PRAVILNIK o mjernim jedinicama 1
|
|
- Καμβύσης Μελετόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Na temelju članka 10. stavak 3. Zakona o mjeriteljstvu (Narodne novine, br. 163/03), ravnatelj Državnog zavoda za mjeriteljstvo donosi PRAVILNIK o mjernim jedinicama 1 I. OSNOVNE ODREDNICE Članak 1. Ovim se pravilnikom određuju mjerne jedinice u Republici Hrvatskoj, njihove vrijednosti, nazivi i znakovi te područja i načini primjene, obveza uporabe tih jedinica u javnosti, načini njihova navođenja te iznimno dopuštene jedinice izvan Međunarodnog sustava. Članak 2. U ovom su pravilniku u uporabi pojmovi sa sljedećim značenjem: - Mjerne=mjerne jedinice su odabrane i dogovorene vrijednosti pojedinih fizikalnih veličina s kojima se uspoređuju sve druge istovrsne veličine - Zakonite-zakonite mjerne jedinice su za javnu uporabu zakonom propisane mjerne jedinice - Međunarodni=međunarodni sustav mjernih jedinica je skup mjernih jedinica koji je na temelju međunarodnog Dogovora o metru iz godine, proglasila Opća konferencija za utege i mjere godine, a koji se povremeno dopunjava - Decimalne=decimalne jedinice su jedinice koje su za decimalni množitelj veće ili manje od polaznih jedinica. Članak 3. Mjerne jedinice određene ovim pravilnikom moraju se rabiti pod njihovim nazivima i znakovima u područjima propisanim zakonom, ovim Pravilnikom ili drugim propisom. II. MJERNE JEDINICE Članak 4. Zakonite mjerne jedinice u Republici Hrvatskoj jesu: 1. jedinice Međunarodnog sustava (u daljem tekstu: jedinice SI), i to: - osnovne jedinice SI (tablica 1a), - izvedene jedinice SI s posebnim nazivima i znakovima (tablica 1b) te - izvedene jedinice SI bez posebnih naziva i znakova (prilog 1). 2. iznimno dopuštene jedinice izvan Međunarodnog=međunarodnog sustava (tablica 2). 3. decimalne jedinice od jedinica iz točke 1. i 2. ovoga stavka koje se tvore na način i uz iznimke navedene u prilogu 2. Njihovi se nazivi i znakovi tvore pomoću decimalnih predmetaka (tablica 3). 4. složene izvedene jedinice, sastavljene od jedinica iz točaka 1., 2. i 3. ovoga stavka. 1 Ovaj pravilnik smisleno preuzima sadržaj smjernice=direktive EZ o mjernim jedinicama (80/181/EEZ) koja je dopunjena sa Smjernicama=direktivama 85/0001/EEC=EEZ, 89/617/EEC=EEZ i 99/103/EEC=EEZ. (VIDI UPUTE ZA PREVOĐENJE, MEI) 1
2 Tablice 1a., 1b., 2. i 3. te prilozi 1., 2. i 3. s pripadajućim sadržajem prilog su ovoga pravilnika i čine njegov sastavni dio. Članak 5. Podrobniji podatci o primjeni mjernih jedinica za iskazivanje pojedinih fizikalnih veličina određeni su međunarodnim, europskim i hrvatskim normama, poglavito normama HRN ISO 1000 i nizom HRN ISO 31-0 do Članak 6. Osim zakonitih mjernih jedinica iz članka 4. ovoga pravilnika, u Republici Hrvatskoj se iznimno mogu rabiti i druge mjerne jedinice, i to: - ako je uporaba takvih mjernih jedinica određena međunarodnim dogovorom koji je prihvatila Republika Hrvatska - ili ako se za robu, usluge ili podatke namijenjene izvozu u drugu zemlju u toj zemlji rabe takve mjerne jedinice. Članak 7. Pri stavljanju u promet uvezene robe, usluga ili informacija u slučajevima navedenim u članku 3. ovoga pravilnika, podatci navedeni u mjernim jedinicama koje nisu u skladu s odredbama ovoga pravilnika, moraju biti navedeni i u mjernim jedinicama utvrđenim ovim pravilnikom. Članak 8. Za prijenos ili obradbu podataka mogu se mjerne jedinice iznimno navoditi posebno propisanim znakovima za sustave s ograničenom skupinom znakova, temeljem pripadajućih međunarodnih, europskih ili hrvatskih norma. Članak 9. Osim znakova mjernih jedinica, propisanih ovim pravilnikom, mogu se u međunarodnoj trgovini rabiti slovni i brojčani kodovi prema pripadajućim međunarodnim, europskim ili hrvatskim normama. Članak 10. Uporaba brojčanih jedinica (oktava, bit, posto, promil i dr.) određuje se propisom ili hrvatskim normama koje donosi ravnatelj Zavoda. VII. PRIJELAZNE I ZAVRŠNE ODREDBE Članak 11. Ovaj Pravilnik stupa na snagu osmoga dana od dana objave u»narodnim novinama«. Klasa: Urbroj: Zagreb, RAVNATELJ dr. sc. Marijan Andrašec, dipl. ing. 2
3 Prilog 1. TVORBA IZVEDENIH MJERNIH JEDINICA Izvedene mjerne jedinice tvore se od drugih mjernih jedinica. Jednadžbe između jedinica jednakog su oblika kao jednadžbe između pripadajućih fizikalnih veličina. Nazivi i znakovi izvedenih mjernih jedinica tvore se od naziva i znakova jedinica od kojih su izvedene, uz naznaku pripadajućih algebarskih operacija. Neke izvedene jedinice SI i iznimno dopuštene jedinice izvan SI imaju posebne nazive i posebne znakove (tablica 1b. i tablica 2.). Jedinice površine=ploštine tvore se kvadriranjem jedinica duljine, naziv im se tvori pridjevom četvorni (ili kvadratni) ispred naziva jedinice duljine, a znak kvadratom znaka jedinice duljine, na primjer: četvorni metar (znak: m 2 ), četvorni centimetar (znak: cm 2 ), četvorni kilometar (znak: km 2 ) itd. Jedinice se obujma tvore kubiranjem jedinica duljine, naziv im se tvori pridjevom kubni (ili kubični) ispred naziva jedinice duljine, a znak kubom znaka jedinice duljine, na primjer: kubni metar (znak: m 3 ), kubni centimetar (znak: cm 3 ), kubni milimetar (znak: mm 3 ) itd. Sastavljač ne razlikuje pojmove površina (engl. surface, njem. Oberfläche) i ploština (engl. area, njem. Fläche). Ovdje se govori isključivo o ploštini. Površina nema mjernu jedinicu nego svojstvo (hrapava, bijela, prljava, sjajna...). Dakle: Jedinice ploštine tvore se kvadriranjem... Jedinice izražene riječima četvorni valja ukinuti i ostaviti samo riječ kvadratni. Od prvog se razreda osnovne škole uči da su geometrijski likovi kvadrat i pravokutnik a ne četvorina i pačetvorina. Stoga se jedinica može nazvati samo kvadratni metar, kvadratni cemtimetar itd. Dvojnost naziva nije prihvatljiva i nepotrebna je. Prilog 2. TVORBA DECIMALNIH JEDINICA Decimalne jedinice tvore se od jedinica s posebnim nazivom i znakom, množenjem s jednim od decimalnih faktora, navedenim u tablici 3. Naziv je decimalne jedinice jedna riječ, a tvori se od predmetka navedenog u tablici 3 i naziva odabrane jedinice, na primjer kilometar = 10 3 metara. Znak se decimalne jedinice tvori stavljanjem znaka predmetka navedenog u tablici 3 uz znak odabrane jedinice, na primjer: km = 10 3 m. Znak decimalne jedinice piše se zajedno i čini jedinstvenu cjelinu, stoga se naznačene matematičke operacije odnose na cijelu decimalnu jedinicu, na primjer: cm 2 = (cm) 2 = 10 4 m 2. Decimalne se jedinice mogu tvoriti od svih jedinica SI s posebnim nazivom i znakom. Izuzetno se decimalne jedinice mase ne tvore od kilograma nego od grama (g = 10 3 kg). Dopuštena je tvorba decimalnih jedinica i od sljedećih iznimno dopuštenih jedinica izvan SI: litre, teksa, bara, elektronvolta i vara, a od jedinice bel se tvori samo decibel. Prilog 3. PISANJE NAZIVA I ZNAKOVA MJERNIH JEDINICA Nazivi se jedinica i predmetaka decimalnih jedinica pišu u skladu s hrvatskim pravopisom. Znakovi se jedinica i decimalnih predmetaka pišu za to određenim uspravnim slovima, bez obzira na ostali dio teksta. Na primjer, znak za metar uvijek je i samo uspravno, kurentno (»malo«) slovo m. Samo se za nekoliko jedinica rabe posebni znakovi (podignut kružić ili crtice) te za Celsiusov stupanj složen znak (ºC). Svaka se jedinica i svaki predmetak označuju samo s jednim znakom. Izuzetak je litra, koja se označuje jednim od dvaju mogućih znakova: verzalnim (»velikim«) ili kurentnim (»malim«) slovom (L ili l). Znakovi se jedinica pišu bez točke na kraju, osim ako je točka redovita interpunkcija u rečenici. 3
4 Različite jedinice jednakih naziva označavaju se različitim znakovima, na primjer kutna se minuta označava podignutom crticom iza brojke (jedna kutna minuta: 1'), a vremenska se minuta označava znakom min, kutna se sekunda označava podignutom dvocrticom iza brojke (jedna kutna sekunda: 1"), a vremenska se sekunda označava znakom s. Umnožak se jedinica označava točkom na polovici visine znaka ili malim, tzv. čvrstim razmakom između znakova jedinica, što znači da se na tom mjestu redak ne može lomiti=prekidati. Omjer se jedinica označava horizontalnom crtom, kosom crtom ili negativnim eksponentom. Ako se u nazivniku nalazi više znakova, tada se pri uporabi kose crte cijeli nazivnik stavlja unutar zagrada. Na primjer: J 1 1 = J/(kg K) = J kg K kg K Pri iskazivanju podataka mjerna se jedinica, prema potrebi, rabi kao množitelj brojčane vrijednosti (npr. a = 5 m) ili kao djelitelj fizikalne veličine (npr. a/m = 5). Tablica 1 JEDINICE MEĐUNARODNOG SUSTAVA (JEDINICE SI) 1a. Osnovne jedinice SI Naziv Znak Veličina metar m duljina kilogram 1 kg masa sekunda s vrijeme amper A električka struja kelvin K termodinamička temperatura mol mol množina (količina tvari) kandela cd svjetlosna jakost 1 Decimalne jedinice mase ne tvore se od kilograma, nego od grama, koji ima znak g. 4
5 1b. Izvedene jedinice SI s posebnim nazivima i znakovima Naziv 1 Znak Veza s drugim Veličina jedinicama becquerel (bekerel) Bq s 1 aktivnost Celsiusov (Celzijev)* stupanj C K radioaktivnog izvora Celsiusova (Celzijeva)* temperatura coulomb (kulon) C A s električki naboj joule (džul) J N m rad, energija, toplina farad F C/V električni kapacitet gray (grej) Gy J/kg apsorbirana doza ionizirajućeg zračenja, kerma henry (henri) H Wb/A induktivnost hertz (herc) Hz s 1 frekvencija katal kat mol/s katalitička aktivnost luks lx lm/m 2 osvjetljenje lumen lm cd sr svjetlosni tok newton (njutn) N kg m/s 2 sila ohm (om) Ω V/A električki otpor pascal (paskal) Pa N/m 2 tlak radijan rad 1 kut siemens (simens) S A/V električka vodljivost sievert (sivert) Sv J/kg ekvivalentna doza steradijan sr prostorni kut (ugao) tesla T N/(A m) magnetska indukcija volt V W/A električki potencijal, napon watt (vat) W J/s snaga weber (veber) Wb T m 2 magnetski tok 1 Osim izvornog načina pisanja naziva, može se rabiti i fonetski naziv pisanja, naveden u zagradi. * Ne može se pisati Celzije jer se prema hrvatskom pravopisu nordijska prezimena ne kroatiziraju kao latinska. Ostaje: Sibelius, Bercelius, Celsius. U ovom se slučaju ne radi o fonetskom pisanju prezimena Celsius nego o krivom pisanju imena. 5
6 TABLICA 2=Tablica 2 Iznimno dopuštene jedinice izvan SI s posebnim nazivima i znakovima 1 Naziv Znak Vrijednost u jedinicama SI Veličina Područje uporabe morska milja 1852 m duljina pomorski, riječni i zračni promet astronomska 1, m astronomija ua jedinica (približno 2 ) ar a 100 m 2 površina=plošt površina ina zemljišta hektar ha m 2 (ploština) litra L, l stupanj (kutni) 3 º minuta (kutna) m 3 = dm 3 obujam volumen?? o π 1 = rad 180 π 1 = rad sekunda (kutna) 3 π 1 = rad gon 3 gon π rad 200 unificirana (ujednačena) 1, kg u atomska jedinica (približno 2 fizika i kemija ) masa mase karat ct kg masa dragulja tona t 10 3 kg minuta min 60 s sat h 3600 s vrijeme dan d s čvor 1852m m 0,514 pomorski i brzina 3600s s zračni promet teks tex 10 6 kg/m duljinska masa bar bar 10 5 Pa milimetar živina stupca kut tekstilna vlakna i konac mmhg 133,322 Pa tlak tlak tjelesnih tekućina dioptrija dpt m 1 optičkih jakost leća elektronvolt ev 1, J (približno 2 ) energija optika posebna područja 6
7 var var 1 VA reaktivna snaga reaktivna (jalova) snaga izmjenične električne struje bel 4 B B = 0,5 ln 10(Np) razina neper 4 Np Np = 1 razina 1 Decimalne se jedinice tvore samo od sljedećih, iznimno dopuštenih jedinica: litra, gram, teks, bar, elektronvolt i var, a od jedinice bel obično se tvori samo decibel (db). 2 Vrijednosti se ovih jedinica dobivaju pokusom, stoga nije točno poznata. 3 Znakovi se ovih jedinica kuta stavljaju neposredno iza brojčane vrijednosti. 4 Ove se brojčane jedinice rabe za izražavanje razina fizikalnih veličina. Tablica 3 Predmetci za tvorbu decimalnih jedinica Naziv Znak Vrijednost jota Y zeta Z eksa E peta P tera T giga G 10 9 mega M 10 6 kilo k 10 3 hekto h 10 2 deka da 10 deci d 10 1 centi c 10 2 mili m 10 3 mikro µ 10 6 nano n 10 9 piko p femto f ato a zepto z jokto y
8 Još jedan argument u prilog kvadratnom metru: Drugi korijen iz nekog broja zovemo i kvadratnim korijenom a nikada četvornim korijenom. Treći korijen naziva se i kubni korijen. Zašto bi se onda potencija 5 m2 nazivala pet četvornih metara a 5 m(exp0,5) pet drugih korijena iz metra?? DRAŽEN ANIČIĆ drazen.anicic@zg.htnet.hr 8
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
DRŽAVNI ZAVOD ZA MJERITELJSTVO
DRŽAVNI ZAVOD ZA MJERITELJSTVO Na temelju članka 16. stavka 3. Zakona o mjeriteljstvu (»Narodne novine«, broj 74/14), ravnatelj Državnog zavoda za mjeriteljstvo donosi PRAVILNIK O MJERNIM JEDINICAMA Članak
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Fizika. Predavač: Dr. sc. Robert Beuc Institut za fiziku, Bijenička cesta 46
Fizika Predavač: Dr. sc. obert Beuc Institut za fiziku, Bijenička cesta 46 1 kt V f mc e N k c i c c c c / exp 4 ' V V i f ω c, 3 c i c D g e m f 1 3 0 0 3,, 3 E kt k T kt E e de b b E db c m P f i k if
Fizika za fizioterapeute
Fizika za fizioterapeute Nastavu drže: Ivica Levanat Tehničko veleučilište u Zagrebu Konavoska Dalibor Perković Zdravstveno veleučilište Mlinarska 38 1 k 4π eh ω) = N c mc ( ' R f ( R ) c c exp ( R ) c
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006
ιαλέξεις στη ΦΥΣΙΚΗ Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006 Σηµειώσεις εποπτικό υλικό για το µάθηµα ΦΥΣΙΚΗ. Τα παρακάτω είναι βασισµένα στις διαλέξεις του διδάσκοντα. Το υλικό αποτελεί
Γενική Φυσική. Μεγέθη & μονάδες. Φυσικά φαινόμενα. Μεγέθη και μονάδες 24/9/2014. Κωνσταντίνος Χ. Παύλου 1
Γενική Φυσική Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 Μεγέθη & μονάδες 1. Φυσικό μέγεθος κατηγορίες μεγεθών 2. Αριθμητική τιμή σύστημα μονάδων 3. Το ιεθνές Σύστημα
Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής
Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Φυσικά Μεγέθη Φυσικά μεγέθη είναι έννοιες που μπορούν να μετρηθούν και χρησιμοποιούνται για την περιγραφή των φαινομένων. Διεθνές σύστημα μονάδων S. I Το διεθνές
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Γενική Φυσική. Μεγέθη & μονάδες. Φυσικά φαινόμενα. Η παρατήρηση. Η παρατήρηση. Το πείραμα. Μεγέθη και μονάδες 24/9/2014. Κωνσταντίνος Χ.
Γενική Φυσική Μεγέθη & μονάδες Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 1. Φυσικό μέγεθος κατηγορίες μεγεθών 2. Αριθμητική τιμή σύστημα μονάδων 3. Το ιεθνές Σύστημα
Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ
Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΡΓΙΚΩΝ ΚΑΙ ΘΕΡΜΟΚΗΠΙΑΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΡΟΣ ΠΡΩΤΟ ΓΕΩΡΓΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ Δρ. Μενέλαος Θεοχάρης Πολιτικός Μηχανικός
VOLUMEN ILI OBUJAM TIJELA
VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Pisanje slovnih znakova u znanstvenim i tehničkim tekstovima
Pisanje slovnih znakova u znanstvenim i tehničkim tekstovima iz prakse za praksu Mirko VukOVIĆ pća načela za pisanje znakova jedinica i brojeva prvo je predložila 9. op- konferencija za utege i mjere (Conférence
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
TABLICE AKTUARSKE MATEMATIKE
Na temelju članka 160. stavka 4. Zakona o mirovinskom osiguranju («Narodne novine», br. 102/98., 127/00., 59/01., 109/01., 147/02., 117/03., 30/04., 177/04., 92/05., 43/07., 79/07., 35/08., 40/10., 121/10.,
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Φυσικές και χημικές ιδιότητες
Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 3
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 3 12 Σεπτεµβρίου, 2005 Ηλίας Κυριακίδης Λέκτορας ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ 2005Ηλίας Κυριακίδης,
11915/3/08 REV 3 ZAC/thm DG C I A
ΣΥΜΒΟΥΛΙΟ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΕΝΩΣΗΣ Βρυξέλλες, 18 Νοεμβρίου 2008 (OR. en) Διοργανικός φάκελος: 2007/0187 (COD) 11915/3/08 REV 3 ΜΙ 257 ΕΝΤ 180 CONSOM 92 CODEC 978 ΝΟΜΟΘΕΤΙΚΕΣ ΚΑΙ ΑΛΛΕΣ ΠΡΑΞΕΙΣ Θέμα: Κοινή
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Εξώφυλλο Στην πρώτη σελίδα περιέχονται: το όνομα του εργαστηρίου, ο τίτλος της εργαστηριακής άσκησης, το ονοματεπώνυμο του σπουδαστή
Κεφάλαιο 11 Παραρτήματα
11.1. Χρήσιμο μαθηματικό τυπολόγιο 11.1.1. Γεωμετρικοί τύποι Κεφάλαιο 11 Παραρτήματα Κύκλος ακτίνας r Εμβαδόν = Περίμετρος = 2 Σφαίρα ακτίνας r Όγκος = Εμβαδόν επιφάνειας = 4 Ορθός κύλινδρος ακτίνας r
Από τις διαλέξεις του μαθήματος του Α εξαμήνου σπουδών του Τμήματος. Κ. Παπαθεοδώρου, Αναπληρωτής Καθηγητής Οκτώβριος Δεκέμβριος 2013
Συγγραφή Τεχνικών Κειμένων Σχήματα, Πίνακες, Εικόνες, Αριθμοί Από τις διαλέξεις του μαθήματος του Α εξαμήνου σπουδών του Τμήματος Πολιτικών Μηχανικών και Μηχανικών Τοπογραφίας & Γεωπληροφορικής Κ. Παπαθεοδώρου,
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 6
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 6 25 επτεµβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΧΟΛΗ ΠΑΝΕΠΙΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑ
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Uvod u predmet Poglavlje
Poglavlje Ključni pojmovi 1 označavanje navoja svojstva materijala (mehanička, tehnološka, kemijska i fizikalna) organizacija rada - proizvodnja elementi proizvodnje (rad, predmeti rada i sredstva za rad)
Mjerne jedinice. AGROKLIMATOLOGIJA S OSNOVAMA FIZIKE -auditorne vježbe- Agroklimatologija s osnovama fizike
1.5.15. AGROKLIMATOLOGIJA S OSNOVAMA FIZIKE -auditorne vježbe- Mjerne jedinice 1. svibnja 1. godine doc. dr. sc. Miro Stošić Izvor: http://www.antonija-horvatek.from.hr doc. dr. sc. Miro Stošić međunarodni
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Πρόταση Ο ΗΓIΑ ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟIΝΟΒΟΥΛIΟΥ ΚΑI ΤΟΥ ΣΥΜΒΟΥΛIΟΥ
ΕΥΡΩΠΑΪΚH ΕΠΙΤΡΟΠΗ Βρυξέλλες, 27.9.2010 COM(2010) 507 τελικό 2010/0260 (COD) C7-0287/10 Πρόταση Ο ΗΓIΑ ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟIΝΟΒΟΥΛIΟΥ ΚΑI ΤΟΥ ΣΥΜΒΟΥΛIΟΥ περί προσεγγίσεως των νοµοθεσιών των κρατών µελών των
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Osnovne jedinice SI sustava
Međunarodni sustav jedinica SI (kratica SI izvedena je prema francuskom nazivu Le System International d'unites) je moderni metrički sustav mjera, kojeg je uspostavila 1960. Generalna konferencija o utezima
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία
University of Cyprus ptical Diagnostics ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 7 Αριθμοί με Σημασία! Μετρήσεις Μετρολογία Η επιστήμη των μετρήσεων Περιλαμβάνει τόσο πειραματικούς όσο και θεωρητικούς
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Fizika. Doc. dr Nikola Cvetanović. Većina tehničkih problema su u suštini fizički
Fizika Doc. dr Nikola Cvetanović kabinet 011 Važnost fizike za tehniku Φυσιζ fizis Grčki, priroda Većina tehničkih problema su u suštini fizički Fizika vas uči veštinama potrebnim za inžinjere: kako se
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
Snage u kolima naizmjenične struje
Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 3
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 3 14 Σεπτεμβρίου, 2012 Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Ηλεκτρισμός Ηλεκτρισμός είναι
TOLERANCIJE I DOSJEDI
11.2012. VELEUČILIŠTE U RIJECI Prometni odjel OSNOVE STROJARSTVA TOLERANCIJE I DOSJEDI 1 Tolerancije dimenzija Nijednu dimenziju nije moguće izraditi savršeno točno, bez ikakvih odstupanja. Stoga, kada
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se