IΔΡΥΜA ΜΕΙΖΟΝΟΣ ΕΛΛΗΝΙΣΜΟΥ
|
|
- Σαπφώ Αλαφούζος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Περίληψη : After Alexander crossed the Hellespont, the Persian satraps of Asia Minor rallied their available forces on the banks of Granicus River in May/June 334 BC in order to prevent his further advance. Alexander moved against them and, despite the advantage of the enemy in numbers, he managed to suppress them. The result of this success was the full establishment of the invasion and the collapse of the Persian dominance in major part of Asia Minor. Χρονολόγηση May/June 334 BC Γεωγραφικός Εντοπισμός On the eastern bank of the river Granicus by Adrasteia, a plain of Hellespontic Phrygia. 1. The arrival of Alexander in Asia Minor A crucial point during Alexander the Great s campaign was the battle of Granicus, which enabled Alexander to conquer the entire Asia Minor. In the spring of 334 BC, Alexander s army crossed the Hellespont and disembarked in Asia Minor without meeting any resistance. From his camp at Arisbe Alexander advanced to the east passing by the cities of Perkote (present-day Umur-Bey), Lampsacus, Colonae and Hermotus, whereas Priapos which was situated to the north, on the Propontis, surrendered as well. 1 Meanwhile, the Persian forces had gathered at Zeleia (present-day Gönen), at about 100 kms to the east of Arisbe. When the Persian satraps and magistrates were informed about Alexander s crossing over to Asia, they convoked a meeting in order to decide their further actions. Memnon of Rhodes, who was the commander of the mercenaries in the service of the Persian king, and also the latter s protégé, suggested that they should not risk a conflict with an enemy stronger in infantry and led by its own king, when on the contrary, Darius III was absent. According to Memnon, the best solution would be to retreat, destroying the countryside from where they passed, the crops and even their cities. Thus, Alexander would not find the necessary provisions for his army and would be enforced to depart. Simultaneously, they would have to send troops and naval forces to Macedonia, in order to transfer the war to Europe. Judging from the result, Memnon s proposals were correct, but the Persians rejected them as being denigrating. Against the tactics of burned land stood Arsites in particular, who was hyparch of Hellespontic Phrygia. The Persian magistrates and officers suspected that Memnon wanted to prolong the war, in order to take even more advantage of Darius favour towards him. 2 It is also possible that Alexander had ordered his troops not to sack the area which belonged to Memnon, which made him even more suspect in Persian eyes. 3 The decision of the military council was to attack immediately in order to stop Alexander s advance. Following this decision, the Persian army marched to the northwest on the plain of Adrasteia and established its defense line on the eastern bank of the river Granicus The tactics of the two parties This area was characterised as the Gates of Asia 5 and indeed it was of high strategic importance for the outcome of the campaign. The Royal Road, which connected the Hellespont with Daskyleion, seat of the satrapy of Hellespontic Phrygia, passed through the area. Most probably there was also a junction of this road with the one which connected Cyzicus (present-day Balıkesir) with Sardis. If the Persians did not repel the invaders there, the way to all those important cities would be open. 6 Furthermore, the location of the Granicus (present-day Kocabaş Çay) offered an advantage to the Persians who thus forced Alexander to fight a battle on a ground Δημιουργήθηκε στις 28/1/2017 Σελίδα 1/6
2 of their own choice. The relatively high and precipitous river banks was a considerable obstacle, which would made it difficult for the Macedonians to maintain their order as well as to attack against the defenders of those banks. 7 Although the river was probably neither deep and or particularly broad, it would, however, make the situation difficult for Alexander. Finally, by camping there the Persians secured their access to Zeleia and Cyzicus, and they would have ample provisions in water and forage. 8 Alexander, on the other hand, had his own reasons for pursuing an immediate fight. He needed a fast victory, in order to relieve himself of the financial problems and the shortage in provisions. 9 Furthermore, he had to secure at least the area of the Hellespont as a basis for his campaign and for securing provisions. In addition, it would enable him to avoid getting cut-off inland in case the outcome of the campaign was not positive for him. It was also necessary to gain control over a large part of the shores of Ionia to deprive the Persian fleet from its supremacy in the Aegean and thus to avoid a possible transfer of the war in Europe. However, if Alexander avoided the engagement at Granicus and headed towards Ionia, he would leave the main force of the enemy on his rear. 10 He thus marched towards Granicus and, in spite of Parmenion s objections, 11 arrayed his army for battle. What actually happened then is difficult to say with certainty. The ancient sources offer insufficient and contradictory information. Thus, historians have suggested various versions, following either the description of Diodorus 12 or that of Arrian. 13 The battle, which took place in the afternoon hours in May/June 334 BC, probably developed in the following way. 3. The opponents The Persian cavalry consisted of about 20,000 men and was spread along the eastern bank in a depth of 16 cavalrymen, thus creating a front about 2.5 km long. On the left wing Memnon the Rhodian was positioned with a contingent of unknown number and composition, possibly Greek mercenaries and men from his own territory. Next to him was the satrap of Cilicia, Arsames, 14 followed by the hyparch of Hellespontic Phrygia, Arsites, with his Paphlagonians, and then the satrap of Lydia and Ionia, Spithridates, 15 leading the Hyrcanian cavalrymen. The center was occupied by a large force, of unknown origin, which probably contained Cappadocians as well, led by the satrap Mithrovouzanes. 16 The right wing was held by 2,000 Bactrians, another 2,000 cavalrymen under Reomithras and finally 1,000 Medes. 17 Behind the lines of the cavalry the Persian infantry was arrayed, less than 20,000 men. 18 The Greek mercenaries must not have exceeded 5, Commander of all those men was Omares. 20 On the opposite bank, Alexander placed at the left wing his 1,800 Thessalian cavalrymen headed by Kalas, and next to him the Greek cavalry of the allies, with 600 men under Philip, and then the 150 Thracian cavalrymen of Agathon. Then followed the six phalanxes of the pezetaeroi, counting 1,500 men each, and commanded by Craterus, Meleager, Philip, Amyntas, Koinos and Perdiccas and then the 3,000 hypaspists under Nicanor. At the right wing there was Amyntas with 600 sarissa-bearers and 150 Paeonian cavalrymen, then a contingent of 200 hetairoi under Socrates as well as another 1,600 hetairoi under Philotas. Finally, at the edge of the array 1,000 bowmen and Agrianae lancers were placed. 21 In total, Alexander sent to battle 5,100 cavalrymen and 13,000 infantrymen. He undertook the leadership of the right wing himself and placed Parmenion ahead of the left wing. 22 The length of the Macedonian front should equal that of the Persians, i.e. 2.5 km, to avoid outflanking. Therefore, the phalanx had apparently a depth of 8 men, the left wing a depth of 10 cavalrymen, whereas at the right wing the cavalrymen must have been slightly more. When the Persians spotted Alexander opposite them, they positioned the denser part of their cavalry at the left wing, by transferring forces from the centre The battle Alexander ordered the hetairoi of Socrates contingent to attack first, together with the Paeonians, the cavalrymen bearing sarissas and a contingent of 1,000 hypaspists. 24 After these forces started their attack, Alexander led the hetairoi together with bowmen and lancers to the main attack. Under the sounds of trumpets and cries they advanced against the stream, deploying their array to a slant position, in order to maintain their integrity and to attack at a front as uniform as possible. 25 The attack of the first lines under Socrates and Amyntas was important. It aimed at preventing the power of the enemy throughout the left wing of the Persians. If the Δημιουργήθηκε στις 28/1/2017 Σελίδα 2/6
3 latter, who were already engaged in battle with those contingents, spread their lines further to avoid the imminent encirclement by Alexander, they would leave dangerous gaps in their array. These gaps could be exploited, both by the first lines as well as by the right wing under Alexander, which, finally, moving on the river, reached the opposite bank intact and beyond the left wing of the Persians. By suppressing their freedom of movement, Alexander managed to outflank them while avoiding the same danger for his own army. 26 Gradually, the Macedonians prevailed and pushed back their adversaries from the bank, whereas their infantry crossed the Granicus as well. During the fight Alexander s life was endangered, but he was saved by Cleitus. Pressed from all directions, the Persian cavalry did not withstand. 27 The phalanxes of the pezetairoi probably were the first ones to break the weakened Persian centre, 28 and then both wings started fleeing. 29 For the exact role played by the left wing under Parmenion we are not informed at all. It probably acted as a support, entering the fight at a slightly later stage. 30 The victors then faced the enemy s infantry, which had remained inactive all that time. Maybe the Greek mercenaries were the only ones who maintained their positions and fought desperately. They were however encircled and finally only 2,000 of them survived and were captured. 31 On the Persian side about 1,000 cavalrymen were killed, counting several officers among them. The losses for the Macedonians were 25 hetairoi, another 60 cavalrymen and 30 infantrymen. The following day, the dead Macedonians, the mercenaries and the Persian noblemen were buried with honours, whereas Alexander sent to Athens as a votive offering 300 Persian armours with the epigram Alexander son of Philip and the Greeks, without the Lacedemonians, from the Barbarians who dwell in Asia Causes and results of Alexander s victory Alexander s victory in his first large scale battle on the territory of Asia was due to a combination of factors. His strategic capability allowed him to assess quickly the situation and to plan a way of action with which he would overcome any obstacles, whereas he attacked personally with decisiveness and courage the most powerful part of the enemy. Naturally, he had in his disposal an army highly capable of fighting, with determination and ability to fulfill their duty. 33 It is worth noting that the Persians on the eastern bank were fighting with the summer sun in their eyes, something which must have weighed on Alexander s decision to fight immediately after he reached the river Granicus. 34 The usual accusation against the Persian commanders is that they transformed their cavalry into a motionless power, by placing it on the river bank, thus depriving it from the possibility to attack vigorously and to perform tactical manoeuvres. 35 However, the location offered some advantages in terms of tactics and the cavalry was traditionally the best section of the Persian army. It was logical to expect that it would prevail. 36 It has also been supported that the Persian officers did not have somebody in charge who would have both a clear plan and the power to apply it, but their command was rather broken. Naturally, there are not proofs for that, and the fact that the battle took place within the territory of Arsites, who committed suicide as responsible for the defeat, maybe turns such allegations void of validity. 37 Perhaps the Persians aimed at the natural extermination of Alexander. 38 This is indicated by the accumulation of military units against him and by the following dual fights between him and Persian noblemen. It is however worth questioning why they did not use their infantry during the cavalry battle, but rather left it acting as a simple spectator. Whatever might have happened, either due to strategic incapacity, or due to the speed with which the events evolved, it seems that, after the beginning of the battle, the Persian cavalrymen depended only on their courage. As a result of the battle of Granicus, the main Persian forces in the area were eliminated, and lost several commanders, whereas the impact on the morale of the fighting parts was evident. Alexander stabilized his position in the area and the Persian supremacy collapsed throughout major parts of Asia Minor. The next organized and massive effort to refrain Alexander was made possible only much farther to the east, on the plain of Issus. Δημιουργήθηκε στις 28/1/2017 Σελίδα 3/6
4 1. Arr., An., Arr.,An.,1.12, Diod Polyaen Diod Plu., Alex., Foss, C., The battle of Granicus: A new look, in Αρχαία Μακεδονία ΙΙ. Ανακοινώσεις κατά το Δεύτερο Διευθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973 (Θεσσαλονίκη 1977), p Arr., An., Plu., Alex., For the topography of the area and the exact position of the battle there are various views (see bibliography). Present-day Kocabaş Çay is in fact a torrent a few centimeters deep and 7 meters broad. It certainly had much more water in antiquity. See Foss, C., The battle of Granicus: A new look, in Αρχαία Μακεδονία ΙΙ. Ανακοινώσεις κατά το Δεύτερο Διευθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973 (Θεσσαλονίκη 1977), p Hammond, N.G.L., The battle of the Granicus river, JHS 100 (1980), p Plu., Alex., Droysen, J.G., History of Alexander the Great 1 (Greek translation), (Athens 1988), p Hammond, N.G.L., The battle of the Granicus river, JHS 100 (1980), p Arr., An., 1.13, Plu., Alex Diod., ; Bosworth, A.B., Conquest and Empire: the reign of Alexander the Great (Cambridge 1988), p Fox, R.L., Alexander the Great (London 1973, repr. 1974), pp ; Green, P., Alexander of Macedon (Middlesex 1970, repr. 1974), pp On persuasive arguments against it, Hammond, N.G.L., The battle of the Granicus river, JHS 100 (1980), pp , 87-88; Badian, E., The battle of Granicus: A new look, in Αρχαία Μακεδονία ΙΙ. Ανακοινώσεις κατά το Δεύτερο Διευθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973 (Θεσσαλονίκη 1977), pp ; Droysen, J.G., History of Alexander the Great 1 (Greek translation), (Athens 1988), pp , n The supporters of Arrian s narration (Arr., ) present significant differences among them, such as Fuller, J.F.C., The generalship of Alexander the Great (London 1958), pp ; Nikolitsis, N., The battle of the Granicus (Stockholm 1974); Tarn, W.W., Alexander the Great I (Cambridge 1948), pp ; Wilcken, U., Alexander the Great (New York 1967), pp Here we follow on the basic points Hammond, N.G.L., The battle of the Granicus river, JHS 100 (1980), pp Arsamenes according to Diod , Arsames according to Arr., An., and Curt Spithrovates according to Diod , Spithridates according to Arr., An., and Plut., Alex., Diod ; Arr., An., Diod Arr., An., Although it is insinuated that all the infantry consisted of Greeks, Arr., An., , this was probably not true. Badian, E., The battle of Granicus: A new look, in Αρχαία Μακεδονία ΙΙ. Ανακοινώσεις κατά το Δεύτερο Διευθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973 (Θεσσαλονίκη 1977), p Slightly earlier Memnon had only 4,000 men (Polyaen ). Δημιουργήθηκε στις 28/1/2017 Σελίδα 4/6
5 20. Arr., An., Arr., An., In general on Alexander s army see Droysen, J.G., History of Alexander the Great 1 (Greek translation), (Athens 1988), pp and notes. 22. Arr., An., Arr., An., Arr., An., Arr., An., Polyaen Hammond, N.G.L., The battle of the Granicus river, JHS 100 (1980), p. 75, Arr., An., Polyaen Arr., An., Badian, E., The battle of Granicus: A new look, in Αρχαία Μακεδονία ΙΙ. Ανακοινώσεις κατά το Δεύτερο Διευθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973 (Θεσσαλονίκη 1977), pp Arr., An., Plut., Alex., Arr., An., Badian, E., The battle of Granicus: A new look, in Αρχαία Μακεδονία ΙΙ. Ανακοινώσεις κατά το Δεύτερο Διευθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973 (Θεσσαλονίκη 1977), p. 293; Hammond, N.G.L., The battle of the Granicus river, JHS 100 (1980), p Badian, E., The battle of Granicus: A new look, in Αρχαία Μακεδονία ΙΙ. Ανακοινώσεις κατά το Δεύτερο Διευθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973 (Θεσσαλονίκη 1977), pp See for example Fuller, J.F.C., The generalship of Alexander the Great (London 1958), p Hammond, N.G.L., The battle of the Granicus river, JHS 100 (1980), p , E., The battle of Granicus: A new look, in Αρχαία Μακεδονία ΙΙ. Ανακοινώσεις κατά το Δεύτερο Διευθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973 (Θεσσαλονίκη 1977), p Tarn, W.W., Alexander the Great I (Cambridge 1948), p. 16. Βιβλιογραφία : Fuller J.F.C., The Generalship of Alexander the Great, Cambridge 2004 Green P., Alexander of Macedon B.C.: A Historical Biography, Berkeley 1992 Δημιουργήθηκε στις 28/1/2017 Σελίδα 5/6
6 Tarn W.W., Alexander the Great, II Sources and Studies, Cambridge 1948 Droysen G., Ιστορία του Μεγάλου Αλεξάνδρου, Αθήνα 1993, Ρ.Η. Αποστολίδης (μτφρ.) Bosworth A.B., Conquest and Empire: the reign of Alexander the Great, Cambridge 1988 Fox R.L., Alexander the Great, London 1973, επανεκτύπωση 1974 Hamilton J.R., Alexander the Great, London 1973 Nikolitsis N., Τhe battle of the Granicus, Stockholm 1974 Wilcken U., Alexander the Great, New York 1967, J.C., Richards Hammond N.G.L., "Τhe battle of the Granicus river", JHS, 100, 1980, Badian E., "Τhe battle of the Granicus: A new look", Αρχαία Μακεδονία ΙΙ, ανακοινώσεις κατά το Δεύτερο Διεθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973, Θεσσαλονίκη 1977, Αρχαία Μακεδονία, Foss C., "Τhe battle of the Granicus: A new look", Αρχαία Μακεδονία ΙΙ, ανακοινώσεις κατά το Δεύτερο Διεθνές Συμπόσιο, Θεσσαλονίκη, Αυγούστου 1973, Θεσσαλονίκη 1977, Αρχαία Μακεδονία, Δικτυογραφία : The battle of Granicus The Battle on the Granicus Γλωσσάριo : hetairoi, the The companions. They were the elite guard of the macedonian king, made up mainly of noblemen and they formed the elite cavalry of the Macedonian army. satrap, the The title designated a representative of the Persian king, and was widely used in the Persian language. In ancient writers the term usually designates an official of the Persian empire who assumes highest political and military power within the limits of his satrapia, the division under his command. Alexander the Great introduced the institution to the administrative organisation of his empire in the East. In the Roman empire, the office of the satrap was hereditary for Armenian nobles who administered an Armenian klima (=canton, a historicgeographical unit); in the case of the Armenian territories inside the Roman Empire, the satrap yielded limited power under the suzerainty of the Roman emperor. satrapy, the 1. Administrative division of the ancient Persian state. 2. The office of a satrap and the period of his government. Πηγές Arrian, Alexander's Anabasis, 1. Diodorus Siculus, Bibliotheca Historica, 17. Δημιουργήθηκε στις 28/1/2017 Σελίδα 6/6
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε.
ΔΗΜΟΣΙΕΥΣΗ Νο 95 ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε. (2003). Το πρόβλημα του νερού στη Θεσσαλία και προτάσεις για την αντιμετώπισή του στα πλαίσια της αειφόρου ανάπτυξης.
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου
«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»
I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Η ΕΞΕΛΙΞΗ ΤΗΣ ΠΟΛΗΣ ΤΗΣ ΚΑΛΑΜΑΤΑΣ ΜΕ ΕΠΙΚΕΝΤΡΟ ΤΟ ΙΣΤΟΡΙΚΟ ΤΗΣ ΚΕΝΤΡΟ»
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Right Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Αναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
Νέες ρωγµές στην γερµανική ηγεµονία. (New rifts in the German hegemony) Μαυροζαχαράκης Εµµανουήλ Πολιτικός Επιστήµονας
Νέες ρωγµές στην γερµανική ηγεµονία. (New rifts in the German hegemony) Μαυροζαχαράκης Εµµανουήλ Πολιτικός Επιστήµονας Mavrozacharakis Emmanouil Political Scientist Abstract Greek Η προσφυγική κρίση που
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Επίκαιρα Θέματα Ηλεκτρονικής Διακυβέρνησης Ονοματεπώνυμο Φοιτητή Σταμάτιος
Τμήμα Πολιτικών και Δομικών Έργων
Τμήμα Πολιτικών και Δομικών Έργων Πτυχιακή Εργασία: Τοπογραφικό διάγραμμα σε ηλεκτρονική μορφή κεντρικού λιμένα Κέρκυρας και κτιρίου νέου επιβατικού σταθμού σε τρισδιάστατη μορφή και σχεδίαση με AutoCAD
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:
4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών
Policy Coherence. JEL Classification : J12, J13, J21 Key words :
** 80%1.89 2005 7 35 Policy Coherence JEL Classification : J12, J13, J21 Key words : ** Family Life and Family Policy in France and Germany: Implications for Japan By Tomoko Hayashi and Rieko Tamefuji
«Έντυπο και ψηφιακό βιβλίο στη σύγχρονη εποχή: τάσεις στην παγκόσμια βιομηχανία».
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι- Κεφαλληνίας, Ελλάδα 28100, +30
Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)
Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες
Door Hinge replacement (Rear Left Door)
Door Hinge replacement (Rear Left Door) We will continue the previous article by replacing the hinges of the rear left hand side door. I will use again the same procedure and means I employed during the
Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»
(Biomass utilization for electric energy production)
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ T.Ε.I. ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Επιβλέπων: ΠΕΤΡΟΣ Γ. ΒΕΡΝΑΔΟΣ, Ομότιμος Καθηγητής Συνεπιβλέπουσα: ΕΡΙΕΤΤΑ Ι. ΖΟΥΝΤΟΥΡΙΔΟΥ, Παν. Υπότροφος
ΔΘΝΗΚΖ ΥΟΛΖ ΓΖΜΟΗΑ ΓΗΟΗΚΖΖ
Ε ΔΘΝΗΚΖ ΥΟΛΖ ΓΖΜΟΗΑ ΓΗΟΗΚΖΖ Κ ΔΚΠΑΗΓΔΤΣΗΚΖ ΔΗΡΑ ΣΜΖΜΑ : Σνπξηζηηθήο Οηθνλνκίαο θαη Αλάπηπμεο (ΣΟΑ) ΣΔΛΗΚΖ ΔΡΓΑΗΑ Θέκα: Σνπξηζκφο θαη Οηθνλνκηθή Κξίζε Δπηβιέπσλ : Νηνχβαο Λνπθάο πνπδάζηξηα : Σζαγθαξάθε
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Συντακτικές λειτουργίες
2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Code Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ
ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ
Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΓΕΩΠΟΝΙΑΣ, ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΓΕΩΠΟΝΙΑΣ ΤΟΜΕΑΣ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ Πτυχιούχου Γεωπόνου Κατόχου Μεταπτυχιακού
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
ΤΟ ΣΤΑΥΡΟΔΡΟΜΙ ΤΟΥ ΝΟΤΟΥ ΤΟ ΛΙΜΑΝΙ ΤΗΣ ΚΑΛΑΜΑΤΑΣ
ΤΟ ΣΤΑΥΡΟΔΡΟΜΙ ΤΟΥ ΝΟΤΟΥ ΤΟ ΛΙΜΑΝΙ ΤΗΣ ΚΑΛΑΜΑΤΑΣ ΖΑΡΑΒΕΛΑ Δ. 1, και ΒΡΥΩΝΗΣ Δ. 1 1 4ο Τ.Ε.Ε. Καλαμάτας, Δ/νση Δευτεροβάθμιας Εκ/σης Μεσσηνίας e-mail: dzaravela@yahoo.qr ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ Από τις κύριες
Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό
«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Το franchising ( δικαιόχρηση ) ως µέθοδος ανάπτυξης των επιχειρήσεων λιανικού εµπορίου
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ
Σχολή Μηχανικής και Τεχνολογίας Πτυχιακή εργασία ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ Σωτήρης Παύλου Λεμεσός, Μάιος 2018 i ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ
Ε ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ ΙE ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΓΕΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέµα: Εκπαίδευση: Μέσο ανάπτυξης του ανθρώπινου παράγοντα και εργαλείο διοικητικής µεταρρύθµισης Επιβλέπουσα:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Η ΔΙΑΣΤΡΕΥΛΩΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕΣΩ ΤΩΝ SOCIAL MEDIA ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΠΕΝΤΑΕΤΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΑΝΑΣΤΑΣΙΑΣ-ΜΑΡΙΝΑΣ ΔΑΦΝΗ
Η ΔΙΑΣΤΡΕΥΛΩΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕΣΩ ΤΩΝ SOCIAL MEDIA ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΠΕΝΤΑΕΤΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΑΝΑΣΤΑΣΙΑΣ-ΜΑΡΙΝΑΣ ΔΑΦΝΗ Τμήμα Δημοσίων Σχέσεων & Επικοινωνίας Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ιονίων
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ
ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ: ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΩ ΔΕΙΚΤΩΝ Επιβλέπων: Αθ.Δελαπάσχος
Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016
Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της
ΠΡΟΣΤΑΣΙΑ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΔΙΑΒΡΩΣΗΣ ΑΛΟΥΜΙΝΙΟΥ/ΑΝΟΔΙΩΣΗ Al
Σχολή Μηχανικής και Τεχνολογίας Πτυχιακή εργασία ΠΡΟΣΤΑΣΙΑ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΔΙΑΒΡΩΣΗΣ ΑΛΟΥΜΙΝΙΟΥ/ΑΝΟΔΙΩΣΗ Al Ανδρέας Παπαχριστοδούλου Λεμεσός, Μάιος 2017 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Π.Μ.Σ. «ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» «Εφαρμογή
1999 MODERN GREEK 2 UNIT Z
STUDENT NUMBER CENTRE NUMBER HIGHER SCHOOL CERTIFICATE EXAMINATION 1999 MODERN GREEK 2 UNIT Z (55 Marks) Time allowed Two hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Write your Student
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ Κατ/νση Τοπικής Αυτοδιοίκησης ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Μοντέλα στρατηγικής διοίκησης και
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0
Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ - ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) "ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ" 2 η ΚΑΤΕΥΘΥΝΣΗ
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ
EΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : Λεωφ. Αντ.Τρίτση, Αργοστόλι Κεφαλληνίας Τ.Κ. 28 100 τηλ. : 26710-27311 fax : 26710-27312
3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ... 64 3.4.1 Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ... 64 3.5 οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ
2 Πεξηερόκελα Δονεηήνζμ πζκάηςκ... 4 Δονεηήνζμ δζαβναιιάηςκ... 5 Abstract... 6 Πενίθδρδ... 7 Δζζαβςβή... 8 ΘΔΩΡΗΣΙΚΟ ΜΔΡΟ... 12 Κεθάθαζμ 1: Θεςνδηζηέξ πνμζεββίζεζξ βζα ηδκ ακζζυηδηα ζηδκ εηπαίδεοζδ...
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης
Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014
LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV 4 February 2014 Somewhere κάπου (kapoo) Nowhere πουθενά (poothena) Elsewhere αλλού (aloo) Drawer το συρτάρι (sirtari) Page η σελίδα (selida) News τα νέα (nea)
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΛΙΜΑΤΟΣ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΝΟΣΟΚΟΜΕΙΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΛΙΜΑΤΟΣ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΝΟΣΟΚΟΜΕΙΟ ΑΝΔΡΕΑΣ ΛΕΩΝΙΔΟΥ Λεμεσός, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS
ΟΜΗΡΟΥ ΙΛΙΑΔΑ ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS www.scooltime.gr [- 2 -] The Project Gutenberg EBook of Iliad, by Homer This ebook is for the use of anyone anywhere at no cost and with almost no restrictions
ICTR 2017 Congress evaluation A. General assessment
ICTR 2017 Congress evaluation A. General assessment -1- B. Content - 2 - - 3 - - 4 - - 5 - C. Speakers/ Presentations/ Sessions - 6 - - 7 - D. Posters/ Poster sessions E. Organisation and coordination
Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ
Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΗΓΩΝ Θεόδωρος Μαρκόπουλος University of Uppsala thodorismark@yahoo.gr Abstract This paper discusses methodological