala stranica i rubnom točkom u jednom vrhu trokuta. Prolazi li kružnica svim vrhovima trokuta, bez obzira na oblik trokuta? 7. Ta se kružnica naziva opisana kružnica trokuta. Mijenjaj oblik trokutu. Kakav je trokut da bi njeno središte bilo unutar trokuta, a kakav mora biti da bi njeno središte bilo izvan trokuta? 8. U polje unosa upiši naredbu Kut[P]. P je oznaka za trokut u algebarskom prozoru. Ako naš trokut ima raspored vrhova suprotan smjeru kazaljke na satu, dobit ćemo unutarnje kutove trokuta. U suprotnom dobivamo nadopune unutarnjih kutova do Može li središte kružnice biti na stranici trokuta? Pokušaj na crtaćoj plohi podesiti takav trokut. Koliko stupnjeva ima kut nasuprot stranici na kojoj se nalazi središte trokutu opisane kružnice? Godina VI., br. 28,

8 3. Jedan praktičan zadatak Zadatak. Mještani Gornjeg Mlina i Donjeg Mlina su odlučili napraviti most preko obližnje rijeke. Pronadi mjesto za most koje ce biti jednako udaljeno od oba sela. (način: Pomicanje objekta) i strelicama na tipkovnici. Na kartici Svojstva može se podesiti korake animacije. Naravno, da s ovakvom simulacijom problemske situacije možemo naći rješenje zadatka, ali to naravno ne treba promatrati kao prepreku za posezanjem za pravim matematičkim rješenjem. Upravo suprotno, smatram da učenik nakon simulacije je visoko motiviran za otkrivanjem geometrijskog rješenja problema. I to rješenje opet može ići u GeoGebri, jer je zanimljivije kada simetrala spojnice Mlinova siječe rijeku u dinamičnom okruženju. Ima toga još: :: Pogledajmo najprije priloženi crtež. Crtež je raden u programu kojeg opisujemo. I to ne na način da je svaka od četiri točke na rijeci konstruirana za sebe, već je to točka sa svojstvom da ostavlja trag. Trag ostavljaju i spojnice s Mlinovima. Da bi objekt ostavljao trag dovoljan je desni klik na objekt i u skočnom izborniku uključiti opciju Uključi trag. Točku Most animiramo klikom na nju U ovom smo se broju upoznali osnovne karakteristike GeoGebre i dobili dovoljno uputa za ugodan početak rada. Više smo govorili o programu kao konstrukcijskom alatu, a u slijedećem bi govorili o algebarskom prozoru i izravnim naredbama. Primjeri koji su dani su osnovnoškolsko gradivo, a slijedeći put bi više dotakli srednjoškolsko gradivo. Vjerujem da ste dobili dovoljno poticaja da se bacite na proučavanje programa. I brzo ćete napredovati, jer za ovaj program nije potrebno ići na tečaj. Dakle i skinite ga odmah sad. GAUSSOV KÔD Carl Friedrich Gauss imao je običaj kodirati svoje bislješke. Neki bi istaknutiji dogadaj iz svojega života zapisao brojem dana, odbrojanim od dana njegova rodenja do dana kad se taj dogadaj odigrao. Tako je, primjerice, 16. srpnja 1799., dan na koji je stekao znanstveni stupanj doktora kodirao brojem To znači da je od 30. travnja 1777., dana kada je roden, pa do 16. srpnja 1799., dana na koji je doktorirao, prošlo 8113 dana. Jedan raniji značajan dogadaj bio je dan kada se kao petnaestogodišnjak Gauss zainteresirao za problem raspodjele prostih brojeva. Taj je dan kodirao brojem Koji je nadnevak zapisan ovim kodom? nadnevak Rješenje: Od traženog nadnevka do 16. srpnja godine prošlo je ; 8113 = dana. Od toga na godinu otpada 197 dana. Od do imamo ukupno 2557 dana (5 godina po 365 dana +2 godine po 366 dana). Kako je ; ( )=16 danam, oduzimajući ih unatrag od godine, dobijemo 130 Matematika i škola

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

GeoGebra Prvi softver dinamine geometrije na hrvatskom jeziku

GeoGebra Prvi softver dinamine geometrije na hrvatskom jeziku Šime Šulji GeoGebra Prvi softver dinamine geometrije na hrvatskom jeziku eka nas svijet u kojem e sav softver biti slobodan i dostupan poput matematike, fizike ili filozofije, u kojem e društva prepoznati

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

GeoGebra Pomoć Službeni priručnik 3.2

GeoGebra Pomoć Službeni priručnik 3.2 GeoGebra Pomoć Službeni priručnik 3.2 Markus Hohenwarter i Judith Hohenwarter www.geogebra.org Pomoć za program GeoGebra 3.2 Posljednja promjena: 23.4.2009. Autori Markus Hohenwarter, markus@geogebra.org

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Geometrijski trikovi i metode bez imena

Geometrijski trikovi i metode bez imena Geometrijski trikovi i metode bez imena Matija Bašić lipanj 2016. U ovom tekstu želimo na jednom mjestu navesti vrlo klasične ideje u rješavanju planimetrijskih zadataka. Primjeri variraju od jednostavnih

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi ako je E=C. 1.1.**

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Analitička geometrija u ravnini

Analitička geometrija u ravnini Analitička geometrija u ravnini September 5, 2008 1 Vektori u koordinatnom sustavu 1.1 Udaljenost točaka u koordinatnom sustavu pravokutni koordinatni sustav potpuno je odred en ishodištem jediničnim vektorima

Διαβάστε περισσότερα

Pomoć za program GeoGebra 2.5

Pomoć za program GeoGebra 2.5 Pomoć za program GeoGebra 2.5 Markus Hohenwarter, www.geogebra.at Htvatska verzija: Šime Šuljić, Ela Rac Marinić Kragić 3. svibnja 2005. Sadržaj Sadržaj 2 1 Što je program GeoGebra? 5 2 Primjeri 6 2.1

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y . ANALITICKA GEOMETRIJA. Pravac Imlicitni oblik jednadzbe pravca: a + by + c = 0 Opci oblik pravca: gdje je : y = k+ l k koeficijent smjera pravca, k = tan α l odsjecak pravca na osi y k > 0 pravac je

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Uvod u GeoGebru. Judith i Markus Hohenwarter

Uvod u GeoGebru. Judith i Markus Hohenwarter Uvod u GeoGebru Judith i Markus Hohenwarter www.geogebra.org Posljednja promjena: 25. studenog 2009. Pisano za GeoGebru 3.2 Knjiga je namijenjena svladavanju osnova dinamičnog matematičkog programa Geogebra.

Διαβάστε περισσότερα

1. Trigonometrijske funkcije

1. Trigonometrijske funkcije . Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

3. KRIVULJE DRUGOG REDA

3. KRIVULJE DRUGOG REDA 3. KRIVULJE DRUGOG REDA U realnoj projektivnoj ravnini konike ili krivulje drugog reda definiraju se ovako: Definicija 3.1. Skup svih točaka projektivne ravnine čije koordinate zadovoljavaju algebarsku

Διαβάστε περισσότερα

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja. r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira

Διαβάστε περισσότερα

Temeljni pojmovi o trokutu

Temeljni pojmovi o trokutu 1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Proširenje na poučku o obodnom i središnjem kutu

Proširenje na poučku o obodnom i središnjem kutu Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Matematika 1. kolokviji. Sadržaj

Matematika 1. kolokviji. Sadržaj Matematika kolokviji Sadržaj. kolokvij, 2..2004.............................................. 2. kolokvij, 2..2004.............................................. 3 2. kolokvij, 7.2.2004..............................................

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole 5. 1. Definicija parabole...............................

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Primjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela.

Primjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela. S. Varošanec, Nacrtna geometrija, 4. Mongeovo projiciranje 90 Primjer 4.56. Osnovka ABCD uspravne četverostrane prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Proširenje na poučku o obodnom i središnjem kutu

Proširenje na poučku o obodnom i središnjem kutu Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije

Διαβάστε περισσότερα

1. Trigonometrijske funkcije realnog broja

1. Trigonometrijske funkcije realnog broja 1. Trigonometrijske funkcije realnog broja 1. Brojevna kružnica... 1 7.Adicijskeformule.... Definicija trigonometrijskih funkcija....... 8. Još neki identiteti.......... 9. Trigonometrijske funkcije kutova........

Διαβάστε περισσότερα

ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.

ALFA List - 1. Festival matematike Split 2013. Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013. ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo

Διαβάστε περισσότερα

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010.

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010. ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I

Διαβάστε περισσότερα

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P = Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

1.3. Rješavanje nelinearnih jednadžbi

1.3. Rješavanje nelinearnih jednadžbi 1.3. Rješavanje nelinearnih jednadžbi Rješavanje nelinearnih jednadžbi sastoji se od dva bitna koraka: nalaženja intervala u kojem se nalazi nultočka (analizom toka), što je teži dio posla, nalaženja nultočke

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Priručnik za nastavnike

Priručnik za nastavnike XV c b d r a a Matematika između realnog i virtualnog b c d Rata Glavnica Kamata Iznos rate 0 1.08, 1,58.97,91.08, 05,6.88,97.08, 197,6.80,0.08, 187,76.71,09 5.08, 178,8.6,15 6.08, 169,88.5,1 7.08, 160,9.,7

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

Konstruktivne metode. U teoriji geometrijskih konstrukcija postoji. Iz rječnika metodike. Zdravko Kurnik, Zagreb. metoda afinosti, metoda kolineacije.

Konstruktivne metode. U teoriji geometrijskih konstrukcija postoji. Iz rječnika metodike. Zdravko Kurnik, Zagreb. metoda afinosti, metoda kolineacije. Iz rječnika metodike Konstruktivne metode Zdravko Kurnik, Zagreb U teoriji geometrijskih konstrukcija postoji niz razvijenih metoda rješavanja konstruktivnih zadataka, tako da se dobar dio tih zadataka

Διαβάστε περισσότερα

Konstruktivni zadaci. Uvod

Konstruktivni zadaci. Uvod Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija Konstruktivni zadaci Uvod U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja,

Διαβάστε περισσότερα

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE **** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010.

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010. ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Uvod Kako naći ortogonalne trajektorije. 1 Polje smjerova. 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda. 3 Ortogonalne trajektorije

Uvod Kako naći ortogonalne trajektorije. 1 Polje smjerova. 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda. 3 Ortogonalne trajektorije Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje 5 1 / 34 Sadržaj: Sadržaj 1 Polje smjerova 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda 3 Uvod Kako naći ortogonalne trajektorije

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE . 0.: 0.0 0. 0.0 je: 5000 0.0 5 0.00. Izračunajte 0.% od : 0. 4 0. 0.0 0.00 0.. Skratite razlomak a a a 4a + 4 + a a a a a a 0.77 4. Rješenje jednadžbe =. 5 je -

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα