Θα εξεταστούν μόνο οι περιπτώσεις των ψευδομεταβλητών που χρησιμοποιούνται σαν ανεξάρτητες μεταβλητές

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θα εξεταστούν μόνο οι περιπτώσεις των ψευδομεταβλητών που χρησιμοποιούνται σαν ανεξάρτητες μεταβλητές"

Transcript

1

2 Όταν ένα μέγεθος είναι αδύνατο να ποσοτικοποιηθεί αλλά πρέπει οπωσδήποτε να χρησιμοποιηθεί σε ένα υπόδειγμα προσεγγίζεται συνήθως με μια μεταβλητή η οποία ονομάζεται ποιοτική μεταβλητή ή ψευδομεταβλητή. Π.χ. Το φύλο ενός ατόμου, το επάγγελμά του, η εθνικότητα μιας οικογένειας κ.λ.π. Θα εξεταστούν μόνο οι περιπτώσεις των ψευδομεταβλητών που χρησιμοποιούνται σαν ανεξάρτητες μεταβλητές

3 Ποιοτικές μεταβλητές που επιδρούν στην σταθερά της συνάρτησης Παράδειγμα: Θέλουμε να διερευνήσουμε αν το ύψος των μισθών σε ένα κλάδο διαφέρει ανάμεσα σε άντρες και γυναίκες. Σύμφωνα με την θεωρία ένας από τους βασικότερους προσδιοριστικούς παράγοντες είναι ο χρόνος προϋπηρεσίας Τα στατιστικά στοιχεία αναφέρονται σε ένα αριθμό εργαζομένων όπου για κάθε εργαζόμενο έχουμε πληροφορίες για τον τον μισθό του, το χρόνο προϋπηρεσίας και το φύλο. Το πρόβλημα είναι η δημιουργία μιας μεταβλητής που θα εκφράζει το φύλο WAGE = β β1exper β GENDER μισθοί προϋπηρεσία φύλο

4 1 GENDER = Αν είναι άντρας Αν είναι γυναίκα Όταν Όταν GENDER GENDER ( β ) EXPER β = 1 WAGE = β1 = WAGE = β β EXPER 1 ΗμεταβλητήGENDER επηρεάζει μόνο τη σταθερά της εξίσωσης και εκφράζει την διαφορά στον μισθό μεταξύ ενός άνδρα και μιας γυναίκας που όμως έχουν τον ίδιο χρόνο προϋπηρεσίας.

5 Y D u = β1x β Στην γενική περίπτωση του απλού υποδείγματος παλινδρόμησης ( ) β Όταν Όταν = 1 Y = β β β X D 1 = Y = β β X D 1 Ŷ ( β β ) β X Y = 1 Y = β β1x β β X Ένας συνηθισμένος έλεγχος είναι H β = H : β : 1

6 Στο παράδειγμα: WAGE Αν η υπόθεση = β β β 1EXPER GENDER H : β = δεν απορριφθεί Δεν υπάρχει (στατιστικά σημαντική) διαφορά στους μισθούς ανδρών και γυναικών Στην συνάρτηση WAGE 1GENDER = γ γ Ποια είναι η ερμηνεία των γ?

7 Παράδειγμα: WAGE = 1366, 7 19,81EXPER 55,63GENDER ( 3, ) ( 18,7 ) ( 1, 4) R R =,34 =,8 n = 46 F.5,,43 = 3. p-value =.1 Ποιος είναι ο μέσος μισθός γυναίκας χωρίς προυπηρεσία; Ποιος είναι ο μέσος μισθός άντρα με προυπηρεσία κοντά στο μέσο όρο του δείγματος (6 χρόνια); Ποια είναι η διαφορά στους μισθούς ανδρών-γυναικών με τον ίδιο χρόνο προυπηρεσίας;

8 Παράδειγμα: Ψευδομεταβλητές με περισσότερες από δύο κατηγορίες Θέλουμε να εξετάσουμε αν, αντί για το φύλο, το επίπεδο εκπαίδευσης του εργαζομένου επηρεάζει το ύψος του μισθού. Σύμφωνα με τα διαθέσιμα στοιχεία η εκπαίδευση του κάθε εργαζόμενου κατατάσσεται σε μια από τις τρείς κατηγορίες: (α) μέχρι και δημοτικό, (β) μέχρι και λύκειο, (γ) μέχρι και πτυχίο ΑΕΙ ή ΤΕΙ. Η βασική συνάρτηση WAGE = β β 1EXPER Αφού έχουμε 3 βαθμίδες εκπαίδευσης δημιουργούμε 3 ψευδομεταβλητές [,1]

9 1 μέχρι και Δημοτικό ED1 = άλλο 1 μέχρι και Λύκειο ED = άλλο 1 μέχρι και ΑΕΙ/ΤΕΙ ED = άλλο Αν εισάγουμε όλες τις ψευδομεταβλητές στην συνάρτηση θα έχουμε πρόβλημα τέλειας πολυσυγγραμικότητας. Γιατι; ΗμεταβλητήΧ που αντιστοιχεί τον σταθερό όρο μπορεί να γραφεί: X = 1 = ED ED ED 1 3 Άρα η μήτρα Χ Χ είναι ιδιάζουσα δηλαδή Χ Χ =, άρα δεν έχει αντίστροφη και επομένως το σύστημα X Xβ = XY δεν έχει λύση. Το πρόβλημα αυτό είναι γνωστό ως παγίδα των ψευδομεταβλητών.

10 Η λύση είναι να παραλείψουμε μία από αυτές. Η επιλογήδεν έχει επίδραση στα αποτελέσματα. Στο συγκεκριμένο παράδειγμα αποκλείουμε την ED1 Έτσι WAGE = β β β1exper βed 3ED3 ED ED ED 1 = 1 ED = ED3 = WAGE = β β1exper = ED = ED = WAGE = β ( β ) EXPER β ( β ) EXPER β = ED = ED = WAGE = β

11 β β 3 Η διαφορά στο ύψος του μισθού ενός εργαζόμενου με εκπαίδευση μέχρι και επίπεδο λυκείου σε σχέση με ένα εργαζόμενο, κατά τ άλλα όμοιο, αλλά με επίπεδο εκπαίδευσης μέχρι και δημοτικό (βάση) Η διαφορά στο ύψος του μισθού ενός εργαζόμενου με εκπαίδευση μέχρι και ΑΕΙ ή ΤΕΙ σε σχέση με ένα εργαζόμενο, κατά τ άλλα όμοιο, αλλά με επίπεδο εκπαίδευσης μέχρι και δημοτικό (βάση)

12 WAGE = β β β1exper βed 3ED3 Παραδείγματα υποθέσεων H β = H : β : 1 εν υπάρχει διαφορά στο ύψος του μισθού μεταξύ δύο εργαζομένων, που είναι κατά τ άλλα όμοιοι, αλλά το επίπεδο εκπαίδευσης του πρώτου είναι το ημοτικό και του άλλου το Λύκειο. H : β3 = H1 : β3 H H β = β3 H1 : εν υπάρχει διαφορά στο ύψος του μισθού μεταξύ δύο εργαζομένων, που είναι κατά τ άλλα όμοιοι, αλλά το επίπεδο εκπαίδευσης του πρώτου είναι το ημοτικό και του άλλου ΑΕΙ ή ΤΕΙ. : β β : β = β = H : β ή β εν υπάρχει διαφορά στο ύψος του μισθού μεταξύ δύο εργαζομένων, που είναι κατά τ άλλα όμοιοι, αλλά το επίπεδο εκπαίδευσης του πρώτου είναι το Λύκειο και του άλλου ΑΕΙ ή ΤΕΙ. Το επίπεδο εκπαίδευσης του εργαζόμενου δεν επηρεάζει το ύψος του μισθού.

13 Παράδειγμα: WAGE = 114, 88, EXPER 3,1ED 99, ED3 ( 347,1 ) ( 31,1 ) ( 1,1 ) ( 5, ) R =.5,3,4,37 R =,9 n = 46 F =,8 p-value =,14 Ποιος είναι ο μέσος μισθός ατόμου με το χαμηλότερο εκπαιδευτικό επίπεδο και χωρίς προυπηρεσία; Ποιος είναι ο μέσος μισθός αποφοίτου ΑΕΙ/ΤΕΙ με προυπηρεσία κοντά στο μέσο όρο του δείγματος (6 χρόνια); Ποια είναι η διαφορά στους μισθούς ατόμων με εκπαίδευση λυκείου και δημοτικού αντίστοιχα; Ποιος είναι ο μέσος μισθός ατόμου με το εκπαιδευτικό επίπεδο ΑΕΙ/ΤΕΙ και χωρίς προυπηρεσία;

14 Η εποχικότητα εκφρασμένη ως ψευδομεταβλητές Παράδειγμα: Θέλουμε να εξετάσουμε αν η δαπάνη για τρόφιμα εξαρτάται από την εποχή του χρόνου (άνοιξη, καλοκαίρι, φθινόπωρο, χειμώνας). Αφού έχουμε 4 εποχές δημιουργούμε 4 ψευδομεταβλητές [,1]. S S S 3 1 = 1 Άνοιξη Άλλη εποχή 1 Καλοκαίρι = Άλλη εποχή 1 Φθινόπωρο Άλλη εποχή = S 4 = 1 Χειμώνας Άλλη εποχή

15 Εισάγουμε τις τρεις ψευδομεταβλητές στην εξίσωση: Food = b b S b S b S b Income u Και παίρνουμε την εκτίμηση: Food = 15,3 5,4S 7,8S 4,3S,Income 1 3 ( 5,5 ) ( 7,8 ) ( 6,4 ) ( 4,1 ) (,5) Το εκτιμημένο υπόδειγμα για κάθε μία εποχή θα είναι: Χειμώνας: Άνοιξη: Καλοκαίρι: Φθινόπωρο: Food Food Food Food = 15,3, Income = 15,3 5,4,Income = 15,3 7,8,Income = 15,3 4,3,Income

16 Τι θα σήμαινε εάν αντί για ψευδομεταβλητές χρησιμοποιούσαμε μια μόνο μεταβλητή για την εποχικότητα ως: Άνοιξη: S Food = b b S b Income Καλοκαίρι: Φθινόπωρο: Χειμώνας: 1 = 3 4 Άνοιξη Καλοκαίρι Φθινόπωρο Χειμώνας 1 Food = b b b Income Food = b b b Income 1 Food 3 = b b b Income 1 1 Food 4 = b b b Income 1 Η υπόθεση είναι αρκετά περιοριστική: Η διαφορά μεταξύ των εποχών είναι σταθερή. Σφάλμα εξειδίκευσης;

17 Παράδειγμα: Περισσότερες ψευδομεταβλητές στην ίδια συνάρτηση Θέλουμε να εξετάσουμε την επίδραση του φύλου και της εκπαίδευσης WAGE = β β β1exper βed β3ed3 4GENDER Ως βάση θεωρείται ο εργαζόμενος ο οποίος αντιπροσωπεύεται με την τιμή σε όλες τις ψευδομεταβλητές. Στην συγκεκριμένη περίπτωση: Γυναίκα με εκπαίδευση Δημοτικό WAGE = β β 1EXPER

18 Άλλες περιπτώσεις Γυναίκα, Δημοτικό < εκπαίδευση Λύκειο WAGE ( β ) EXPER β 1 = β Άντρας, Δημοτικό < εκπαίδευση Λύκειο WAGE ( β ) EXPER β β4 1 = β

19 Ποιοτικές μεταβλητές που επιδρούν στην κλίση της ευθείας παλινδρόμησης Στην συνάρτηση WAGE = β β β1exper GENDER Το β επηρεάζει μόνο τον σταθερό όρο β 1 = ( WAGE) ( EXPER) β σταθερό (δεν εξαρτάται από το β ) Η διαφορά στους μισθούς αντρών και γυναικών είναι σταθερή. Δηλαδή ανεξάρτητη από τον χρόνο προϋπηρεσίας. Ποια θα είναι η μορφή της συνάρτησης αν η διαφορά αυτή εξαρτάται και από τον χρόνο προϋπηρεσίας;

20 WAGE = β β β1exper EXPER GENDER Όταν Όταν ( β ) EXPER GENDER = β GENDER = WAGE = β β EXPER 1 WAGE = β 1 1

21 Στην γενική περίπτωση της απλής γραμμικής παλινδρόμησης Y β = β β1x ( D X ) Y ( β ) 1 β X Y = β Y = β β1x β X

22 Όταν η ψευδομεταβλητή επηρεάζει την σταθερά και την κλίση της εξίσωσης Y β β β β = 1X D 3 ( D X ) Y ( β ) ( ) β β1 β X Y = 3 Y = β β1x β β X Μπορούμε να ελέγξουμε τις υποθέσεις β = ή β 3 = ή β =β 3 =.

23 Παλινδρόμηση κατά τμήματα Η σχέση που συνδέει δύο οικονομικές μεταβλητές μπορεί να είναι γραμμική αλλά να αλλάζει κλίση μετά από μια συγκεκριμένη τιμή της μεταβλητής. π.χ. Οι αμοιβές ενός καρδιοχειρουργού (Υ) αυξάνονται με ένα ρυθμό μέχρι ένα δεδομένο αριθμό επεμβάσεων και μετά αυξάνονται με υψηλότερο ρυθμό. ( * Y ) = b bx 1 b X X D u Όπου X * ητιμήστηνοποίαεπέρχεταιημεταβολή, D = 1 εάν X > X * D = εάν X X * D = 1 D = ( *) ( 1 ) Y = b b X b b X u Y = b bx u 1

24 D = 1 D = Παλινδρόμηση κατά τμήματα ( *) ( ) 1 Y = b b X b b X Y = b bx 1 Y b X * X

25 Παράδειγμα Χ Υ 5 1, 6 1,3 7 1,7 8, 9,7 1 3,6 11 4,9 1 6, 13 7,6 14 8,9 = 4,49,893 X R =,938 Y (,81 ) (,81 ) Επέρχεται μεταβολή όταν Χ*=9; D = 1 D = ( ) (,59 ) (,35 ) (,55) =,911,373,9 9 D R =,998 Y X X ( ) Y =,911,373 X,9 X 9 = 9,9 1,75X Y =,911,373X Y 9 X

26 Έλεγχος Chow Έλεγχος μεταβολής στη δομή του υποδείγματος Οι συντελεστές του υποδείγματος είναι διαφορετικοί σε διαφορετικές περιόδους. Το υπόδειγμα εκτιμάται ξεχωριστά για την κάθε περίοδο Το υπόδειγμα εκτιμάται για ολόκληρη την περίοδο ( ESSR ESSU) k F = ESS n k U ESS U = ESS 1 ESS ESS R Εάν F > Fakn,, k απορρίπτουμε την H ότι δεν υπάρχει μεταβολή στην δομή του υποδείγματος.

27 Παράδειγμα: Έστω τα στοιχεία κατανάλωσης και εισοδήματος. D = D =1 D = ή 1 ESS U = ESS R F = 879,65,711 I R,99 C= = ( ) ( ) 3745,3,17 ESS = ( ) ( ) D= 1768,6,741 I R,98 C= = ( ) ESS ESS k R ESS n k U 1117,86,3 ESS = ( ) ( ) D= ,,734 I R,997 C= = U 99,1,7 ESS = ESS ESS = D= D= 1 = F = 1,373 < F = 3,44,5,, ( ) ( 6 ) = = 1,373 R Έτος C I D δεχόμαστε την H ότι δεν υπάρχει μεταβολή στην δομή του υποδείγματος

28 Έλεγχος με χρήση ψευδομεταβλητών Αρχικό υπόδειγμα Y = β β β1x1 X Θέλουμε να εξετάσουμε την περίπτωση δομικής μεταβολής στο υπόδειγμα μετά από μια συγκεκριμένη χρονική στιγμή. Δημιουργείται μια ψευδομεταβλητή D η οποία παίρνει την τιμή για το διάστημα πριν από τη συγκεκριμένη χρονική στιγμή και την τιμή 1 για την υπόλοιπη χρονική περίοδο. Αν υποθέσουμε ότι όλοι οι συντελεστές μεταβάλλονται Y u = β b D β1x1 b1 DX1 β X bdx Το πλεονέκτημα της μεθόδου αυτής σε σχέση με τη προηγούμενη είναι ότι μας δίνει τη δυνατότητα να ελέγξουμε την μεταβολή μέρους των συντελεστών.

29 Έλεγχος με χρήση ψευδομεταβλητών Το εκτιμημένο υπόδειγμα για την περίοδο D= θα είναι: Y = β β X β X 1 1 Το εκτιμημένο υπόδειγμα για την περίοδο D=1 θα είναι: Y = β b β X bx β X b X ( β ) ( β ) ( β ) Y = b b X b X Αν ελέγξουμε την υπόθεση Η : b = b = b = 1 και δεν απορρίψουμε την Η, ισοδυναμεί με απόρριψη της υπόθεσης ότι υπάρχει μεταβολή στην δομή του υποδείγματος.

30 Παράδειγμα: Έστω τα στοιχεία κατανάλωσης και εισοδήματος. C= b bd b I bd I v 1 3 C = 879, ,D,711I.31 D I ( 3455,9 ) ( 1449,3 ) (,16 ) (,38 ) R =,997 ESS = U = 3958,,734 I R =,997 C ( ) ( ) 99,1,7 ESS = ESSR ESSU F = k m = 4 = 1,373 ESSU n k 6 4 F = 1,373 < F = 3,44,5,, R Έτος C I D δεχόμαστε την H ότι δεν υπάρχει μεταβολή στην δομή του υποδείγματος

Οικονομετρία. Ψευδομεταβλητές Δύο ή περισσότερες ψευδομεταβλητές που επιδρούν στην σταθερά της συνάρτησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Ψευδομεταβλητές Δύο ή περισσότερες ψευδομεταβλητές που επιδρούν στην σταθερά της συνάρτησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Ψευδομεταβλητές Δύο ή περισσότερες ψευδομεταβλητές που επιδρούν στην σταθερά της συνάρτησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Μη γραµµικά υποδείγµατα παλινδρόµησης Έστω µία συνάρτηση f = f(x 1,..., X K ) των µεταβλητών X 1,...,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ:

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ: Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιανουαρίου 2014 (18-Φεβ-2014) 9:00-11:00 Μάθημα: «ΟΙΚΟΝΟΜΕΤΡΙΑ» ΟΙΚΟΝ 320 Διδάσκων: Επίκουρος Καθηγητής Ιωάννης Α. Βενέτης Διάρκεια

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)/ ΟΜΑΔΑ ΠΡΩΤΗ

ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)/ ΟΜΑΔΑ ΠΡΩΤΗ ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)/29.12.2015 ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. α) Λάθος β) Σωστό γ) Λάθος δ)σωστό ε) Λάθος Α2. δ Α3. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1.α) Το εισόδημα των καταναλωτών.

Διαβάστε περισσότερα

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓΔΟΟ ΕΡΓΑΣΤΗΡΙΟΥ -ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ (DUMMY VARIABLES) Ακαδημαϊκό Έτος

ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓΔΟΟ ΕΡΓΑΣΤΗΡΙΟΥ -ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ (DUMMY VARIABLES) Ακαδημαϊκό Έτος ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓΔΟΟ ΕΡΓΑΣΤΗΡΙΟΥ -ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ (DUMMY VARIABLES) Ακαδημαϊκό Έτος 2011-2012 ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΓΕΝΙΚΑ Όπως είναι ήδη γνωστό οι μεταβλητές που χρησιμοποιούνται

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

www.onlneclassroom.gr www.onlneclassroom.gr Α. Το διάγραμμα διασποράς των μεταβλητών διαθέσιμο εισόδημα (Χ) και κατανάλωσης (Υ), όπως σχηματίστηκε στο excel, είναι 3000 Δ ιάγραμμα Δ ιασ π οράς 500 Δ ηλω

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓ ΟΟ ΘΕΩΡΙΑΣ- ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ(DUMMY VARIABLES) Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011-2012 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05

1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05 1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05 2. ΜΕΤΑΒΛΗΤΕΣ -ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΜΕΤΑΒΛΗΤΩΝ Όλες οι έρευνες αναφέρονται σε μεταβλητές

Διαβάστε περισσότερα

Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος σημαντικότητας δύο ή περισσοτέρων συντελεστών ταυτόχρονα

Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος σημαντικότητας δύο ή περισσοτέρων συντελεστών ταυτόχρονα Οικονομετρία Πολλαπλή Παλινδρόμηση Στατιστικός έλεγχος σημαντικότητας δύο ή περισσοτέρων συντελεστών ταυτόχρονα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΑΓΙΟΥ ΝΙΚΟΛΑΟΥ Τμήμα Διοίκησης Επιχειρήσεων Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ Παλινδρόμηση

Διαβάστε περισσότερα

Ανεργία, μισθοί και αποδόσεις της εκπαίδευσης στην Ελλάδα πριν και κατά την κρίση

Ανεργία, μισθοί και αποδόσεις της εκπαίδευσης στην Ελλάδα πριν και κατά την κρίση Ανεργία, μισθοί και αποδόσεις της εκπαίδευσης στην Ελλάδα πριν και κατά την κρίση Νικόλαος Κανελλόπουλος (ΚΕΠΕ) Θεόδωρος Μητράκος (Τράπεζα της Ελλάδος) Πάνος Τσακλόγλου (ΟΠΑ/ΣΟΕ) Ιωάννης Χολέζας (ΚΕΠΕ)

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΘΕΜΑ 5ο (ΜΟΝΑΔΕΣ 0) www.oleclassroom.gr Ένας οικονομικός αναλυτής θέλει να διερευνήσει τη σχέση μεταξύ της τιμής ενός αγαθού με τις σημειούμενες πωλήσεις του σε διαφορετικά καταστήματα μιας αστικής περιοχής.

Διαβάστε περισσότερα

Έλεγχος των Phillips Perron

Έλεγχος των Phillips Perron ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.

Διαβάστε περισσότερα

ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΔΙΑΦΟΡΟΠΟΙΟΥΝ ΤΗΝ ΕΠΙΔΟΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΔΙΑΦΟΡΟΠΟΙΟΥΝ ΤΗΝ ΕΠΙΔΟΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΣΧΟΛΕΙΟ ΚΑΙ ΟΙΚΟΓΕΝΕΙΑ ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ - ΙΩΑΝΝΙΝΑ ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΔΙΑΦΟΡΟΠΟΙΟΥΝ ΤΗΝ ΕΠΙΔΟΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Μάρτιος 2005 Σκοπός της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER ΑΣΚΗΣΕΙΣ. Θεωρήστε το παράδειγμα που αναφέρεται στη συσχέτιση του βαθμού ικανοποίησης των εργαζομένων σε ένα εργαστήριο σε σχέση με τις οκτώ μεταβλητές που ορίστηκαν εκεί. (Χ =ηλικία, Χ =φύλο, Χ =εβδομαδιαίος

Διαβάστε περισσότερα

Η εργασία αυτή στοιχειοθετήθηκε με το πρόγραμμα L A TEX. Η συγγραφή έγινε με τη βοήθεια του προγράμματος Kile στο λειτουργικό σύστημα Ubuntu Linux. Γι

Η εργασία αυτή στοιχειοθετήθηκε με το πρόγραμμα L A TEX. Η συγγραφή έγινε με τη βοήθεια του προγράμματος Kile στο λειτουργικό σύστημα Ubuntu Linux. Γι Ανάλυση παλινδρόμησης με χρήση ποιοτικών ερμηνευτικών μεταβλητών: Διευρεύνηση της επίδρασης του φύλου στις επιδόσεις μαθητών του γυμνασίου Ο.Ι. Μαλλή Διατμηματικό Π.Μ.Σ. Μαθηματικά των Υπολογιστών και

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία I.1 Τι Είναι η Οικονομετρία; Η κυριολεκτική ερμηνεία της λέξης, οικονομετρία είναι «οικονομική

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή 2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΟΜΑΔΑ ΠΡΩΤΗ

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΟΜΑΔΑ ΠΡΩΤΗ ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15/01/2017 ΚΑΘ/ΤΗΣ ΣΦΥΡΗΣ Π. ΒΑΘΜΟΣ: /100, /20 ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. Στις προτάσεις α μέχρι και ε να γράψετε στο τετράδιο σας το γράμμα της

Διαβάστε περισσότερα

Η απόδοση της εκπαιδευσης

Η απόδοση της εκπαιδευσης Η απόδοση της εκπαιδευσης Τι ονομάζουμε ως συνάρτηση μισθού; Οποιαδήποτε παλινδρόμηση με την οποία προσπαθούμε να ερμηνεύσουμε την μεταβλητότητα του ωρομισθίου ή των αμοιβών από εργασία (ατομικά δεδομένα)

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης 3. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ (ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ). ΠΡΟΣΦΟΡΑ ΕΡΓΑΣΙΑΣ Ως προσφορά εργασίας ορίζεται το σύνολο των ωρών εργασίας που προσφέρονται προς εκμίσθωση μία δεδομένη χρονική στιγμή.

Διαβάστε περισσότερα

Θέμα: Ενδεικτικό Θέμα εξετάσεων: Μέτρα θέσης Παλινδρόμηση

Θέμα: Ενδεικτικό Θέμα εξετάσεων: Μέτρα θέσης Παλινδρόμηση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr TECHNOLOGICAL

Διαβάστε περισσότερα

Κάθε σύνολο δεδομένων κρύβει δομή το θέμα είναι να την εντοπίσομε (analytics)

Κάθε σύνολο δεδομένων κρύβει δομή το θέμα είναι να την εντοπίσομε (analytics) Κάθε σύνολο δεδομένων κρύβει δομή το θέμα είναι να την εντοπίσομε (analytics) 2 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ και ΣΥΣΧΕΤΙΣΗ Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών demetri@econ.uoa.gr

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ

ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Κεφάλαιο 3 ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Εισαγωγή Ένα από τα βασικά συμπεράσματα του απλού νεοκλασικού υποδείγματος οικονομικής μεγέθυνσης, που παρουσιάστηκε στο Κεφάλαιο, είναι ότι δεν μπορεί

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων Είμαστε τυχεροί που είμαστε δάσκαλοι ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων 05-10-1 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; ( μον.) ii. Πότε

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. C:\WINDOWS\Επιφάνεια εργασίας\kkkk\kef_2.doc

ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. C:\WINDOWS\Επιφάνεια εργασίας\kkkk\kef_2.doc ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ Στατικά Σχήματα Αλληλεξαρτήσεων Σε ένα Στατικό Οικονομετρικό Υπόδειγμα οι διαχρονικές αλληλεπιδράσεις μεταξύ των μεταβλητών του εξαντλούνται εντός μιας χρονικής

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Β = 2W, αντίστοιχα. Βρείτε ποιος είναι ο μισθός ισορροπίας και το επίπεδο απασχόλησης στην ισορροπία σε καθέναν κλάδο της οικονομίας.

Β = 2W, αντίστοιχα. Βρείτε ποιος είναι ο μισθός ισορροπίας και το επίπεδο απασχόλησης στην ισορροπία σε καθέναν κλάδο της οικονομίας. Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Μάθημα: Οικονομική της Εργασίας Εξετάσεις Ιούνιος 2014 Διδάσκων: Νίκος Γιαννακόπουλος, Επίκουρος Καθηγητής 1. (0,10 μονάδες) Εάν ο αριθμός των ανέργων ισούται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017

Διαβάστε περισσότερα

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι 3. Θεωρία της Επιχείρησης 3. Η Ανταγωνιστική Επιχείρηση. Το τµήµα αυτό έχει δύο στόχους. Πρώτα να δείξει ότι αν υπάρχει ουδετερότητα απέναντι στον κίνδυνο, τότε η µέση αξία ενός αβέβαιου γεγονότος είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΑΠΑΝΤΗΣΕΙΣ ΩΘΗΣΗ 1

ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΑΠΑΝΤΗΣΕΙΣ ΩΘΗΣΗ 1 ΑΠΑΝΤΗΣΕΙΣ 1 ευτέρα, 31 Μα ου 010 ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑ Α Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα

Διαβάστε περισσότερα

Εναλλακτικά του πειράματος

Εναλλακτικά του πειράματος Θετική και δεοντολογική προσέγγιση Διάλεξη 2 Εργαλεία θετικής ανάλυσης Ή Γιατί είναι τόσο δύσκολο να πούμε τι συμβαίνει; Η θετική ανάλυση εξετάζει τι υπάρχει και ποιες οι συνέπειες μιας πολιτικής, χωρίς

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.4. Αν αυξηθεί η αμοιβή της εργασίας η καμπύλη του οριακού κόστους μετατοπίζεται προς τα επάνω και αριστερά.

ΑΠΑΝΤΗΣΕΙΣ. Α.4. Αν αυξηθεί η αμοιβή της εργασίας η καμπύλη του οριακού κόστους μετατοπίζεται προς τα επάνω και αριστερά. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 6-11-2016 ΚΑΘ/ΤΗΣ ΣΦΥΡΗΣ ΠΑΝΑΓΙΩΤΗΣ ΒΑΘΜΟΣ: /100, /20 ΟΜΑΔΑ Α Στις προτάσεις Α1 μέχρι και Α5 να γράψετε στο τετράδιο σας τον αριθμό της καθεμίας

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Μισθολογικές διαφορές μεταξύ ανδρών και γυναικών στην Ελλάδα Ανισότητες: από την καταγραφή στην ανατροπή

Μισθολογικές διαφορές μεταξύ ανδρών και γυναικών στην Ελλάδα Ανισότητες: από την καταγραφή στην ανατροπή Μισθολογικές διαφορές μεταξύ ανδρών και γυναικών στην Ελλάδα Ανισότητες: από την καταγραφή στην ανατροπή Η μελέτη της Ευαγγελίας Παπαπέτρου για την απασχόληση - ανεργία και τις μισθολογικές διαφορές ανδρών

Διαβάστε περισσότερα

Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις

Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις Παράγωγος συνάρτησης Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου ελαστικότητα Οριακές συναρτήσεις Έννοια Στην οικονομική επιστήμη μας ενδιαφέρει πολλές φορές να προσδιορίσουμε την καλύτερη επιλογή, π.χ

Διαβάστε περισσότερα

Κεφάλαιο 2. Ζήτηση των Αγαθών

Κεφάλαιο 2. Ζήτηση των Αγαθών Κεφάλαιο 2 Ζήτηση των Αγαθών Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς (demand & supply). Χρησιμότητα ενός αγαθού είναι η ικανοποίηση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ SOS & ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΩΝ 5 ΟΥ ΕΞΑΜΗΝΟΥ www.dap papei.gr 2 ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Τι θα γράψω: Στις εξετάσεις τα θέματα περιλαμβάνουν ερωτήσεις και ασκήσεις (κυρίως ασκήσεις) όπου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει

Διαβάστε περισσότερα

Διάλεξη 2. Εργαλεία θετικής ανάλυσης Ή Γιατί είναι τόσο δύσκολο να πούμε τι συμβαίνει; Ράπανος-Καπλάνογλου 2016/7

Διάλεξη 2. Εργαλεία θετικής ανάλυσης Ή Γιατί είναι τόσο δύσκολο να πούμε τι συμβαίνει; Ράπανος-Καπλάνογλου 2016/7 Διάλεξη 2 Εργαλεία θετικής ανάλυσης Ή Γιατί είναι τόσο δύσκολο να πούμε τι συμβαίνει; 1 Ράπανος-Καπλάνογλου 2016/7 Θετική και δεοντολογική προσέγγιση Η θετική ανάλυση εξετάζει τι υπάρχει και ποιες οι συνέπειες

Διαβάστε περισσότερα

13 Το απλό κλασικό υπόδειγμα

13 Το απλό κλασικό υπόδειγμα 13 Το απλό κλασικό υπόδειγμα Σκοπός Σκοπός του κεφαλαίου αυτού είναι να συνδυάσει τα δύο προηγούμενα κεάλαια και να δώσει μια συνολική εικόνα του απλού μακροοικονομικού υποδείγματος. Θα εξετάσει, επίσης,

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Η αγορά δασκάλων 101

Η αγορά δασκάλων 101 Η αγορά δασκάλων Η αγορά δασκάλων Τα νούμερα των δασκάλων στην Ελλάδα, 2012 Βαθμίδα Σύνολο Άνδρες Γυναίκες Νηπιαγωγείο 14018 162 13856 % [100.0] [1.00] [99.0] Δημοτικό 67314 20565 46749 % [100.0] [31.0]

Διαβάστε περισσότερα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Στατιστική είναι ο κλάδος των μαθηματικών που εμβαθύνει σε μεθόδους συλλογής δεδομένων, οργάνωσης, παρουσίασης των δεδομένων και εξαγωγής συμπερασμάτων

Διαβάστε περισσότερα