5. PARCIJALNE DERIVACIJE

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5. PARCIJALNE DERIVACIJE"

Transcript

1 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x y) = e x cos(x + y) (f) f (x y) = e xy ln(x 2 + y 2 ) sin(x + yz) (g) f (x y z) =. xz 5.2. Izračunajte matricu parcijalnih derivacija sljedećih funkcija: (a) f (x y) = (x + y yx) (b) f (x y) = (x 2 + sin y e x + xy 2 ) (c) f (x y z) = (sin x cos y + z 2 xz) (d) f (x y z) = (x sin y y 2 z + ln x arctg z) (e) f (x y z) = (sin xy yz 2 + sin x 4x + y 2 z cos x) (f) f (x y z u v) = x 2 + ux + 3zv 2 + y 3 y (g) f (x) = (x sin x x + e x 2x) (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

2 (h) f (x y z) = (x + e z + y yx 2 ) (i) f (x y) = (e x sin xy) (j) f (x y) = (x + y x y xy). df g 5.3. Izračunajte derivaciju dt kompozicije sljedećih funkcija: (a) f (x y) = x 2 + e y g(t) = (sin t t) (b) f (x y) = x cos y g(t) = (t 2 t) (c) f (x y) = xy g(t) = (e t cos t) (d) f (x y) = xe x 2 +y 2 g(t) = (t t). g 5.4. Izračunajte parcijalnu derivaciju u kompozicije sljedećih funkcija: (a) f (x y) = xy + y g(u v) = (u 2 + v uv) (b) f (x y) = x + sin y g(u v) = (u 2 u + v) (c) f (x y) = x 2 + y 2 g(u v) = (e u v e uv ) (d) f (x y) = cos x sin y g(u v) = (cos(v 2 u) ln 1 + u 2 ) u (1 0) Izračunajte diferencijal kompozicije f g sljedećih funkcija: (a) f (x y) = (y + ln(1 + x) y) g(u v) = (u v v + 1) u (0 0) (b) f (x y) = (y 2 sin x) g(u v) = (v + cos v u + cos u) u (0 0) (c) f (x y) = (tg(x 1) e y x 2 y 2 ) g(u v) = (e u v u v) u (1 1) (d) f (x y z) = (e x z cos(x + y) + sin(x + y + z)) g(u v) = (e u cos(v u) e v ) u (0 0). (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

3 5.6. Odredite jednadžbu tangencijalne ravnine na: (a) plohu x 2 + y z = 0 u točki (1 0 1) (b) graf funkcije f (x y) = sin x + xy 2 koja prolazi točkom (0 2 0) (c) graf funkcije f (x y) = xy + ln y koja prolazi točkom (1 1 1) (d) plohu x 2 + y 3 z = 0 u točki (3 1 10) (e) plohu xyz = 1 u točki (1 1 1) (f) graf funkcije f (x y) = sin(xy) koja prolazi točkom (1 π 0) Odredite jednadžbu tangencijalne ravnine na nivo skup funkcije f (x y z) = xy + yz + zx kroz (1 1 0) u točki (1 1 0) Odredite jednadžbu tangencijalne ravnine i normale na: (a) plohu x 2 + xy 2 + y 3 + z + 1 = 0 u točki (2 3 4) (b) graf funkcije f (x y) = e x sin y koja prolazi točkom (ln 3 3π 2 3) Odredite presjek tangencijalnih ravnina na plohe xy + z = 0 i x 2 + y 2 + z 2 = 9 u točki (2 1 2) Izračunajte kut izmedu ploha x 2 + y 2 + z 2 = 3 i x z 2 y 2 = 3 u točki ( 1 1 1). (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

4 5.11. Odredite derivaciju funkcije: (a) f (x y) = x + 2xy 3y 2 u točki (1 2) duž vektora (3/5 4/5) (b) f (x y z) = e x + yz u točki (1 1 1) duž vektora (1 1 1) Kapetan Ivo je u nevolji. Kraj sunčane strane Merkura temperatura trupa broda je dana funkcijom f (x y z) = e x2 2y 2 3z 2. Ako se brod trenutno nalazi u točki (1 1 1) u kojem smjeru treba nastaviti da najbrže smanji temperaturu? Mrav se nalazi u ishodištu koordinatnog sustava u toksičnoj atmosferi. Koncentracija toksina je dana funkcijom f (x y z) = e 3x + sin(yz) + e y 2. U kojem smjeru treba mrav bježati da se koncentracija toksina najbrže smanji? (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

5 5.14. Odredite u kojim točkama parametarski zadana krivulja c(t) = (2t 2 1 t 3 + t 2 ) siječe ravninu 3x 14y + z 10 = Napišite parametarsku jednadžbu tangente na parametarski zadanu krivulju: (a) c(t) = (cos 2 t 3t t 3 t) u trenutku t 0 = 0 (b) c(t) = (cos(4t) sin(4t) t) u trenutku t 0 = π/8 (c) c(t) = (t 2t t 2 ) u točki (1 2 1) (d) c(t) = (e 3t e 3t 3 2t) u trenutku t0 = Pokažite da se krivulje c 1 (t) = (e t e 2t 1 e t ) i c 2 (t) = (1 t cos t sin t) sijeku u točki (1 1 0) i izračunajte kut izmedu njihovih tangenti u toj točki Izračunajte kut izmedu tangenti na krivulje c i c za parametarski zadanu krivulju c(t) = ( ln(1 + t 2 ) 2 arctg t t t ) u svakoj točki te krivulje Čestica se kreće u ravnini po krivulji c(t) = (e t cos t e t sin t). Izračunajte kut izmedu vektora brzine i položaja čestice u svakom trenutku t 0 R. (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

6 5.19. Izračunajte duljinu luka krivulje: (a) c(t) = (cos t sin t t) od t = 0 do t = 1 (b) c(t) = (t 2t t 2 ) od t = 0 do t = 1 (c) c(t) = (e 3t e 3t 3 2t) od t = 0 do t = 1/3 (d) c(t) = (t sin t 1 cos t) od t = 0 do t = π (e) c(t) = (t ln t) od t = 3 do t = 2 2 (f) c(t) = (t t t3 ) od t = 0 do t = 1 (g) c(t) = (t ln cos t) od t = 0 do t = π/4. (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

7 Rješenja 5.1. (a) x (x y) = 2x y (x y) = 1 (b) x (x y) = y + y 2 y (x y) = x + 2xy (c) x (x y) = y 3 +2xy y 2 +x xy 3 +x 2 y (y 2 +x) 2 y (x y) = 3xy 2 +x 2 y 2 +x 2y(xy 3 +x 2 y) (y 2 +x) 2 (d) (x y) = cos x cos y x sin x cos y x y (x y) = x cos x sin y (e) x (x y) = ex cos(x + y) e x sin(x + y) y (x y) = ex sin(x + y) (f) x (x y) = yexy ln(x 2 + y 2 ) + 2xe xy 1 (g) x 2 +y 2 y (x y) = xexy ln(x 2 + y 2 ) + 2ye xy 1 x y z cos(x+yz) (x y z) = xz cos(x+yz) (x y z) = x (x y z) = y cos(x+yz) xz sin(x+yz) x 2 z sin(x+yz) xz 2. x 2 +y 2 (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

8 [ (a) Df (x y) = [ y x 2x cos y (b) Df (x y) = e x + y 2 [ 2xy cos x cos y sin sin y 2z (c) Df (x y z) = z 0 x sin y x cos y 0 (d) Df (x y z) = 1 x 2yz y 2 (e) Df (x y z) = z 2 y cos xy x cos xy 0 cos x z 2 2yz 4 2y 0 z sin x 0 cos x (f) Df (x y z u v) = [ 2x + u 3y 2 1 3v 2 x 6zv 3x cos x (g) Df (x) = e x 1 [ e z (h) Df (x y z) = 2xy x 2 0 (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

9 [ e (i) Df (x y) = x 0 y cos xy x cos xy 1 1 (j) Df (x y) = 1 1. y x 5.3. (a) 2 sin t cos t + e t (b) 2t cos t t 2 sin t (c) e t cos t e t sin t (d) e 2t (a) 2u 2 v + (u 2 + v + 1)v (b) 2u + cos(u + v) (c) 2( e 2u 2v + ve 2uv ) (d) 1 2 cos 1 cos(ln 2). [ (a) D(f g)(0 0) = 0 1 [ 0 2 (b) D(f g)(0 0) = (c) D(f g)(1 1) = [ [ = [ 0 1 = [ cos [ cos 1 (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

10 [ 1 1 (d) D(f g)(0 0) =. cos 3 sin 2 cos (a) 2x + y z 1 = 0 (b) 5x z = 0 (c) x + 2y z 2 = 0 (d) 6x + 3y z 11 = 0 (e) x + y + z 3 = 0 (f) πx + y + z 2π = x + y + 2z 2 = (a) 13x + 15y + z + 15 = 0 x 2 13 = y = z 4 1 (b) 3x + z ln 3 = 0 x ln 3 3 x = y 1 = z arccos (a) 5 (b) e e 6 (1 2 3). = y 3π 2 0 = z (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

11 5.13. (3 0 0) T 1 (2 0 4) T 2 ( ) (a) (x(r) y(r) z(r)) = (1 0 0) + r (0 3 1) r R (b) (x(r) y(r) z(r)) = (0 1 π/8) + r ( 4 0 1) r R (c) (x(r) y(r) z(r)) = (1 2 1) + r (1 2 2) r R (d) (x(r) y(r) z(r)) = (e 3 e 3 3 2) + r (3e 3 3e 3 3 2) r R π π π (a) 2 (b) 5 8 ln (c) e 1 e (d) 4 (e) ln 3 2 (f) 5 3 (g) 1 2 ln( ). (PMF-MO) DIFERENCIJALNI I INTEGRALNI RAČUN / / 11

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Matematika 1. kolokviji. Sadržaj

Matematika 1. kolokviji. Sadržaj Matematika kolokviji Sadržaj. kolokvij, 2..2004.............................................. 2. kolokvij, 2..2004.............................................. 3 2. kolokvij, 7.2.2004..............................................

Διαβάστε περισσότερα

Derivacija funkcije Materijali za nastavu iz Matematike 1

Derivacija funkcije Materijali za nastavu iz Matematike 1 Derivacija funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 45 Definicija derivacije funkcije Neka je funkcija f definirana u okolini točke x 0 i

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

b proj a b είναι κάθετο στο

b proj a b είναι κάθετο στο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

VVR,EF Zagreb. November 24, 2009

VVR,EF Zagreb. November 24, 2009 November 24, 2009 Homogena funkcija Parcijalna elastičnost Eulerov teorem Druge parcijalne derivacije Interpretacija Lagrangeovog množitelja Ako je (x, y) R 2 uredjeni par realnih brojeva, onda je s (x,

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης. Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Matematika 2 za kemičare Drugi kolokvij svibnja 2016.

Matematika 2 za kemičare Drugi kolokvij svibnja 2016. Napomene. Dozvoljena pomagala za rješavanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama i pribor za pisanje. Neće se bodovati nečitko pisani dijelovi testa. Napišite svoje ime,

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

1. Vektorske i skalarne funkcije

1. Vektorske i skalarne funkcije VEKTORSKE I SKALARNE FUNKCIJE 1 1. Vektorske i skalarne funkcije 1.1. Što su to skalarne i vektorske funkcije? Ako svakoj točki u nekom dijelu prostora pridružimo broj, ili drugim riječima skalar zadali

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Plohe u prostoru i ekstremi skalarnih funkcija više varijabli

Plohe u prostoru i ekstremi skalarnih funkcija više varijabli Plohe u prostoru i ekstremi skalarnih funkcija više varijabli Franka Miriam Brückler f (x, y) = y ln x f x = y x, f y = ln x. f (x, y) = y ln x f x = y x, f y = ln x. Dakle, za svaki par (x, y) u domeni

Διαβάστε περισσότερα

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA 5 Derivacija funkcija (sa svim korekcijama) 8 5 poglavlje (korigirano) DERIVACIJA FUNKCIJA U ovom poglavlju: Derivacija po definiciji, tablica deriviranja Derivacija zbroja, razlike, produkta i kvocijenta

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

8 Tangencijalna ravnina plohe

8 Tangencijalna ravnina plohe 8 Tangencijalna ravnina plohe Sferu kao plohu pokrili smo sa šest, odnosno sa dvije karte u Primjeru 2. Dakle, općenito, neka točka sfere ležat će u slikama od više karata. Proučimo stoga što se dogada

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Μαθηµατικός Λογισµός ΙΙ

Μαθηµατικός Λογισµός ΙΙ Μαθηµατικός Λογισµός ΙΙ ΤΕΙ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ 2 Κ Ε Φ Α Λ Α Ι Ο 1 Ορια και Συνέχεια 1.1 Ορια Παράδειγµα 1.1. Να υπολογίσετε το x+y lim (x,y) (0,0) x y. Απάντηση: Παρατηρούµε ότι η συνάρτηση

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

f(x) = a x, 0<a<1 (funkcija strogo pada)

f(x) = a x, 0<a<1 (funkcija strogo pada) Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim.

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim. 1 Diferencijabilnost 11 Motivacija Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji es f f(x) f(c) (c) x c x c Najbolja linearna aproksimacija funkcije f je funkcija l(x) = f(c)

Διαβάστε περισσότερα

Elementarna matematika 2 - Analiti ka geometrija

Elementarna matematika 2 - Analiti ka geometrija Elementarna matematika - Analiti ka geometrija Pravci i ravnine u prostoru. Odredite jednadºbu pravca koji prolazi ishodi²tem i sije e pravce s jednadºbama x 7 0 = y 3 = z 5, x + 3 = y = z + 9.. Odredite

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

2x 2 y. f(y) = f(x, y) = (xy, x + y)

2x 2 y. f(y) = f(x, y) = (xy, x + y) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Εστω f : R R η συνάρτηση με τύπο y + x sin 1, για y 0, f(x, y) = y 0, για y = 0. (α) Να αποδειχθεί οτι lim f(x, y) = 0. (x,y) (0,0) (β) Να αποδειχθεί οτι το lim(lim f(x, y)) δεν

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

(r, φ) φ x. Polarni sustav

(r, φ) φ x. Polarni sustav olarnom u oložaj točke u ravnini možemo definirati omoću udaljenosti r od ishodišta i kuta φ koji sojnica ishodišta i točke zatvara s osi φ r (r, φ) kut φ je o konvenciji ozitivan ako ga mijenjamo u smjeru

Διαβάστε περισσότερα

1. Trigonometrijske funkcije

1. Trigonometrijske funkcije . Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Αθ.Κεχαγιας. v. 0.95. Λογισµος Συναρτησεων Πολλων Μεταβλητων και ιανυσµατικων Συναρτησεων. Σηµειωσεις : Θ. Κεχαγιας.

Αθ.Κεχαγιας. v. 0.95. Λογισµος Συναρτησεων Πολλων Μεταβλητων και ιανυσµατικων Συναρτησεων. Σηµειωσεις : Θ. Κεχαγιας. Σηµειωσεις : Λογισµος Συναρτησεων Πολλων Μεταβλητων και ιανυσµατικων Συναρτησεων v..95 Θ. Κεχαγιας Σεπτεµβρης 1 Περιεχόµενα Προλογος 1 Οριο και Συνεχεια 1 1.1 Θεωρια....................................

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή

Διαβάστε περισσότερα

4 Elementarne funkcije

4 Elementarne funkcije 4 Elementarne funkcije 4. Polinom Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

3. poglavlje (korigirano) F U N K C I J E

3. poglavlje (korigirano) F U N K C I J E . Funkcije (sa svim korekcijama) 5. poglavlje (korigirano) F U N K C I J E U ovom poglavlju: Elementarne unkcije Inverzne unkcije elementarnih unkcija Domena složenih unkcija Inverz složenih unkcija Ispitivanje

Διαβάστε περισσότερα

3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim

3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim 3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x (i) f(x, y) = sin 1 2 (x + y) (ii) f(x, y) = y 2 + 3 (iii) f(x, y, z) = 25 x 2 y 2 z 2 (iv) f(x, y, z) = z +ln(1 x 2 y 2 ) 3.2 (i) óôù f(x, y, z) =

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

3.1 Elementarne funkcije

3.1 Elementarne funkcije 3. Elementarne funkcije 3.. Polinom Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Vanjska simetrija kristâla

Vanjska simetrija kristâla Vanjska simetrija kristâla Franka Miriam Brückler PMF-MO, Zagreb Listopad 2008. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad 2008. 1 / 16 Vizualna simetrija Što je simetrija?

Διαβάστε περισσότερα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

σ (9) = i + j + 3 k, σ (9) = 1 6 k. Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

MATEMATIKA 2 š.g. 2010./2011.

MATEMATIKA 2 š.g. 2010./2011. MATEMATIKA 2 š.g. 2010./2011. Matematika 2 1. Funkcije više varijabli 2. Višestruki integral 3. Vektorska Analiza 4. Obi cne diferencijalne jednadbe MATEMATIKA 2 1 Literatura: Petar Javor, Matematicka

Διαβάστε περισσότερα

LEKCIJE IZ MATEMATIKE 2

LEKCIJE IZ MATEMATIKE 2 LEKCIJE IZ MATEMATIKE 2 Ivica Gusić Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Lekcije iz Matematike 2. 7. Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija.

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται

Διαβάστε περισσότερα

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du = ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim 9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία

Διαβάστε περισσότερα

ϑανασησ ΚΕΧΑΓΙΑΣ Λογισµος Συναρτησεων Πολλων Μεταβλητων και ιανυσµατικων Συναρτησεων Σηµειωσεις : Θ. Κεχαγιας

ϑανασησ ΚΕΧΑΓΙΑΣ Λογισµος Συναρτησεων Πολλων Μεταβλητων και ιανυσµατικων Συναρτησεων Σηµειωσεις : Θ. Κεχαγιας Σηµειωσεις : Λογισµος Συναρτησεων Πολλων Μεταβλητων και ιανυσµατικων Συναρτησεων Θ. Κεχαγιας Μαρτης 2009 Περιεχόµενα 1 Επιφανειες 1 1.1 Θεωρια.................................... 1 1.2 Αλυτα Προβληµατα..............................

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

3 FUNKCIJE VIŠE VARIJABLI Homogene funkcije, homogenost Parcijalne derivacije Totalni diferencijal

3 FUNKCIJE VIŠE VARIJABLI Homogene funkcije, homogenost Parcijalne derivacije Totalni diferencijal Sadržaj 3 FUNKCIJE VIŠE VARIJABLI 34 3. Homogene funkcije, homogenost................. 34 3.2 Parcijalne derivacije........................ 38 3.3 Totalni diferencijal........................ 40 3.4 Koeficijenti

Διαβάστε περισσότερα

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2.

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2. 1. Izraqunati QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, 1995. x arctan x 1 + x dx. Grupa A. Izraqunati povrxinu koju ograniqavaju pozitivan deo x - ose i grafici funkcija 3. Ako je oblast ograniqena krivama

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE

SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE Sadržaj DVOSTRUKI INTEGRALI TROSTRUKI INTEGRALI 3 VEKTORSKA ANALIZA 4 KRIVULJNI INTEGRALI 34 5 PLOŠNI

Διαβάστε περισσότερα

UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu

UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu Elektrotehnički fakultet Univerziteta u Sarajevu P R I P R E M N I Z A D A C I za DRUGI PARCIJALNI ISPIT IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Š.G. 005 / 006. UPUTSTVO: 1. Za svaki od prva četiri zadatka

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Σ.Δ.Ε. γραμμικές 1 ης τάξης, Σ.Δ.Ε. Bernoulli και Riccatti Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται

Διαβάστε περισσότερα

Geometrijski trikovi i metode bez imena

Geometrijski trikovi i metode bez imena Geometrijski trikovi i metode bez imena Matija Bašić lipanj 2016. U ovom tekstu želimo na jednom mjestu navesti vrlo klasične ideje u rješavanju planimetrijskih zadataka. Primjeri variraju od jednostavnih

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka.

MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić Ivančica Mirošević MATEMATIKA Zbirka zadataka http://www.fesb.hr/mat Sveučilište u Splitu Fakultet elektrotehnike, strojarstva i brodogradnje Split, ožujak

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

3 + tanx 100 Differentiate G(t) = Answer: G (t) = Differentiate f (x) = lnx + ex 2. Differentiate F(s) = ln ( cos(2s) + 2 ) Answer: F (s) =

3 + tanx 100 Differentiate G(t) = Answer: G (t) = Differentiate f (x) = lnx + ex 2. Differentiate F(s) = ln ( cos(2s) + 2 ) Answer: F (s) = Differentiate y xcos(2x 2 ( x 1 2 3 Differentiate f (x sinx f (x cos(1 + x - 2*xˆ2 + x*(-1 + 4*x*sin(1 + x - 2*xˆ2 Differentiate y -24*cot(x*csc(xˆ3 3 + tanx 100 Differentiate G(t (cost 4 1 (sec(xˆ2/(2*sqrt(3

Διαβάστε περισσότερα