2.7 Primjene odredenih integrala

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2.7 Primjene odredenih integrala"

Transcript

1 . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu lika oomedjenog krivuljama: y = 4 x i y = x x. Rješenje. Prvo pronademo presjek krivulja: 4 x = x x = (x + 1)(x ) = = x 1 = 1, x =. Stoga iz slike vidimo da je P = ((4 x ) (x x) dx =... = 9. 1 Zadatak.6 Odredite površinu lika oomedjenog krivuljom y = x x 6, osi apscisom i pravcima x = 3 i x =. Rješenje. Iz slike se vidi da je P = (x + x ) dx + 1 ( (x x 6)) dx + (x + x ) dx =... = U polarnim koordinatama krivulju zadajemo s r = f(ϕ), ϕ [α, β]. Tada je površina sektora jednaka β P = 1 (f(ϕ)) dϕ. α

2 78. INTEGRAL Zadatak.63 Izračunajte površinu omedenu prvim i drugm zavojem Arhimedove spirale: r = aϕ, gdje je a >. Rješenje. P = 1 4π (aϕ) dϕ 1 π (aϕ) dϕ =... = 8a π 3. π Zadatak.64 Odredite površinu Bernoullijeve lemniskate: (x + y ) = a (x y ). Rješenje. Koristeći formule za prijelaz iz pravokutnih koordinata u polarne, x = r cos ϕ y = r sin ϕ, dobijemo (x + y ) = (r cos ϕ + r sin ϕ) = r 4 a (x y ) = a r (cos ϕ sin ϕ) = a r cos ϕ, pa je jednadžba lemniskate u polarnim koordinatama r = a cos ϕ. cos ϕ, za ϕ [, π 4 ] [3π 4, 5π 4 ] [7π 4, π] Iz slike vidimo da je P = 4 1 π/4 a cos ϕ dϕ =... = a. U parametarskim koordinatama krivulju zadajemo s: x = x(t) y = y(t), t [t 1, t ]. Tada je površina omedena krivuljom t (x(t), y(t))

3 . INTEGRAL 79 i pravcima x = x(t 1 ) i x = x(t ) da na formulom: P = t y(t)ẋ(t) dt, t 1 gdje je = d dt (derivacija po t). Zadatak.65 Odredite parametarsku jednadžbu elipse i izračunajte joj površinu. x a + y b = 1 Rješenje. Iz slike vidimo da je x = a cos t y = b sin t, t [, π]. = x(t 1 ) = a cos t 1 = t 1 = π a = x(t ) = a cos t = t = pa je P = 4 y(t)ẋ(t) dt = 4 b sin t( a sin t) dt =... = abπ. π/ π/.7. Računanje duljine luka krivulje Ako je y = f(x), onda je duljina luka krivulje koja je dio grafa funkcije y = f(x) izmedu točaka (a, f(a)) i (b, f(b)), gdje je a < b jednaka l = b a 1 + f (x) dx. Zadatak.66 Odredite duljinu astroide gdje je a >. x /3 + y /3 = a /3,

4 8. INTEGRAL Rješenje. Implicitnim deriviranjem dobijemo pa je x /3 + y /3 = a /3 3 x 1/3 + 3 y 1/3 y = a l = 4 = 4a 1/3 = y = y1/3 x 1/3 a 1 + (y (x)) dx = 4 a dx dx =... = 6a. x1/3 1 + y/3 dx x/3 / d dx U polarnim koordinatama je duljina luka krivulje r = f(ϕ), ϕ [α, β] dana formulom tj. kraće l = β α l = f(ϕ) + f (ϕ) dϕ, β r + ṙ dϕ. α Zadatak.67 Odredite ukupnu duljinu kardioide r = a(1 + cos ϕ), gdje je a >. Rješenje. Sa slike vidimo da je π π l = r + (ṙ), dϕ = a (1 + cos ϕ) + a sin ϕ dϕ = 8a π sin ϕ dϕ = 8a.

5 . INTEGRAL 81 Duljina krivulje zadana parametarskim koordinatama x = x(t) y = y(t), t [t 1, t ] je dana s l = t (ẋ(t)) + (ẏ(t)) dt. t 1 Zadatak.68 Odredite duljinu jednog svoda cikloide x = a(t sin t), t [, π], gdje je a >. y = a(1 cos t) Rješenje. l = = a π π ẋ + ẏ dt = π a (1 cos t) + a sin t dt π (1 cos t dt = a sin t dt =... = 8a..7.3 Računanje volumena i oplošja rotacijskih tijela Ako dio krivulje y = f(x), x [a, b] rotira oko: x-osi, onda je volumen nastalog rotacijskog tijela dan formulom: b V x = π a f(x) dx y-osi, onda je volumen nastalog rotacijskog tijela dan formulom: b V y = π a xf(x) dx Zadatak.69 Odredite volumen kugle radijusa r >.

6 8. INTEGRAL Rješenje. Kuglu radijusa r dobijemo ako zarotiramo krivulju y = r x, x [, r] oko x-osi pa je volumen kugle r V x = π y dx = π r = π(r 3 r3 3 ) = 4 3 r3 π (r x ) dx = π r (r x ) dx = π(r x x3 3 ) r Zadatak.7 Odredite volumen torusa nastalog rotacijom kružnice oko y-osi. Rješenje. Iz slike se vidi da je V = V 1 V = π r = πr r (x R) + y = r (R + r y ) dy π r y dy =... = Rπ r π r (R r y ) dy Ako dio krivulje y = f(x), x [a, b] rotira oko x-osi, onda je površina nastale rotacijske plohe dana formulom: b V x = π f(x) 1 + (f (x)) dx. Zadatak.71 Nadite oplošje kugle radijusa r >. a Rješenje. Kuglu radijusa r dobijemo ako zarotiramo krivulju y = r x, x [, r] oko x-osi pa je oplošje kugle r S x = π r x 1 + x r x r dx = π r dx = 4r π

7 . INTEGRAL 83 Ako krivulja zadana u polarnim koordinatama r = f(ϕ), ϕ [α, β], rotira oko polarne osi, onda je volumen dobivenog tijela jednak V = π 3 β f(ϕ) 3 sin ϕ dϕ. α Zadatak.7 Izračunajte volumen tijela koji nastaje rotacijom krivulje r = a sin ϕ oko polarne osi. Rješenje. sin ϕ, za ϕ [, π ] [π, 3π ] V = V 1 = π 3 π/ (a sin ϕ) 3 sin ϕ dϕ = 3π 3 a3 π/ sin 4 ϕ cos 3 ϕ dϕ = 3π 3 a3 1 t 4 (1 t ) dt =... = 64π 15 a3 Ako krivulja zadana u polarnim koordinatama r = f(ϕ), ϕ [α, β], rotira oko polarne osi, onda je oplošje dobivenog rotacijskog tijela jednak β S = π α f(ϕ) sin ϕ f(ϕ) + (f (ϕ)) dϕ. Zadatak.73 Odredite površinu koja nastaje rotacijom kardioide oko polarne osi. r = a(1 + cos ϕ)

8 84. INTEGRAL Rješenje. π S = π = πa a(1 + cos ϕ) sin ϕ a (1 + cos ϕ) + a ( sin ϕ) dϕ π (1 + cos ϕ) 3/ sin ϕ dϕ =... = 3 5 a π Ako parametarski zadana krivulja x = x(t) y = y(t), t [t 1, t ] rotira oko x-osi, onda je volumen nastalog rotacijskog tijela dan formulom: V x = π t t 1 y(t) ẋ(t) dt y-osi, onda je volumen nastalog rotacijskog tijela dan formulom: V y = π t t 1 x(t) ẏ(t) dt Zadatak.74 Izračunajte volumen elipsoida nastalog rotacijom elipse x = a cos t oko x-osi. Rješenje. Iz slike vidimo da je y = b sin t a = x(t 1 ) = a cos t 1 a = x(t ) = a cos t = t 1 = π = t = π pa je V x = π π π (b sin t) ( a sin t) dt = ab π sin 3 t dt =... = 4 3 ab π. π π

9 . INTEGRAL 85 Napomena. Ako je a = b = r, onda je elipsoid zapravo kugla radijusa r pa je njen volumen jednak 4 3 r3 π. Ako parametarski zadana krivulja rotira oko x = x(t) y = y(t), t [t 1, t ] x-osi, onda je oplošje nastalog rotacijskog tijela dan formulom: S x = π t t 1 y(t) (ẋ(t)) + (ẏ(t)) dt y-osi, onda je oploqv sje nastalog rotacijskog tijela dan formulom: S y = π t t 1 x(t) (ẋ(t)) + (ẏ(t)) dt Zadatak.75 Izračunajte oplošje tijela koje nastaje rotacijom astoride x = a cos 3 t y = a sin 3, t [, π] t Rješenje. Sa slike se vidi da je S x = π π/ = 1a π π/ a sin 3 t (3a cos t( sin t)) + (3a sin t cos t) dt sin 4 t cos t dt = 1a π 1 s 4 ds = 1a ππ s 5 1 = 1a π 5

10 86. INTEGRAL Zadaci za vježbu.76 Odredite površinu lika omedenog parabolom y = x + 4x 3 i njenim tangentama povučenim u točkama A(, 3) i B(3, ). 9 4 ).77 Nadite površinu izmedu krivulja y = x i y 3 = x ).78 Nadite površinu izmedu krivulja.79 Izračunajte površinu omedenu ružom s 3 latice : y = x i y = x. π 1 3 ) r = a sin 3ϕ, gdje je a >. a π 4 ).8 Izračunajte površinu omedenu kardioidom: r = a(1 + cos ϕ), gdje je a >. 3a π ).81 Odredite površinu omedenu jednim lukom cikloide x = a(t sin t), t, gdje je a >. y = a(1 cos t) i osi apscisa. 3a π).8 Nadite duljinu luka krivulje y = ln cos x, za x [, a], gdje je a, π.

11 . INTEGRAL 87 1 ln 1+sin a 1 sin a ).83 Odredite duljinu prvog zavoja Arhimedove spirale r = aϕ, gdje je a >. aπ p 1 + 4π + a ln(π + p 1 + 4π )).84 Izračunajte duljinu prvog zavoja logaritamske spirale y = e ϕ, ϕ [, π]. (e π 1)).85 Odredite parametarsku jednadžbu astroide i izračunajte joj diljinu. x /3 + y /3 = a /3 8a).86 Izračunajte duljinu luka parabole y = x od točke (, ) do točke (, ). 1 ( 5 + ln ( + 5))).87 Odredite površinu omedenog krivuljama y = arcsin x i y = arccos x te osi apscisa.(uputa: integrirajte po varijabli y) 1).88 Odrete površinu lika koji se nalazi unutar kruňice r = 3 cos ϕ, ali izvan kardioide r = 1 + cos ϕ. π).89 Odrete površinu lika koji se nalazi unutar kruňice r = 3 cos ϕ i unutar kardioide r = 1 + cos ϕ. 5π 4 ).9 Odredite volumen tijela koje nastaje rotacijom lika omedenog krivuljom y = sin x, x [, π] i x-osi oko y-osi. π )

12 88. INTEGRAL.91 Odredite volumen tijela koje nastaje rotacijom lika omedenog krivuljom y = x 4 i pravcem y = 1 oko osi y. π 3 ).9 Odredite volumen rotacijskog paraboloida koji nastaje rotacijom lika omedenog krivuljom x = y i pravcem x = a, za a > oko x-osi. a π ).93 Odredite volumen tijela nastalog rotacijom kardioide oko polarne osi. r = a(1 + cos ϕ) 8 3 πa 3 ).94 Izračunajte površinu plohe koja nastaje rotacijom dijela krivulje y = x3 3 od x = do x = 1 oko osi y. π ( + ln (1 + )))

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Integrali Materijali za nastavu iz Matematike 1

Integrali Materijali za nastavu iz Matematike 1 Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

ZI. NEODREðENI INTEGRALI

ZI. NEODREðENI INTEGRALI ZI. Nodrđni intgrali 7 ZI. NEODREðENI INTEGRALI. Antidrvacij. Pronañi tri antidrivacij funkcij.. Odrdi sv antidrivacij funkcij.. Pronañi dvij antidrivacij funkcij.. Pronañi antidrivaciju funkcij za koju

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE

SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE Sadržaj DVOSTRUKI INTEGRALI TROSTRUKI INTEGRALI 3 VEKTORSKA ANALIZA 4 KRIVULJNI INTEGRALI 34 5 PLOŠNI

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

MATEMATIKA 2. Gordan Radobolja. 22. rujna PMF. Gordan Radobolja (PMF) Matematika rujna / 70

MATEMATIKA 2. Gordan Radobolja. 22. rujna PMF. Gordan Radobolja (PMF) Matematika rujna / 70 MATEMATIKA 2 Gordan Radobolja PMF 22. rujna 2013. Gordan Radobolja (PMF) Matematika 2 22. rujna 2013. 1 / 70 Dekompozicija kvadra Zatvoreni n-dimenzionalni kvadar K je kartezijev produkt od n zatvorenih

Διαβάστε περισσότερα

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2.

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2. 1. Izraqunati QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, 1995. x arctan x 1 + x dx. Grupa A. Izraqunati povrxinu koju ograniqavaju pozitivan deo x - ose i grafici funkcija 3. Ako je oblast ograniqena krivama

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka.

MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić Ivančica Mirošević MATEMATIKA Zbirka zadataka http://www.fesb.hr/mat Sveučilište u Splitu Fakultet elektrotehnike, strojarstva i brodogradnje Split, ožujak

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

MATEMATIKA seminari. smjer: Nutricionizam

MATEMATIKA seminari. smjer: Nutricionizam MATEMATIKA seminari smjer: Nutricionizam Sadržaj Realne funkcije realne varijable 4 Granična vrijednost funkcije jedne varijable. a ±............................... Granična vrijednost i neprekidnost.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Derivacija funkcije Materijali za nastavu iz Matematike 1

Derivacija funkcije Materijali za nastavu iz Matematike 1 Derivacija funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 45 Definicija derivacije funkcije Neka je funkcija f definirana u okolini točke x 0 i

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

MATEMATIKA /2012.

MATEMATIKA /2012. MATEMATIKA 2 2011./2012. 1 MATEMATIKA 2 1 MATEMATIKA 2 2 MATEMATIKA 2 3 MATEMATIKA 2 4 2 ρ O 0 1 ϕ T=(ϕ,ρ) MATEMATIKA 2 5 MATEMATIKA 2 6 z z T'' 1 O ϕ ρ T=(ϕ,ρ,z) T'=(ϕ,ρ) Π z z z0 T'' 0 z0=z0 ravnina

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

(r, φ) φ x. Polarni sustav

(r, φ) φ x. Polarni sustav olarnom u oložaj točke u ravnini možemo definirati omoću udaljenosti r od ishodišta i kuta φ koji sojnica ishodišta i točke zatvara s osi φ r (r, φ) kut φ je o konvenciji ozitivan ako ga mijenjamo u smjeru

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΑΣΗΜΑΚΟΠΟΥΛΟΣ ΣΠΥΡΙΔΩΝ του ΔΗΜΗΤΡΙΟΥ ΚΑΛΑΪΤΖΙΔΟΥ ΑΙΚΑΤΕΡΙΝΗ του ΜΙΧΑΗΛ ΚΟΖΑΡΗΣ ΚΥΡΙΑΚΟΣ του ΧΡΗΣΤΟΥ ΜΑΛΚΟΥΚΗΣ ΒΑΣΙΛΕΙΟΣ του ΔΗΜΗΤΡΙΟΥ ΜΟΡΑΛΗΣ ΖΗΣΗΣ του ΙΩΑΝΝΗ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ

Διαβάστε περισσότερα

Matematika 2. Vježbe 2017/ lipnja 2018.

Matematika 2. Vježbe 2017/ lipnja 2018. Matematika Vježbe 17/18. 3. lipnja 18. Predgovor Ova neslužbena i nedovršena skripta prati auditorne vježbe iz kolegija Matematika koje se u ljetnom semestru ak. god. 17/18. na Gradevinskom fakultetu u

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Uvod u diferencijalni račun

Uvod u diferencijalni račun Uvod u diferencijalni račun Franka Miriam Brückler Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je to uopće tangenta?

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

RADNA VERZIJA. Matematika 2. Zbirka zadataka. Ivan Slapničar. Josipa Barić. w w w. f e s b. h r / m a t 2. Split, 2012.

RADNA VERZIJA. Matematika 2. Zbirka zadataka. Ivan Slapničar. Josipa Barić. w w w. f e s b. h r / m a t 2. Split, 2012. S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE Ivan Slapničar Nevena Jakovčević Stor Josipa Barić Ivančica Mirošević Matematika RADNA VERZIJA Zbirka zadataka w

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

6. Poopćenja Newton Leibnizove formule

6. Poopćenja Newton Leibnizove formule STOKES 5 6. oopćenja Newton Leibnizove formule 6.. Još neki važni operatori Doasad smo naučili operator ili grad, koji od skalarnog polja radi vektorsko polje: ( U gradu U(x, y, z) x,, ). z Sada ćemo upoznati

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 2. Ivana Baranović Miroslav Jerković

VJEŽBE IZ MATEMATIKE 2. Ivana Baranović Miroslav Jerković VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Poglavlje Integral. Neodreženi integral Neka je zadana funkcija f : (a, b) R: Funkcija F : (a, b) R za koju je F () = f() za svaki (a, b) naziva se

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι Σ. ΤΟΥΜΠΗΣ Οδηγίες (Διαβάστε τες!) 1. Περίληψη: ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016 (αʹ) Υπάρχει μια ομάδα ασκήσεων για κάθε κεφάλαιο των σημειώσεων,

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι

Σημειώσεις Ανάλυσης Ι Σημειώσεις Ανάλυσης Ι 6. Συναρτήσεις Πρωταρχική έννοια στη φυσική είναι η έννοια της συνάρτησης. Π.χ. η θέση ενός σωματιδίου ως συνάρτηση του χρόνου x = f(t) ή x(t). Στη πρώτη περίπτωση προσδιορίζουμε

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u okolini tocke, i aplikate, tocke, : Uvede li se zamjena: i dobije se:

Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u okolini tocke, i aplikate, tocke, : Uvede li se zamjena: i dobije se: 4. FUNKCIJE DVIJU ILI VISE PROMJENJIVIH 4. Ekstremi funkcija dviju promjenjivih z = f y ( y) ( y) z ( y) ( ) ( ) (, ) (, ) Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

Radni materijal 17 PRIZME

Radni materijal 17 PRIZME Radni materijal 17 PRIZME Odreži i zalijepi slike u bilježnicu, izvedi formule za oplošje i obujam, označi i izvedi formule za plošne i prostorne dijagonale. Oplošje OBP = + Volumen ili obujam V = Bv slika

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα