Η απόδοση της εκπαιδευσης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η απόδοση της εκπαιδευσης"

Transcript

1 Η απόδοση της εκπαιδευσης

2 Τι ονομάζουμε ως συνάρτηση μισθού; Οποιαδήποτε παλινδρόμηση με την οποία προσπαθούμε να ερμηνεύσουμε την μεταβλητότητα του ωρομισθίου ή των αμοιβών από εργασία (ατομικά δεδομένα) χρησιμοποιώντας μια δέσμη ερμηνευτικών μεταβλητών (π.χ. ατομικά χαρακτηριστικά, χαρακτηριστικά της αγοράς εργασίας, διάφορα γεωγραφικά χαρακτηριστικά, κ.λπ.). Βασικοί συντελεστές της θεωρητικής θεμελίωσης της συνάρτησης αμοιβών Becker (1964, 1975) Becker and Chiswick (1966) Mincer (1958, 1962, 1974)

3 Συνάρτηση Μισθού κατά Mincer (1974) lnw i = β 0 + β 1 s i + β 2 x i + β 3 x 2 i + e i (9) lnw i φυσικός λογάριθμος των ετήσιων αμοιβών από την εργασία για τον i εργαζόμενο (i = 1,..., N) s έτη εκπαιδευσης του i εργαζόμενου x προσεγγιστική μεταβλητή για την εργασιακή εμπειρία, δηλαδή x = α s 6 όπου, α η ηλικία του i εργαζόμενου β 0 εκτίμηση για το σταθερο όρο της (9) β 1 εκτίμηση για το ρυθμό απόδοσης της εκπαίδευσης e i διαταρακτικός όρος της (9)

4 Σχήμα 10:

5 Η Μινσεριανή συνάρτηση βασίζεται σε ένα απλό θεωρητικό υπόδειγμα τέλειου ανταγωνισμού. Το βασικό υπόδειγμα υποθέτει ότι όλα τα άτομα στην αγορά είναι ταυτόσημα, δεν υπάρχει άμεσο κόστος εκπαίδευσης (αλλά μόνον κόστος ευκαιρίας), όλοι οι εργαζόμενοι έχουν χρονικά την ίδια εργασιακή ζωή, υπάρχει πλήρης πρόσβαση στην πληροφόρηση, όλα τα επίπεδα εκπαίδευσης που βρίσκονται διαθέσιμα στην αγορά μπορούν να αντιπροσωπευθούν από μια μεταβλητή η οποία είναι τα έτη εκπαίδευσης (s).

6 Συνάρτηση αμοιβών: αναλυτικά Έστω w u ο μισθός ενός εργαζόμενου χωρίς εκπαιδευση και αμετάβλητος χρονικά Η παρούσα προεξοφλημένη αξία αυτής της χρηματικής ροής, που ακολουθεί μια γεωμετρική πρόοδο η οποία τείνει στο άπειρο, είναι ΠΑ w u = wu 1 + r + wu (1 + r) 2 + wu +... (10) 3 (1 + r) όπου, r το προεξοφλιτικό επιτοκιο. Υποθέτοντας ότι τα εισοδήματα είναι σταθερά στο χρονο και γνωρίζοντας ότι το άθροισμα των όρων μιας γεωμετρικής σειράς που αποτελείται από άπειρα στοιχεία δίνεται από την σχέση A1 ρ 1 όπου, Α ειναι ο πρώτος όρος της γεωμετρικής σειράς και ρ ο ρυθμός μεταβολής (ρυθμός μεταβολης του κεφαλαιου),

7 Συνάρτηση αμοιβών: αναλυτικά...προκύπτει ότι ΠΑ w u = w u 1+r r = w u 1+r 1+r 1+r 1+r 1 = wu r Λαμβάνοντας υπόψη το διορθωτικό παράγοντα (11) (1 e rt ) αφού όλα τα άτομα έχουν έναν πεπερασμένο αριθμό ετών στην αγορά εργασίας ο οποίος τελειώνει στην περίοδο T, η παρούσα αξία των αμοιβών για τον κύκλο ζωής ενός εργαζόμενου χωρίς εκπαίδευση είναι ΠΑ w u = wu r ( 1 e rt ) (12)

8 Συνάρτηση αμοιβών: αναλυτικά Αντιστοιχα, η παρούσα αξία των διαχρονικών αμοιβών για έναν μορφωμενο εργαζόμενο με έτη εκπαίδευσης s είναι ΠΑ w E = we ( ) 1 e rt e rs (13) r όπου, το e rs είναι ένας παράγοντας προσαρμογής ο οποίος διορθώνει για το γεγονός ότι οι εκπαιδευμένοι εργαζόμενοι δεν λαμβάνουν αμοιβές κατά τη διάρκεια της εκπαίδευσης.

9 Συνάρτηση αμοιβών: αναλυτικά Εάν υποθέσουμε ότι εκ των προτέρων (ex-ante) τα άτομα είναι ομοιογενή και ότι οι αγορές λειτουργούν υπό συνθήκες πλήρους ανταγωνισμού τότε οι παρούσες αξίες θα πρέπει να ισούται. Δηλαδή, w u r (1 e rt ) = we r Με αναδιάταξη όρων προκύπτει Λύνοντας ως προς w E προκύπει ( 1 e rt ) e rs (14) w u = w E e rs (15) w E = w u e rs (16) Χρησιμοποιώντας φυσικούς λογάριθμος προκύπτει ( ln w E) = ln (w u e rs ) = ln (w u ) + rs (17)

10 Συνάρτηση αμοιβών: αναλυτικά Η εμπειρική εξειδικευση (τυπική συναρτηση αμοιβών) δινεται από τη σχέση lnw i = α + rs i + u i i = 1,..., n (18) όπου, ο διαταρακτικός όρος αντιπροσωπεύει το γεγονός ότι ο προσδιορισμός των αμοιβών υπόκεινται σε μια μη-παρατηρούμενη αλλά τυχαία διαδικασία και δεν είναι δυνατόν να προσδιοριστεί επακριβώς.

11 Συνάρτηση αμοιβών: αναλυτικά Η εμπειρική εξειδικευση (επαυξημενη συναρτηση αμοιβών) δινεται από τη σχέση lnw i = α + rs i + X ik β k + u i i = 1,..., n (19) όπου, X ik μια δέσμη επιπροσθετων ατομικών χαρακτηριστικων k = 1,..., K τα οποία επηρεάζουν την διάρθρωση των αμοιβών όπως, η ηλικία, το οικογενειακό καθεστώς, η τοποθεσία διαμονή κ.α..

12 Σχήμα 11:

13 Eρμηνεία: Eάν ˆr = 0.10 αυτό σημαίνει ότι (ceteris paribus) ο οριακός ρυθμός απόδοσης της εκπαίδευσης είναι 10% για κάθε επιπρόσθετο έτος εκπαίδευσης. Η εκπαίδευση και οι αμοιβές έχει παρατηρηθεί ότι συσχετίζονται θετικά Δηλαδή η συνάρτηση αμοιβών είναι «μονοτονική» ως προς την εκπαίδευση. Το προφίλ των αμοιβών ως προς την εργασιακή εμπειρία συνήθως έχει «κοίλη» μορφή και παρουσιάζει θετική κλίση σχεδόν για το μεγαλύτερο μέρος της εργασιακής ζωής. Ο ρυθμός αύξησης των αμοιβών είναι μεγαλύτερος σε νεαρές ηλικίες Ο ρυθμός αύξησης των αμοιβών γίνεται αρνητικός προς το τέλος της εργασιακής ζωής.

14 Σχήμα 12:

15 Σχήμα 13:

16 Πρόβλήματα στην εκτίμηση του ρυθμού απόδοσης της εκπαιδευσης Το πρώτο αφορά σε σφάλματα μέτρησης της μεταβλητής της εκπαίδευσης. Το δεύτερο πρόβλημα θεωρείται πιο σημαντικό από το πρώτο και αφορά στην παράλειψη σημαντικών παραγόντων στην εκτίμηση της συναρτησης αμοιβών. Συνήθως αυτή η παράλειψη αφορά σε μη-παρατηρούμενες (μη-μετρήσιμες) μεταβλητές οι οποίες συσχετίζονται με την εκπαίδευση και τα ωρομίσθια.

17 Σφάλμα μέτρησης Συναρτήσεις αμοιβών Το πρόβλημα με το σφάλμα μέτρησης στην μεταβλητή της εκπαίδευσης σχετίζεται με την αδυναμία σωστής και αντικειμενικής καταγραφής των ετών εκπαίδευσης. Για παράδειγμα, εάν οι ερωτώμενοι στην έρευνα καταγραφής των ατομικών παραγωγικών χαρακτηριστικών δεν θυμούνται ακριβώς την ηλικία στην οποία ολοκλήρωσαν το ανώτατο επίπεδο εκπαίδευσης τους τότε στην ουσία εισαγάγετε στις εκτιμήσεις κάποιος τύπος μεροληψίας ή σφάλματος μέτρησης. Θεωρητικά αποδεικνύεται ότι ο OLS εκτιμητής για το ρυθμό απόδοσης της εκπαίδευσης είναι μεροληπτικός προς τα κάτω (downward biased). Με άλλα λόγια, η εκτίμηση εμφανίζεται να είναι ένας πολύ μικρότερος ρυθμός απόδοσης από τον πραγματικό ρυθμό.

18 Παραλειπόμενες μεταβλητές Οι παραλειπόμενες μεταβλητές οδηγούν στην εισαγωγή μεροληψίας στις OLS εκτιμήσεις του ρυθμού απόδοσης της εκπαίδευσης. Η κατεύθυνση της μεροληψίας προσδιορίζεται από τη φύση της σχέσης που έχουν οι παραλειπόμενες μεταβλητές με τις μεταβλητές της εκπαίδευσης και των ωρομισθίων. Ας υποθέσουμε ότι θέλουμε να εκτιμήσουμε τη σχέση lnw i = α + rs i + u i (20)

19 Παραλειπόμενες μεταβλητές Επίσης, ας υποθέσουμε ότι η πραγματική σχέση ωρομισθίων και λοιπών προσδιοριστικών παραγόντων προκύπτει θεωρητικά από την παρακάτω σχέση lnw i = α + r s i + γ Z i + u i (21) όπου, οι όροι α, r και γ είναι οι πραγματικοί παράμετροι που σχετίζονται με την σωστή εξειδίκευση της εξίσωσης αμοιβών. Το εύρος της μεροληψίας του r προκύπτει από την εκτίμηση της εμπειρικής συνάρτησης αμοιβών και όχι της πραγματικής σχέσης και έχει την μορφή r = r + γ ρ sz r = r γ ρ sz (22) όπου, όπου, το ρ sz είναι ο συντελεστής συσχέτισης μεταξύ της μεταβλητής των ετών εκπαίδευσης s και της παραλειπόμενης μεταβλητής Z.

20 Παραλειπόμενες μεταβλητές Εάν γ > 0 και εαν οι μεταβλητές s και Z συσχετίζονται θετικά, τότε ο εκτιμημενος ρυθμός απόδοσης της εκπαιδευσης ˆr θα ειναι μεγαλύτερος από τον πραγματικό ρυθμό απόδοσης ˆr κατά το μεγεθος του όρου γ ρ sz. Όταν βέβαια ο συντελεστης συσχέτισης είναι αρνητικός, γ < 0, ο ο εκτιμημενος ρυθμός απόδοσης της εκπαιδευσης ˆr υπολείπεται του πραγματικού ρυθμού απόδοσης ˆr. Παρά το γεγονός ότι υπάρχουν σημαντικοί παράγοντες που παραλείπονται στην εκτίμηση των ωρομισθίων, ο πιο σημαντικός είναι αυτός της ικανότητας. Η αποτυχία συμπερίληψης αυτού του παράγοντα εισάγει το πρόβλημα της μεροληψίας των ικανοτήτων στην εκτίμηση του ρυθμού απόδοσης της εκπαίδευσης.

21 Παραλειπόμενες μεταβλητές και μεροληψια ικανοτήτων Το πρόβλημα προκύπτει επειδή υπάρχουν σημαντικές αλλά μη-παρατηρούμενες διαφορές στα επίπεδα ικανοτήτων ενός πληθυσμού οι οποίες συσχετίζονται τόσο με το επίπεδο των ωρομισθίων όσο και με το επίπεδο της εκπαίδευσης (οι πιο ικανοί εργαζόμενοι αμείβονται υψηλότερα αλλά έχουν και υψηλά επίπεδα εκπαίδευσης). Έτσι, υποθέτοντας ότι η Z i αντιπροσωπεύει την μηπαρατηρούμενη ικανότητα προκύπτει ότι το γ > 0 και το ρ sz > 0. Η συνέπεια από την αποδοχή αυτής της υπόθεσης είναι ότι ο OLS εκτιμητής της εκπαίδευσης στη συνάρτηση αμοιβών αδυνατεί να ενσωματώσει τα επίπεδα ικανοτήτων και άρα υπερ-εκτιμά τον πραγματικό ρυθμό απόδοσης της εκπαίδευσης κατά τον παράγοντα γ ρ sz.

22 Παραλειπόμενες μεταβλητές και μεροληψια ικανοτήτων Παράδειγμα Έστω ότι ˆr = 0.10, οτι μια μικρή μεταβολή στην ικανότητα αυξάνει τα ωρομίσθια κατά 5% ( γ = 0.05 ) και ότι η συσχέτιση μεταξύ των ικανοτήτων και της εκπαίδευσης είναι 75% (ρ sz = 0.75). Σε αυτήν την περιπτωση ο εκτιμητης ˆr = 0.10 είναι μεγαλύτερος του πραγματικού ρυθμού κατά = Δηλαδή, ο πραγματικός ρυθμος απόδοσης είναι ή 6.2% και όχι 10%. Βέβαια στην πραγματικότητα δεν ειναι εύκολο να γνωρίσουμε την πραγματική σχέση μεταξύ ικανότητας και αμοιβών και άρα αυτός ο τρόπος υπολογισμού της μεροληψίας συνήθως υπόκεινται σε σημαντική κριτική.

23 Τρόποι αντιμετώπισης των σφαλματων μέτρησης και της μεροληψίας ικανοτήτων Σφάλμα μέτρησης Χρήση της μεθόδου των βοηθητικών μεταβλητών. Σε αυτό το πλαίσιο ανάλυσης το πρόβλημα του σφάλματος μέτρησης στην μεταβλητή των ετών εκπαίδευσης αντιμετωπίζεται με την αναζήτηση μιας ή/και περισσοτέρων μεταβλητών η οποία συσχετίζεται σε μεγάλο βαθμό με τα έτη εκπαίδευσης αλλά ταυτόχρονα είναι δεν συσχετίζεται με το διαταρακτικό όρο u i της συνάρτησης αμοιβών. Αυτές οι μεταβλητές ονομάζονται ως «βοηθητικές μεταβλητές» (instruments). Παραδείγματα βοηθητικών μεταβλητών: εάν ένα άτομο κάπνιζε στην ηλικία των 16-18, μεταβολές στα έτη υποχρεωτικής εκπαίδευσης μέσω θεσμικών παρεμβάσεων, κ.λπ.

24 Τρόποι αντιμετώπισης των σφαλματων μέτρησης και της μεροληψίας ικανοτήτων Μεροληψία ικανοτήτων Δύσκολα αντιμετωπίσιμο ζήτημα στην εκτίμηση του ρυθμού απόδοσης της εκπαίδευσης. Συνήθψς συμπεριλαμβάνονται μεταβλητές (στη δέσμη Z) οι οποίες αναφέρονται στο δείκτη ευφυΐας (Intelligence Quotient, IQ). Αυτές οι μεταβλητές μετριάζουν τον εκτιμημένο ρυθμό απόδοσης της εκπαίδευσης κατά ένα σχετικά μικρό βαθμό. Ο δείκτης ευφυΐας έχει δεχθεί σημαντική κριτική. Η κατασκευή του βασίζεται σε πολιτισμικούς κυρίως παράγοντες με αποτέλεσμα να μην καταγράφονται επακριβώς σημαντικές φυλετικές, κοινωνικές και οικονομικές διαφορές μεταξύ ατόμων στον πληθυσμό.

25 Τρόποι αντιμετώπισης των σφαλματων μέτρησης και της μεροληψίας ικανοτήτων Μεροληψία ικανοτήτων Εναλλακτικά, χρησιμοποιούνται οι μαθησιακές επιδοσεις των ατόμων σε μικρές ηλικίες στα μαθηματικά και την επεξεργασία κειμένου. Φαίνεται να είναι οι καλύτερες μετρήσεις. Συμβάλουν στην μειωση του εκτιμημένου ρυθμού απόδοσης της εκπαίδευσης. Κριτική: αυτές οι μετρήσεις αποδίδουν μια «ακατέργαστη» προσέγγιση του επιπέδου των ικανοτήτων στη διαμόρφωση των αμοιβών και δεν μπορούμε να υποθέσουμε ότι καλύπτουν το σύνολο των μη παρατηρούμενων χαρακτηριστικών που απαιτούνται για μια την επιτυχή πορεία ενός ατόμου στην αγορά εργασίας.

26 Τρόποι αντιμετώπισης των σφαλματων μέτρησης και της μεροληψίας ικανοτήτων Σύγκριση αμοιβών μονοζυγωτικών διδύμων Στόχος: έλεγχος της επίπτωσης του γενετικού υπόβαθρου (και άρα του επίπεδο ικανοτήτων) στην διάρθρωση των αμοιβών. Έστω ότι η αληθής διάρθρωση αμοιβών δίνεται από τη σχέση lnw i = α + rs i + γa i + u i (23) Έστω ότι έχουμε πλήρη πληροφόρηση για μονοζυγωτικά δίδυμα για i = 1,..., N οικογένειες, τότε η παραπάνω συναρτηση αμοιβών γινεται lnw ji = α + rs ji + γa i + u ji (24) όπου, j = 1, 2 (παιδί 1 και 2, αντίστοιχα).

27 Τρόποι αντιμετώπισης των σφαλματων μέτρησης και της μεροληψίας ικανοτήτων Σύγκριση αμοιβών μονοζυγωτικών διδύμων Στην ουσια έχουμε δυο ξεχωριστές συναρτήσεις αμοιβών: Παιδι 1: lnw 1i = α + rs 1i + γa i + u 1i Παιδι 2: lnw 2i = α + rs 2i + γa i + u 2i (25) Ο παράγοντας A i είναι κοινός για κάθε ζεύγος μονοζυγωτικών διδύμων επειδη τα μονοζυγωτικά δίδυμα έχουν κοινό γενετικό υπόβαθρο και ταυτόσημο DNA. Έτσι ένας τρόπος εξάληψης των γενετικών διαφορών στη δημιουργία μισθολογικών διαφορών είναι η αφαίρεση των παραπάνω συναρτησεων αμοιβών.

28 Τρόποι αντιμετώπισης των σφαλματων μέτρησης και της μεροληψίας ικανοτήτων Σύγκριση αμοιβών μονοζυγωτικών διδύμων Από την αφαιρεση προκύπτει: lnw 1i lnw 2i = (α α) + r (s 1i s 2i ) + γ (A i A i ) + (u 1i u 2i ) = r (s 1i s 2i ) + (u 1i u 2i ) (26) Σύμφωνα με τη συνάρτηση που προέκυψε οι διαφορές των αμοιβών μονοζυγωτικών διδύμων εξαρτώνται από τη διαφορά των ετών εκπαίδευσης (s 1i s 2i ). Το αποτέλεσμα της εκτίμησης θα μας δώσει έναν εκτιμητή για το ρυθμό απόδοσης της εκπαίδευσης που είναι «καθαρός» από τις όποιες διαφορές στα επίπεδα ικανοτήτων.

29 Τρόποι αντιμετώπισης των σφαλματων μέτρησης και της μεροληψίας ικανοτήτων Η ποιότητα της εκπαίδευσης Η ποιότητα της εκπαίδευσης σχετίζεται θετικά με το επίπεδο των αμοιβών αλλά και με το επίπεδο εκπαίδευσης ενός ατόμου. Αποτέλεσμα: υπερ εκτίμηση της απόδοσης της εκπαιδευσης. Βέβαια, υποστηριζεται ότι τα πιο ικανά άτομα επιλέγουν να παρακολουθούν καλύτερης ποιότητας σχολεία. Επίσης, υποστηριζεται ότι η επιλογή του σχολείου ειναι αποτέλεσμα του κοινωνικού δικτύου και της επίπτωσεις των εργασιακών συμβάσεων.

30 Τρόποι αντιμετώπισης των σφαλματων μέτρησης και της μεροληψίας ικανοτήτων Η ποιότητα της εκπαίδευσης Υπάρχουν δυσκολίες στη μέτρηση της ποιότητας της εκπαίδευσης. Χρησιμοποιούνται προσεγγιστικές μεταβλητες: επενδυτικές εκπαιδευτικές δαπάνες, δαπάνες ανά μαθητή και μισθοί εκπαιδευτικών. Τι γνωρίζουμε; στις ΗΠΑ μειώνοντας τον λόγο μαθητές/δάσκαλοι κατά 10 μαθητές, αυξάνεται ο ρυθμός απόδοσης της εκπαίδευσης κατά 1 ποσοστιαία μονάδα. Επίσης, αυξάνοντας τις αμοιβές των εκπαιδευτικών κατά 10% αυξάνεται ο ρυθμός απόδοσης της εκπαίδευσης μόνον κατά 0.1 της ποσοστιαίας μονάδας.

31 Κοινωνική απόδοση της εκπαιδευσης Συμπεριλαμβάνει το άμεσο κόστος της εκπαιδευσης (δημοσια χρηματοδότηση της εκπαίδευσης) και τα ατομικά εισοδήματα είναι σε ακαθάριστη μορφή (φόροι και ασφαλιστικές και συνταξιοδοτικές εισφορές). Στην περίπτωση της ιδιωτικής απόδοσης το κόστος ευκαιρίας αφορά μόνον τα διαφυγοντα εισοδηματα. Τα ατομικά εισοδήματα είναι σε καθάριστη μορφή (μειον φόροι και ασφαλιστικές και συνταξιοδοτικές εισφορές). Ο ρυθμος απόδοσης συσχετίζεται αρνητικά με το επίπεδο της οικονομικής ανάπτυξης. Η κοινωνική απόδοση της εκπαιδευσης αποκλεινει σημαντικά από την ιδιωτική απόδοση στις λιγότερο ανεπτυγμενες οικονομικά χώρες.

32 Σχήμα 14:

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ:

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ: Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιανουαρίου 2014 (18-Φεβ-2014) 9:00-11:00 Μάθημα: «ΟΙΚΟΝΟΜΕΤΡΙΑ» ΟΙΚΟΝ 320 Διδάσκων: Επίκουρος Καθηγητής Ιωάννης Α. Βενέτης Διάρκεια

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

Η αρχική γραμμή του εισοδηματικού περιορισμού είναι: Η νέα γραμμή του εισοδηματικού περιορισμού είναι: wt + V w

Η αρχική γραμμή του εισοδηματικού περιορισμού είναι: Η νέα γραμμή του εισοδηματικού περιορισμού είναι: wt + V w Επιπτώσεις μιας Μεταβολής του Εισοδήματος (V) που δεν προέρχεται από Εργασία - Κανονικά και Κατώτερα Αγαθά (i) Αν η ζήτηση ενός αγαθού αυξάνεται καθώς αυξάνεται το εισόδημα του ατόμου, τότε το αγαθό ονομάζεται

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος.

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. :\Documens and Seings\kpig\Deskop\basikh askhsh aaaa.doc ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΞΕΙΔΙΚΕΥΣΗ-ΕΚΤΙΜΗΣΗ-ΑΝΑΛΥΣΗ- ΠΡΟΒΛΕΨΗ- ΣΕΝΑΡΙΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Συνάρτηση παραγωγής εκπαιδευτικού αποτελέσματος

Συνάρτηση παραγωγής εκπαιδευτικού αποτελέσματος Συνάρτηση παραγωγής εκπαιδευτικού αποτελέσματος Τι γνωρίζουμε; Συνάρτηση παραγωγής Μεγιστοποίηση κερδών Συνάρτηση παραγωγής Y = f(x 1, x 2 ) (27) π = f(x 1, x 2 ) p 1 x 1 p 2 x 2 (28) Για δεδομένες ποσότητες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Economics of education)

ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Economics of education) ΟΡΙΣΜΟΣ Η οικονομική αντιμετώπιση των φαινομένων που απασχολούν την παιδαγωγική-εκπαιδευτική διαδικασία ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Economcs of educaton) ΜΙΑ ΠΟΣΟΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Αθανάσιος Κατσής Τμήμα

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή 2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία

Διαβάστε περισσότερα

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην

Διαβάστε περισσότερα

Εναλλακτικά του πειράματος

Εναλλακτικά του πειράματος Θετική και δεοντολογική προσέγγιση Διάλεξη 2 Εργαλεία θετικής ανάλυσης Ή Γιατί είναι τόσο δύσκολο να πούμε τι συμβαίνει; Η θετική ανάλυση εξετάζει τι υπάρχει και ποιες οι συνέπειες μιας πολιτικής, χωρίς

Διαβάστε περισσότερα

Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών. Οικονομικά της Εκπαιδευσης. Ακαδημαικό έτος 2013-2014. Διδάσκων: Νίκος Γιαννακόπουλος

Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών. Οικονομικά της Εκπαιδευσης. Ακαδημαικό έτος 2013-2014. Διδάσκων: Νίκος Γιαννακόπουλος Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Οικονομικά της Εκπαιδευσης Ακαδημαικό έτος 2013-2014 Διδάσκων: Νίκος Γιαννακόπουλος Εισαγωγικά Οικονομική επιστημη και εκπαίδευση Τα οικονομικά της εκπαίδευσης

Διαβάστε περισσότερα

Διάλεξη 2. Εργαλεία θετικής ανάλυσης Ή Γιατί είναι τόσο δύσκολο να πούμε τι συμβαίνει; Ράπανος-Καπλάνογλου 2016/7

Διάλεξη 2. Εργαλεία θετικής ανάλυσης Ή Γιατί είναι τόσο δύσκολο να πούμε τι συμβαίνει; Ράπανος-Καπλάνογλου 2016/7 Διάλεξη 2 Εργαλεία θετικής ανάλυσης Ή Γιατί είναι τόσο δύσκολο να πούμε τι συμβαίνει; 1 Ράπανος-Καπλάνογλου 2016/7 Θετική και δεοντολογική προσέγγιση Η θετική ανάλυση εξετάζει τι υπάρχει και ποιες οι συνέπειες

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

Ζήτηση για εκπαιδευση

Ζήτηση για εκπαιδευση Ζήτηση για εκπαιδευση Έστω, ότι η ζωή ενός ατόμου i, i = 1,, n, χωρίζεται σε δυο περιόδους, t και t + 1. Η πρώτη περίοδος αφορά την εφηβεία και η δεύτερη περίοδος αφορά την ενηλικίωση. Το άτομο αφιερώνει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 5 1. (4 μονάδες) α). Θεωρούμε τη σχέση = 3. Να εκτιμηθεί η ποσοστιαία μεταβολή του που θα προκαλέσει μείωση του κατά 1% από την αρχική τιμή =. β). Να διαπιστωθεί ότι η συνάρτηση () =

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Σφάλµα εξειδικεύσεως Αν η υπόθεση Α.1 ισχύει, τότε το υπόδειγµα παλινδρόµησης είναι σωστά εξειδικευµένο

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Β = 2W, αντίστοιχα. Βρείτε ποιος είναι ο μισθός ισορροπίας και το επίπεδο απασχόλησης στην ισορροπία σε καθέναν κλάδο της οικονομίας.

Β = 2W, αντίστοιχα. Βρείτε ποιος είναι ο μισθός ισορροπίας και το επίπεδο απασχόλησης στην ισορροπία σε καθέναν κλάδο της οικονομίας. Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Μάθημα: Οικονομική της Εργασίας Εξετάσεις Ιούνιος 2014 Διδάσκων: Νίκος Γιαννακόπουλος, Επίκουρος Καθηγητής 1. (0,10 μονάδες) Εάν ο αριθμός των ανέργων ισούται

Διαβάστε περισσότερα

ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ

ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Κεφάλαιο 3 ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Εισαγωγή Ένα από τα βασικά συμπεράσματα του απλού νεοκλασικού υποδείγματος οικονομικής μεγέθυνσης, που παρουσιάστηκε στο Κεφάλαιο, είναι ότι δεν μπορεί

Διαβάστε περισσότερα

Η αγορά δασκάλων 101

Η αγορά δασκάλων 101 Η αγορά δασκάλων Η αγορά δασκάλων Τα νούμερα των δασκάλων στην Ελλάδα, 2012 Βαθμίδα Σύνολο Άνδρες Γυναίκες Νηπιαγωγείο 14018 162 13856 % [100.0] [1.00] [99.0] Δημοτικό 67314 20565 46749 % [100.0] [31.0]

Διαβάστε περισσότερα

Υποδείγματα Ενδογενούς Οικονομικής Μεγέθυνσης. Εξωτερικότητες από τη Συσσώρευση Φυσικού Κεφαλαίου στην Αποδοτικότητα της Εργασίας

Υποδείγματα Ενδογενούς Οικονομικής Μεγέθυνσης. Εξωτερικότητες από τη Συσσώρευση Φυσικού Κεφαλαίου στην Αποδοτικότητα της Εργασίας Υποδείγματα Ενδογενούς Οικονομικής Μεγέθυνσης Εξωτερικότητες από τη Συσσώρευση Φυσικού Κεφαλαίου στην Αποδοτικότητα της Εργασίας Εκμάθηση από την Εμπειρία και Συσσώρευση Κεφαλαίου η τεχνολογική πρόοδος

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Θα εξεταστούν μόνο οι περιπτώσεις των ψευδομεταβλητών που χρησιμοποιούνται σαν ανεξάρτητες μεταβλητές

Θα εξεταστούν μόνο οι περιπτώσεις των ψευδομεταβλητών που χρησιμοποιούνται σαν ανεξάρτητες μεταβλητές Όταν ένα μέγεθος είναι αδύνατο να ποσοτικοποιηθεί αλλά πρέπει οπωσδήποτε να χρησιμοποιηθεί σε ένα υπόδειγμα προσεγγίζεται συνήθως με μια μεταβλητή η οποία ονομάζεται ποιοτική μεταβλητή ή ψευδομεταβλητή.

Διαβάστε περισσότερα

Θέμα: Ενδεικτικό Θέμα εξετάσεων: Μέτρα θέσης Παλινδρόμηση

Θέμα: Ενδεικτικό Θέμα εξετάσεων: Μέτρα θέσης Παλινδρόμηση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr TECHNOLOGICAL

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Υπεύθυνος μαθήματος Καθηγητής Μιχαήλ Ζουμπουλάκης

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Υπεύθυνος μαθήματος Καθηγητής Μιχαήλ Ζουμπουλάκης 1 ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Υπεύθυνος μαθήματος Καθηγητής Μιχαήλ Ζουμπουλάκης Μικροοικονομική ανάλυση 2 Η μέθοδος της «αφαίρεσης» και η μελέτη της οικονομικής συμπεριφοράς Τα άτομα ενεργούν σκόπιμα επιδιώκοντας

Διαβάστε περισσότερα

Εργαστήριο Δημογραφικών & Κοινωνικών Αναλύσεων

Εργαστήριο Δημογραφικών & Κοινωνικών Αναλύσεων Το κείμενο που ακολουθεί είναι απόσπασμα από το βιβλίο του Β. Κοτζαμάνη, Στοιχεία Δημογραφίας, Πανεπιστημιακές Εκδόσεις Θεσσαλίας, Βόλος, 9, σσ. 95-99. IV.5 Υποδείγματα πληθυσμού: στάσιμος και σταθερός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΤΑΥΤΟΧΡΟΝΩΝ (ΑΛΛΗΛΟΕΞΑΡΤΗΜΕΝΩΝ) ΕΞΙΣΩΣΕΩΝ

ΚΕΦΑΛΑΙΟ 9 ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΤΑΥΤΟΧΡΟΝΩΝ (ΑΛΛΗΛΟΕΞΑΡΤΗΜΕΝΩΝ) ΕΞΙΣΩΣΕΩΝ ΚΕΦΑΛΑΙΟ 9 ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΤΑΥΤΟΧΡΟΝΩΝ (ΑΛΛΗΛΟΕΞΑΡΤΗΜΕΝΩΝ) ΕΞΙΣΩΣΕΩΝ Μέχρι τώρα η μελέτη μας επικεντρώθηκε σε οικονομικά υποδείγματα μιας εξισώσεως, όπου έχουμε πάντα μια εξαρτημένη

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων

Διαβάστε περισσότερα

Πόροι και Διεθνές Εμπόριο. Το Υπόδειγμα των Heckscher Ohlin

Πόροι και Διεθνές Εμπόριο. Το Υπόδειγμα των Heckscher Ohlin Πόροι και Διεθνές Εμπόριο Το Υπόδειγμα των Heckscher Ohlin Το Υπόδειγμα Heckscher Ohlin Η θεωρία των Heckscher Ohlin υποθέτει ότι όλοι οι συντελεστές παραγωγής μπορούν να μετακινηθούν μεταξύ των διαφόρων

Διαβάστε περισσότερα

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης 3. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ (ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ). ΠΡΟΣΦΟΡΑ ΕΡΓΑΣΙΑΣ Ως προσφορά εργασίας ορίζεται το σύνολο των ωρών εργασίας που προσφέρονται προς εκμίσθωση μία δεδομένη χρονική στιγμή.

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

Πόροι και Διεθνές Εμπόριο. Το Υπόδειγμα των Heckscher Ohlin

Πόροι και Διεθνές Εμπόριο. Το Υπόδειγμα των Heckscher Ohlin Πόροι και Διεθνές Εμπόριο Το Υπόδειγμα των Heckscher Ohlin Καθ. Γ. Αλογοσκούφης, Διεθνής Οικονομική και Παγκόσμια Οικονομία, 2014 Το Υπόδειγμα Heckscher Ohlin Η θεωρία των Heckscher Ohlin υποθέτει ότι

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής -H πλευρά της προσφοράς στην οικονομία μελετάει τη διαδικασία παραγωγής των αγαθών και υπηρεσιών που καταναλώνονται από τα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ 8. ΕΙΣΑΓΩΓΗ Μέχρι τώρα τα προβλήματα που δημιουργούνται από την παραβίαση των υποθέσεων που πρέπει να ισχύουν ώστε οι OLS εκτιμητές να είναι BLUE

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αρ. Απάντηση Αρ. Απάντηση Ερώτησης 1. A 6. C 2. C 7. A 3. A 8. E 4. B 9. A 5. E 10. C

ΑΠΑΝΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αρ. Απάντηση Αρ. Απάντηση Ερώτησης 1. A 6. C 2. C 7. A 3. A 8. E 4. B 9. A 5. E 10. C Διάρκεια Εξέτασης: 10 Παρακαλώ να απαντήσετε σε όλα τα ερωτήματα. Απαντήστε με σαφήνεια και σε περίπτωση που χρησιμοποιήσετε διαγράμματα φροντίστε να είναι ευανάγνωστα και πλήρη. Κατανείμετε ανάλογα το

Διαβάστε περισσότερα

Υποδείγματα Συσσώρευσης Ανθρωπίνου Κεφαλαίου, Ιδεών και Καινοτομιών και Ενδογενούς Μεγέθυνσης

Υποδείγματα Συσσώρευσης Ανθρωπίνου Κεφαλαίου, Ιδεών και Καινοτομιών και Ενδογενούς Μεγέθυνσης Υποδείγματα Συσσώρευσης Ανθρωπίνου Κεφαλαίου, Ιδεών και Καινοτομιών και Ενδογενούς Μεγέθυνσης Εξωτερικότητες από τη Συσσώρευση Φυσικού Κεφαλαίου, Συσσώρευση Ανθρωπίνου Κεφαλαίου, και Παραγωγή Νέων Ιδεών

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το εισόδημα Y, σύμφωνα με την σχέση: = P Y. Αν η τιμή αυξηθεί κατά %, να εκτιμηθεί πόσο πρέπει να

Διαβάστε περισσότερα

Μικροοικονομική Ι. Ενότητα # 7: Αγορά εργασίας Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Μικροοικονομική Ι. Ενότητα # 7: Αγορά εργασίας Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Μικροοικονομική Ι Ενότητα # 7: Αγορά εργασίας Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ 1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ Το διάγραμμα κυκλικής ροής της οικονομίας (κεφ. 3, σελ. 100 Mankiw) Εισόδημα Υ Ιδιωτική αποταμίευση S Αγορά συντελεστών Αγορά χρήματος Πληρωμές συντελεστών

Διαβάστε περισσότερα

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1 Philip McCann Αστική και περιφερειακή οικονομική 2 η έκδοση Chapter 1 Κεφάλαιο 1 Χωροθέτηση δραστηριοτήτων Περιεχόμενα διάλεξης Υπόδειγμα για τη χωροθέτηση της παραγωγής Weber και Moses Ανάλυση της περιοχής

Διαβάστε περισσότερα

Το Υπόδειγμα του Αντιπροσωπευτικού Νοικοκυριού

Το Υπόδειγμα του Αντιπροσωπευτικού Νοικοκυριού Το Υπόδειγμα του Αντιπροσωπευτικού Νοικοκυριού Ramsey-Cass-Koopmans 1 Το Υπόδειγμα του Ramsey To υπόδειγμα αντιπροσωπευτικού νοικοκυριού oφείλεται στον Ramsey (1928), ο οποίος είχε πρώτος αναλύσει τη βέλτιστη

Διαβάστε περισσότερα

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Τρίτη, 3 Ιουνίου 2008 ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Ονοµατεπώνυµο : Σίσκου Σταµατίνα Ειρήνη. Υπεύθυνοςκαθηγητής: ΑναστάσιοςΒ. Κάτος. Θεσσαλονίκη, Ιανουάριος 2010

Ονοµατεπώνυµο : Σίσκου Σταµατίνα Ειρήνη. Υπεύθυνοςκαθηγητής: ΑναστάσιοςΒ. Κάτος. Θεσσαλονίκη, Ιανουάριος 2010 Π.Μ.Σ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ο προσδιορισµός του επιπέδου της ιδιωτικής κατανάλωσης, των επενδύσεων και των συνολικών εισαγωγών. Mία εµπειρική µελέτη για την Νορβηγία, την

Διαβάστε περισσότερα

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών Καθ. Γιώργος Αλογοσκούφης Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Η Κεϋνσιανή Προσέγγιση Η πιο διαδεδομένη

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Δίνεται η συνάρτηση με τύπο: 7. f ( x) x x x, x α. Να βρείτε τη μονοτονία της συνάρτησης καθώς και τις θέσεις και το είδος των τοπικών ακρότατων που παρουσιάζει.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει το άτομο (i =,,n). - Πρόβλημα καταναλωτή: Κάθε άτομο (καταναλωτής)

Διαβάστε περισσότερα

Α.4 Η καμπύλη ζήτησης με ελαστικότητα ζήτησης ίση με το μηδέν σε όλα τα σημεία της είναι ευθεία παράλληλη προς τον άξονα των ποσοτήτων.

Α.4 Η καμπύλη ζήτησης με ελαστικότητα ζήτησης ίση με το μηδέν σε όλα τα σημεία της είναι ευθεία παράλληλη προς τον άξονα των ποσοτήτων. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

Κεφάλαιο 3. Παραγωγικότητα της εργασίας και συγκριτικό πλεονέκτημα: Το Ρικαρδιανό υπόδειγμα

Κεφάλαιο 3. Παραγωγικότητα της εργασίας και συγκριτικό πλεονέκτημα: Το Ρικαρδιανό υπόδειγμα Κεφάλαιο 3 Παραγωγικότητα της εργασίας και συγκριτικό πλεονέκτημα: Το Ρικαρδιανό υπόδειγμα Συγκριτικό πλεονέκτημα και κόστος ευκαιρίας Το Ρικαρδιανό υπόδειγμα χρησιμοποιεί τις έννοιες του κόστους ευκαιρίας

Διαβάστε περισσότερα

Χρήμα και Οικονομική Μεγέθυνση. Προσφορά Χρήματος, Πληθωρισμός και Οικονομική Μεγέθυνση

Χρήμα και Οικονομική Μεγέθυνση. Προσφορά Χρήματος, Πληθωρισμός και Οικονομική Μεγέθυνση Χρήμα και Οικονομική Μεγέθυνση Προσφορά Χρήματος, Πληθωρισμός και Οικονομική Μεγέθυνση Η Ζήτηση Χρήματος Αρχικά αναλύουμε ένα υπόδειγμα αντιπροσωπευτικού νοικοκυριού στο οποίο το χρήμα εισέρχεται στη συνάρτηση

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

Έλεγχος των Phillips Perron

Έλεγχος των Phillips Perron ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ Α Για τις προτάσεις από Α.1 μέχρι και Α.5 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

1 Μερική παραγώγιση και μερική παράγωγος

1 Μερική παραγώγιση και μερική παράγωγος Περίγραμμα διάλεξης 5 Βιβλίο Chiang και Wainwright (κεφ 74,75,76) 1 Μερική παραγώγιση και μερική παράγωγος Έστω η συνάρτηση (x) όπου x R ή εναλλακτικά γράφουμε ( 1 2 ) Το διάνυσμα x περιέχει τις ανεξάρτητες

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Af(x) = και Mf(x) = f (x) x

Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,

Διαβάστε περισσότερα

Εξειδικευμένοι Συντελεστές Παραγωγής και Διανομή του Εισοδήματος. Το Υπόδειγμα των Jones και Samuelson

Εξειδικευμένοι Συντελεστές Παραγωγής και Διανομή του Εισοδήματος. Το Υπόδειγμα των Jones και Samuelson Εξειδικευμένοι Συντελεστές Παραγωγής και Διανομή του Εισοδήματος Το Υπόδειγμα των Jones και Samuelson Διεθνές Εμπόριο και Διανομή του Εισοδήματος Υπάρχουν δύο βασικοί λόγοι για τους οποίους το διεθνές

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Τι είναι η Οικονομική Επιστήμη; Κατανομή ΑΕΠ σε επιλεγμένες χώρες. Παράδειγμα πρώτο Μεταβολή της τιμής του πετρελαίου

Τι είναι η Οικονομική Επιστήμη; Κατανομή ΑΕΠ σε επιλεγμένες χώρες. Παράδειγμα πρώτο Μεταβολή της τιμής του πετρελαίου Τι είναι η Οικονομική Επιστήμη; Η ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ είναι η μελέτη του πως η κοινωνία αποφασίζει: ΤΙ, ΠΩΣ και ΓΙΑ ΠΟΙΟΝ θα παράγει. Αγαθά υπηρεσίες Περιορισμένοι πόροι Συμπεριφορά των ατόμων Κοινωνική

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Ανάλυση Διακριτών Επιλογών

Ανάλυση και Σχεδιασμός Μεταφορών Ι Ανάλυση Διακριτών Επιλογών Ανάλυση Διακριτών Επιλογών Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος Πάτρα, 2017 Περιεχόμενα Αθροιστικά μοντέλα Εξατομικευμένα μοντέλα Μοντέλα Διακριτών Μεταβλητών Θεωρία Μεγιστοποίησης

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Σωστό, Λάθος, Ο νόμος της φθίνουσας η μη ανάλογης απόδοσης:

ΘΕΜΑ 1ο Σωστό, Λάθος, Ο νόμος της φθίνουσας η μη ανάλογης απόδοσης: ΘΕΜΑ 1ο Για τις προτάσεις από 1 μέχρι και 15 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό τη λέξη Σωστό, αν η πρόταση είναι σωστή, και Λάθος, αν η πρόταση είναι λανθασμένη

Διαβάστε περισσότερα

f(x) Af(x) = και Mf(x) = f (x) x

f(x) Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων, τα γραφήματα

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Γένεση Μετακινήσεων

Ανάλυση και Σχεδιασμός Μεταφορών Ι Γένεση Μετακινήσεων Γένεση Μετακινήσεων Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Εισαγωγή Αθροιστικά μοντέλα (Aggregate models) Ανάλυση κατά ζώνη πόσες μετακινήσεις ξεκινούν

Διαβάστε περισσότερα