Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
|
|
- Αμάραντος Βέργας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
2 Ουρά Προτεραιότητας Η δομή δεδομένων Ουρά (Queue) υποστηρίζει FIFO (first-in first-out) στρατηγική για εισαγωγές και διαγραφές στοιχείων. Σε διάφορες εφαρμογές, όμως, υπάρχει η ανάγκη επιλογής στοιχείων από κάποιο σύνολο σύμφωνα με κάποια σειρά προτεραιότητας (π.χ., σε λειτουργικά συστήματα). Σε ουρές προτεραιότητας κύρια σημασία έχει η προτεραιότητα του κάθε στοιχείου, πρώτο βγαίνει πάντα το στοιχείο με τη μεγαλύτερη προτεραιότητα. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2
3 Ουρά Προτεραιότητας (συν.) Ουρά Προτεραιότητας Ο ΑΤΔ ουρά προτεραιότητας ορίζεται ως μια ακολουθία στοιχείων συνοδευόμενη από τις πράξεις: Delete_Min*: Διαγράφει το ελάχιστο στοιχείο Θεωρούμε ότι το μικρότερο κλειδί έχει τη μεγαλύτερη προτεραιότητα Insert: Εισάγει ένα καινούριο στοιχείο ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 3
4 Υλοποίηση Ουράς Προτεραιότητας Πιθανές υλοποιήσεις: 1. Συνδεδεμένη λίστα Insert: Ο(1), Delete_Min: O(n) 2. Ταξινομημένη συνδεδεμένη λίστα Insert: Ο(n), Delete_Min: O(1) 3. Δυαδικό δένδρο αναζήτησης Insert, Delete_Min: O(log n) Ερώτηση: Υπάρχει καλύτερη υλοποίηση; Ναι, μια ενδιαφέρουσα τάξη δυαδικών δένδρων, οι σωροί. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4
5 Ο ΑΤΔ Σωρός Σωρός ελαχίστων (MinHeap) είναι ένα δυαδικό δένδρο που ικανοποιεί: δομική ιδιότητα: είναι πλήρες ιδιότητα σειράς: το κλειδί ενός κόμβου είναι μικρότερο από τα κλειδιά των παιδιών του Σε κάθε υπόδενδρο, το μικρότερο στοιχείο βρίσκεται στη ρίζα. Δεν υπάρχει καμιά σχέση μεταξύ κλειδιών αδελφών. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5
6 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 6 Πλήρη Δυαδικά Δέντρα Σε ένα πλήρες δυαδικό δένδρο, στο επίπεδο k υπάρχουν το πολύ 2 k-1 κόμβοι. Σε ένα πλήρες δυαδικό δένδρο ύψους h όλα τα επίπεδα μέχρι το h-οστό είναι εντελώς γεμάτα, και το επίπεδο h+1 είναι γεμάτο από τα αριστερά στα δεξιά. Ο αριθμός των κόμβων μέχρι το επίπεδο h δίνεται από το άθροισμα h 2 (i 1) = 2 h 1 i=1 Επομένως, ένα πλήρες δένδρο ύψους h έχει μεταξύ 2 h και 2 h+1 1 κόμβους. Ένα πλήρες δένδρο με n κόμβους έχει ύψος Ο(log n).
7 Υλοποίηση με πίνακες Ένα πλήρες δυαδικό δένδρο μπορεί να αποθηκευτεί σε πίνακα ως εξής: στη θέση 1 βάζουμε το στοιχείο της ρίζας αν κάποιος κόμβος u βρίσκεται στη θέση i, τότε τοποθετούμε το αριστερό του παιδί στη θέση 2i, και το δεξιό του παιδί στη θέση 2i +1. Ο πατέρας ενός κόμβου στη θέση i (εκτός από τη ρίζα) βρίσκεται στη θέση i/2. Πλεονέκτημα: Δεν χρειάζονται δείκτες, έτσι εξοικονομούμε μνήμη και έχουμε πιο απλές διαδικασίες. Μειονέκτημα: πρέπει να γνωρίζουμε από την αρχή το μέγιστο μέγεθος του σωρού. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 7
8 Παράδειγμα αναπαράστασης σωρού ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι Θέση Στοιχείο
9 Παράδειγμα αναπαράστασης σωρού ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 9 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Θέση Στοιχείο 0 Α Β Γ Δ Ε Ζ Η Θ Ι Κ
10 Υλοποίηση Σωρού Ένας σωρός μπορεί να υλοποιηθεί ως μια εγγραφή Ηeap με τρία πεδία: 1. size (τύπου int): αποθηκεύει το μέγεθος του σωρού. 2. maxsize (τύπου int): το μέγιστο μέγεθος του πίνακα, 3. contents (τύπου πίνακα): τα στοιχεία του σωρού. Αυτή η δομή θα πρέπει να υποστηρίζει τις πράξεις: makeεmpty, isempty, isfull, insert, deletemin. public class Heap { } } private int contents[]; private int size; private int maxsize; public Heap(int n) { this.contents = new int[n]; this.size = 0; this.maxsize = n-1; public boolean isempty(){ return this.size==0; } public boolean isfull(){ return this.size==this.maxsize; } ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 10
11 Εισαγωγή κόμβου Σε ένα πλήρες δυαδικό δένδρο υπάρχει μία μόνο θέση όπου μπορεί να εισαχθεί κόμβος και η εισαγωγή να διατηρήσει το δένδρο πλήρες. Αυτή η θέση είναι η πιο δεξιά στο τελευταίο επίπεδο του δένδρου, και αντιστοιχεί στη θέση size+1 του πίνακα. Για να εισάγουμε ένα κλειδί k σε ένα σωρό σκεφτόμαστε ως εξής: Πιθανόν το k να μην μπορεί να μπει στην κενή θέση size+1, γιατί μια τέτοια εισαγωγή να παραβιάζει τη δεύτερη ιδιότητα του σωρού. Έστω ότι η κενή θέση είναι η x, o πατέρας αυτής της θέσης είναι ο u, και k είναι το κλειδί του u. Τότε εφαρμόζουμε τα εξής: 1. αν k>k, ή, η θέση x αντιστοιχεί στη ρίζα, τότε contents[x] = k 2. αν k<k, τότε βάλε το k στη θέση x, και ανάλαβε να γεμίσεις τη θέση u, δηλαδή contents[x] =k ; x=u; και 3. επανάλαβε τη διαδικασία. Αυτή η διαδικασία σύγκρισης με τον πατρικό κόμβο και αναρρίχησης μπορεί να συνεχιστεί μέχρι τη ρίζα του δένδρου. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 11
12 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 12 Σωρός με Στατική Δέσμευση Μνήμης: Υλοποίηση Συνάρτηση public void insert(int k); : public void insert(int k) { if (this.size < this.maxsize) { int index = this.size + 1; while (index > 1 && this.contents[(index / 2)] > k) { this.contents[index] = this.contents[(index / 2)]; index = index / 2; } this.contents[index] = k; this.size++; } } this.contents[0] = this.size;
13 Παράδειγμα 1: Εισαγωγή σε Σωρό ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι Insert <29 Move 29 3 root=3 32 3< Move
14 Παράδειγμα 2: Εισαγωγή σε Σωρό ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι Insert <29 Move > Save
15 Διαγραφή Ελάχιστου Στοιχείου Το ελάχιστο στοιχείο βρίσκεται πάντοτε στην κορυφή και η διαγραφή του προκαλεί μια κενή θέση στη ρίζα. Θα πρέπει να κατεβάσουμε αυτή την κενή θέση προς τα κάτω και δεξιά. Σε κάθε βήμα ελέγχουμε τα παιδιά της εκάστοτε κενής θέσης. Έστω ότι x είναι η κενή θέση: 1. Αν το κλειδί που βρίσκεται στην τελευταία θέση του σωρού είναι μικρότερο από τα κλειδιά των παιδιών του x τότε μεταφέρουμε το κλειδί αυτό στην κενή θέση και μειώνουμε το μέγεθος του σωρού contents [x] = contents [size]; size--; και τερματίζουμε τη διαδικασία. 2. Διαφορετικά, διαλέγουμε το παιδί u του x το οποίο έχει το μικρότερο κλειδί, μεταφέρουμε το κλειδί του u στο x και κάνουμε κενή θέση τη u: contents[x] = u; x = u 3. Eπαναλαμβάνουμε τη διαδικασία. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 15
16 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 16 Σωρός με Στατική Δέσμευση Μνήμης: Υλοποίηση Συνάρτηση public int deletemin() : public int deletemin() { int min = 0, last; int x = 1, child = 0; } if (!isempty()) { min = this.contents[1]; last = this.contents[this.size]; this.size--; this.contents[0] = this.size; while ((x * 2) <= this.size) { child = x * 2; if (child!= this.size && this.contents[child + 1] < this.contents[child]) child++; if (last > this.contents[child]) { this.contents[x] = this.contents[child]; x = child; } else break; } this.contents[x] = last; } return min;
17 Παράδειγμα 3: Εξαγωγή από Σωρό 3 Delete Min Last 28 22< 22:Move up Last Decrease Size <44, Last>26 26:Move up Reached Leaf Set to last ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 17
18 Παράδειγμα 4: Εξαγωγή από Σωρό 3 Delete Min Last 22< 22:Move up 22 Decrease Size Last <109, Last<104 Last:Move up BREAK ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 18
19 Μερικά Σχόλια Ο χρόνος εκτέλεσης των διαδικασιών InsertHeap και DeleteMin είναι της τάξης O(h) δηλαδή Ο(log n). (h: ύψος, n: αριθμός κόμβων) Ποιο είναι το όφελος της δομής σε σύγκριση με δυαδικά δένδρα αναζήτησης; Οι σωροί χρησιμοποιούνται ευρέως σε λειτουργικά συστήματα, συστήματα όπου γίνεται διαμερισμός του χρόνου του υπολογιστή σε > 1 εργασίες (task scheduling) και σε μεταγλωττιστές. Συμμετρικά, μπορούμε να ορίσουμε τη δομή maxheap, όπου η ρίζα περιέχει το μέγιστο στοιχείο. Εκτός από δυαδικούς σωρούς, μπορούμε να ορίσουμε τους δ-σωρούς (d-heaps), όπου κάθε κόμβος έχει d παιδιά. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 19
20 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 20 Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα - Παραλλαγές Σωρών
21 Διαδικασία Καθόδου PercolateDown Έστω ένας πίνακας Α[1..n] και μια τιμή i, θα ορίσουμε διαδικασία PercoladeDown(i), η οποία μετακινεί το στοιχείο Α[i] μέσα στον σωρό προς τα κάτω όσο χρειάζεται. Έστω ότι Α[i] = k. Θεωρούμε πως η i είναι άδεια θέση. Αν η άδεια θέση έχει παιδί που περιέχει στοιχείο μικρότερο του k και x είναι το μικρότερο τέτοιο παιδί, τότε μετακινούμε το στοιχείο του x στην κενή θέση και μετακινούμε την κενή θέση στο x. Επαναλαμβάνουμε την ίδια διαδικασία μέχρι τη στιγμή που η κενή θέση δεν έχει παιδιά με στοιχεία μικρότερα του k. Τότε αποθηκεύουμε το k στην θέση αυτή. Ο χρόνος εκτέλεσης είναι ανάλογος του ύψους του κόμβου που αντιστοιχεί στη θέση i του σωρού. Δηλαδή, στη χείριστη περίπτωση, όπου i=n, Ο(lg n). ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 21
22 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 22 Διαδικασία Καθόδου PercolateDown (συν.) Μη αναδρομική διαδικασία PercolateDown public static void PercolateDown(int A[], int n, int i) { int k = A[i]; int j; } while (2 * i <= n) { j = 2 * i; if (j < n && A[j + 1] < A[j]) j++; if (k > A[j]) { A[i] = A[j]; i = j; } else break; } A[i] = k;
23 Παράδειγμα Εκτέλεσης PercolateDown int A[]={-1, 13, 8, 15, 4, 7, 20, 18, 5, 2}; i=2, n=9, PercolateDown(A, 9, 2); k=8 Aν φανταστούμε τον πίνακα σαν δυαδικό δέντρο ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 23
24 Διαδικασία DeleteMin (2) Αφαιρούμε το στοιχείο της ρίζας (είναι το μικρότερο κλειδί του σωρού). Μεταφέρουμε το τελευταίο κλειδί στη ρίζα, και εφαρμόζουμε τη διαδικασία PercoladeDown(A, n, 1): public static int deletemin(heap h) { int min = 0; int swap = 0; if (!h.isempty()) { min = h.contents[1]; // swap(contents[1],contents[size]) swap = h.contents[1]; h.contents[1] = h.contents[h.size]; h.contents[h.size] = swap; h.size--; PercolateDown(h.contents, h.size, 1); } return min; } Χρόνος Εκτέλεσης: O(h) = Ο(log n) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 24
25 Παράδειγμα DeleteMin(2) 3 Delete Min Swap with last 28 Percolate Down <, 28>22 22: Move up 22 26<44, 28>26 26: Move up break Set to 28 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 25
26 Από πίνακες σε σωρούς Έστω πίνακας Α[1..n]. Μπορούμε να θεωρήσουμε τον πίνακα ως ένα πλήρες δυαδικό δένδρο με n κόμβους. Αν για μια τιμή i το αριστερό και το δεξί υπόδενδρο του i ικανοποιούν τις ιδιότητες ενός σωρού, τότε, αν καλέσουμε τη διαδικασία PercolateDown(A, n, i) θα έχουμε σαν αποτέλεσμα το υπόδενδρο που ριζώνει στη θέση i να ικανοποιεί τις ιδιότητες ενός σωρού. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 26
27 Κτίσιμο σωρού από ένα πίνακα Μπορούμε να μετατρέψουμε ένα πίνακα Α[1..n] σε ένα σωρό με διαδοχική εφαρμογή της διαδικασίας PercoladeDown() από κάτω προς τα πάνω. Παρατήρηση: οι θέσεις > n/2 αντιστοιχούν σε φύλλα. public static void BuildHeap(int A[], int n) { for (int i = n / 2; i > 0; i--) PercolateDown(A, n, i); } Ορθότητα (αποδεικνύεται με τη μέθοδο της επαγωγής): μετά από την εφαρμογή της διαδικασίας PercoladeDown(A,n,i), τα υπόδενδρα που ριζώνουν στις θέσεις i,..., n, ικανοποιούν τις ιδιότητες σωρού. Ανάλυση του Χρόνου Εκτέλεσης: Ο ολικός χρόνος εκτέλεσης είναι ανάλογος του αθροίσματος των υψών όλων των εσωτερικών κόμβων, το οποίο είναι Ο(n). ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι
28 Τι κάνει ο πιο κάτω αλγόριθμος; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 28 public static void mystery(int A[], int n) { BuildHeap(A, n); int swap; for (int i = n; i > 1; i--) { // swap (A[1], A[i]); swap = A[1]; A[1] = A[i]; A[i] = swap; PercolateDown(A, i - 1, 1); } }
29 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 29 Παράδειγμα Εκτέλεσης Διαδικασίας mystery Είσοδος, Α={ -(6)-, 34, 8, 64, 57, 32, 21} Μετά την εκτέλεση της γραμμής BuildHeap
30 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 30 Παράδειγμα Εκτέλεσης Διαδικασίας mystery Μετά από την πρώτη επανάληψη του for Μετά από την δεύτερη επανάληψη του for
31 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 31 Παράδειγμα Εκτέλεσης Διαδικασίας mystery Μετά από την τρίτη επανάληψη του for Μετά από την τέταρτη επανάληψη του for
32 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 32 Παράδειγμα Εκτέλεσης Διαδικασίας mystery Μετά από την πέμπτη επανάληψη του for Σε επίπεδο πίνακα
33 Ο αλγόριθμος ταξινόμησης HeapSort H διαδικασία mystery ταξινομεί ένα πίνακα σε φθίνουσα σειρά. Αρχικά δημιουργεί ένα σωρό σε χρόνο Ο(n). Στη συνέχεια επαναλαμβάνει το εξής: αφαιρεί το μικρότερο στοιχείο (της ρίζας του σωρού) και το μετακινεί στο τέλος (εκτελεί την PercolateDown). Κάθε εκτέλεση της PercoladeDown χρειάζεται χρόνο της τάξης Ο(log n). Ολικός Χρόνος Εκτέλεσης: Ο(n log n) O αλγόριθμος ονομάζεται Heapsort Μπορούμε εύκολα να αλλάξουμε τον κώδικα ώστε να επιστρέφεται η λίστα σε αύξουσα σειρά. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 33
34 Άλλες διαδικασίες σε σωρούς Παρόλο που εύρεση του ελάχιστου κλειδιού σε ένα σωρό μπορεί να πραγματοποιηθεί σε σταθερό χρόνο, η εύρεση τυχαίου στοιχείου στη χειρότερη περίπτωση επιβάλλει διερεύνηση ολόκληρης της δομής (δηλαδή, είναι της τάξης Ο(n)). Αν όμως γνωρίζουμε τη θέση στοιχείων με κάποιο άλλο τρόπο, διαδικασίες σε σωρούς πραγματοποιούνται εύκολα, π.χ. οι πιο κάτω εκτελούνται σε χρόνο λογαριθμικό. Increase_Key(P,Δ), αυξάνει την προτεραιότητα του κλειδιού P, κατά Δ. Χρησιμοποιείται από χειριστές λειτουργικών συστημάτων για αύξηση της προτεραιότητας σημαντικών διεργασιών. Η συμμετρική διαδικασία Decrease_Key(P,Δ) συχνά εκτελείται αυτόματα σε λειτουργικά συστήματα σε περίπτωση που κάποια δουλειά χρησιμοποιεί υπερβολικά μεγάλη ποσότητα χρόνου του CPU. Remove(I), αφαιρεί τον κόμβο της θέσης Ι (χρήσιμη σε περίπτωση τερματισμού διαδικασίας). ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 34
35 Συγχώνευση Σωρών (Merge Heap) Υποθέστε την ύπαρξη των δυαδικών σωρών h1 και h2. Πως μπορούν να συγχωνευτούν σε ένα καινούριο σωρό h; Προσπάθεια Α: Πρόσθεσε όλα τα στοιχεία του σωρού h1 στον h2. Χρόνος Εκτέλεσης; Προσπάθεια Β: Βρες τον πιο μικρό από τους δύο σωρούς (έστω h2) και πρόσθεσε όλα τα στοιχεία του σωρού h2 στον h1. Χρόνος Εκτέλεσης; Προσπάθεια Γ: Συνένωσε τους δύο σωρούς (δηλ., δημιούργησε ένα καινούριο πίνακα και αποθήκευσε τα στοιχεία του σωρού h1 πρώτα και μετά τα στοιχεία του σωρού h2) και μετά τρέξε τη διαδικασία BuildHeap. Χρόνος Εκτέλεσης; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 35
36 Προσπάθεια Δ: Leftist Heaps Ιδέα: Η συντήρηση της σωρού να γίνεται σε ένα μικρό μέρος της σωρού Τα περισσότερα στοιχεία βρίσκονται στα αριστερά Η διαδικασία της συγχώνευσης γίνεται στα δεξιά ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 36 Πως το επιτυγχάνουμε; Ορισμός Null Path Length Null Path Length (npl) κάποιου κόμβου u: ο αριθμός των κόμβων μεταξύ του u και μίας κενής αναφοράς (null) σε κάποιο από τα υποδέντρα του Εναλλακτικός ορισμός: Ελάχιστη απόσταση ενός κόμβου από κάποιο απόγονο που έχει 0 ή 1 παιδιά
37 Ιδιότητες Leftist Heap Ιδιότητα Σειράς (Σωρού) Η τιμή κάποιου κόμβου είναι μικρότερη από αυτή των παιδιών του Αποτέλεσμα: ο μικρότερος κόμβος είναι η ρίζα Ιδιότητα Leftist Για κάθε κόμβο u npl(u.left) npl(u.right) Αποτέλεσμα: για κάθε κόμβο το αριστερό του υποδέντρο είναι τουλάχιστον τόσο βαρύ όσο το δεξί του υποδέντρο ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 37
38 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 38 Υπολογισμός Null Path Length (npl) npl(null) = -1 NULL npl( u ) =? u? npl( u ) =? u?? 0?? 0 npl( u ) =? u 0 0 0
39 Γιατί χρειαζόμαστε την ιδιότητα Leftist Επειδή εγγυάται τα ακόλουθα: Το δεξί μονοπάτι είναι «κοντό» σε σχέση με τον αριθμό των κόμβων στο δέντρο Ένας σωρός leftist με Ν κόμβους έχει δεξί μονοπάτι με το πολύ log (N+1) κόμβους Αποτέλεσμα: κάνε τις αλλαγές στο δεξί «κοντό» υποδέντρο Πως θα εκτελεστεί η Συγχώνευση δύο σωρών h1 και h2; Βασική Ιδεά: Το πιο μικρό στοιχείο από h1 και h2 πρέπει να είναι η καινούρια ρίζα (έστω του h1) Το αριστερό υποδέντρο του h1 παραμένει αριστερά Αναδρομικά συγχώνευσε το δεξί υποδέντρο με το h2 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 39
40 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 40 Συγχώνευση δύο Leftist Σωρών MergeHeaps(h1, h2): επιστρέφει ένα leftist σωρό που περιέχει τα στοιχεία (διακριτά στοιχεία) των leftist σωρών h1 και h2. merge h1 a a merge h2 L1 b R1 a < b L1 R1 b L2 R2 L2 R2
41 Συγχώνευση δύο Leftist Σωρών (συν.) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 41 a a npl(l1) < npl(r ) L1 R swap R L1 Χρονική Πολυπλοκότητα Συγχώνευσης;
42 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 42 Παράδειγμα MergeHeaps 1 npl < merge 5< ? merge <12
43 Παράδειγμα MergeHeaps 1 (συν.) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι npl(5) > npl(7) swap
44 Παρατηρήσεις Η χρονική πολυπλοκότητα της MergeHeaps είναι O(log n) Η χρονική πολυπλοκότητα της Insert σε leftist σωρό με n στοιχεία; Χρήση της merge με h1=τον σωρό και τον καινούριο κόμβο σαν σωρό h2 Η χρονική πολυπλοκότητα της Delete σε leftist σωρό με n στοιχεία; Αφαίρεση της ρίζας και συγχώνευση του αριστερού και δεξιού υποδέντρου με χρήση της merge Προβλήματα leftist σωρών: Μνήμη; Πολυπλοκότητα; Το δεξιό υποδέντρο είναι συνήθως πιο «βαρετό» και χρειάζεται αλλαγή. Τι σημαίνει αυτό σε επίπεδο πίνακα; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 44
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Διαβάστε περισσότεραΔιάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Διαβάστε περισσότεραΔιάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας (Priority
Διαβάστε περισσότεραΣωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort
Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-1 Ουρά προτεραιότητας
Διαβάστε περισσότεραΔιάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
Διαβάστε περισσότεραΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1
Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Διαβάστε περισσότεραΔιάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 4 Σωροί, Γράφοι Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία
Διαβάστε περισσότεραΔιάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διαβάστε περισσότεραΔιάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Διαβάστε περισσότεραΟυρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή
Διαβάστε περισσότεραΔιάλεξη 05: Αφηρημένοι Τύποι Δεδομένων
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά ΕΠΛ231 Δομές Δεδομένων
Διαβάστε περισσότεραΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2 Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα
Διαβάστε περισσότεραΔιάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Διαβάστε περισσότεραΔομές Δεδομένων Ενότητα 4
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Ουρές Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΚεφάλαιο 6 Ουρές Προτεραιότητας
Κεφάλαιο 6 Ουρές Προτεραιότητας Περιεχόμενα 6.1 Ο αφηρημένος τύπος δεδομένων ουράς προτεραιότητας... 114 6.2 Ουρές προτεραιότητας με στοιχειώδεις δομές δεδομένων... 115 6.3 Δυαδικός σωρός... 116 6.3.1
Διαβάστε περισσότεραΔιάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Διαβάστε περισσότεραΔιάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές
Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει
Διαβάστε περισσότεραΟυρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap Επιμέλεια διαφανειών: Δ. Φωτάκης (λίγες τροποποιήσεις: Α. Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δομές Δεδομένων (Αναπαράσταση,)
Διαβάστε περισσότεραΔιασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Δυαδικά Δέντρα Προγραμματισμός II 1 lalis@inf.uth.gr Δέντρα Τα δέντρα είναι κλασικές αναδρομικές δομές Ένα δέντρο αποτελείται από υποδέντρα, καθένα από τα οποία μπορεί να θεωρηθεί
Διαβάστε περισσότεραΔιάλεξη 13: Δέντρα ΙΙΙ - Ισοζυγισμένα Δέντρα, AVL Δέντρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 13: Δέντρα ΙΙΙ - Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ισοζυγισμένα Δέντρα - Υλοποίηση AVL-δέντρων
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Διαβάστε περισσότεραΔιάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες
Διαβάστε περισσότεραΚεφάλαιο 2. Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014
Κεφάλαιο 2 Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Σωρός και Ταξινόμηση
Διαβάστε περισσότεραΔοµές Δεδοµένων. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2
Δοµές Δεδοµένων Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2 Δοµές Δεδοµένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειµένων για αποδοτική ενηµέρωση και ανάκτηση πληροφορίας.
Διαβάστε περισσότεραΔιάλεξη 14: Δέντρα IV - B-Δένδρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 14: Δέντρα IV - B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις - Άλλα Δέντρα: Β-δένδρα, Β+-δέντρα,
Διαβάστε περισσότεραΔένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
Διαβάστε περισσότεραΟυρά Προτεραιότητας: Heap
Δομές Δεδομένων Ουρά Προτεραιότητας: Heap Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο (Αναπαράσταση,)
Διαβάστε περισσότεραΔομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή
Διαβάστε περισσότεραΟυρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ομές εδομένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειμένων για
Διαβάστε περισσότεραΔιάλεξη 18: B-Δένδρα
Διάλεξη 18: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή & Ισοζυγισμένα Δένδρα 2-3 Δένδρα, Περιγραφή Πράξεων της Εισαγωγής και άλλες πράξεις Β-δένδρα Διδάσκων: Κωνσταντίνος
Διαβάστε περισσότεραΣυλλογές, Στοίβες και Ουρές
Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 8: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική Δέσμευση
Διαβάστε περισσότερα13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Διαβάστε περισσότεραΔιάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι
Διαβάστε περισσότεραΚεφάλαιο 7 Λεξικά και Δυαδικά Δένδρα Αναζήτησης
Κεφάλαιο 7 Λεξικά και Δυαδικά Δένδρα Αναζήτησης Περιεχόμενα 7.1 Ο αφηρημένος τύπος δεδομένων λεξικού... 133 7.1.1 Διατεταγμένα λεξικά... 134 7.2 Στοιχειώδεις υλοποιήσεις με πίνακες και λίστες... 135 7.2.1
Διαβάστε περισσότεραΔομές Δεδομένων. Δημήτρης Μιχαήλ. Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σωρός Μεγίστου ως ΑΤΔ Ένας σωρός μεγίστου (max heap) είναι ένας ΑΤΔ που
Διαβάστε περισσότερα8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
Διαβάστε περισσότεραΔιάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 0: Λίστες ΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες
Διαβάστε περισσότεραΟυρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης
Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με
Διαβάστε περισσότεραΒασικές Δομές Δεδομένων
Βασικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Διαδοχική και Δυναμική Χορήγηση
Διαβάστε περισσότεραΟυρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του
Διαβάστε περισσότεραΑλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Διαβάστε περισσότεραUnion Find, Λεξικό. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Union Find, Λεξικό Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Διαμερίσεων Συνόλου Στοιχεία σύμπαντος διαμερίζονται σε κλάσεις ισοδυναμίας
Διαβάστε περισσότεραΠρόβληµα (ADT) Λεξικού. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2
Πρόβληµα (ADT) Λεξικού Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2 Πρόβληµα (ADT) Λεξικού Δυναµικά µεταβαλλόµενη συλλογή αντικειµένων που αναγνωρίζονται µε κλειδί (π.χ. κατάλογοι,
Διαβάστε περισσότεραΠελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο
Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες
Διαβάστε περισσότεραHeapsort Using Multiple Heaps
sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 19/10/2017 Ανακεφαλαίωση:
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 4/11/2016 Ανακεφαλαίωση:
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Διαβάστε περισσότεραΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Παπαγιαννόπουλος Δημήτριος 30 Μαρτίου 2017 18 Μαΐου 2017 papagianno@ceid.upatras.gr 1 Περιεχόμενα Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί
Διαβάστε περισσότεραΟυρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Διαβάστε περισσότεραΠρογραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
Σωροί 1 Ορισμοί Ένα δέντρο μεγίστων (δένδρο ελαχίστων) είναι ένα δένδρο, όπου η τιμή κάθε κόμβου είναι μεγαλύτερη (μικρότερη) ή ίση με των τιμών των παιδιών του Ένας σωρός μεγίστων (σωρός ελαχίστων) είναι
Διαβάστε περισσότεραΔιάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Διαβάστε περισσότεραΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Διαβάστε περισσότεραΕνότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Διαβάστε περισσότεραΔυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι
Διαβάστε περισσότεραΟι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται
Διαβάστε περισσότεραΔιάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα
Διαβάστε περισσότεραΣύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης
Σύνοψη Προηγούμενου Πίνακες (Arrays Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Διαδικαστικά θέματα. Aντικείμενο Μαθήματος. Aντικείμενα, Κλάσεις, Μέθοδοι, Μεταβλητές.
Διαβάστε περισσότεραταξινόμηση σωρού Παύλος Εφραιμίδης Δομές Δεδομένων και
ταξινόμηση σωρού Παύλος Εφραιμίδης ταξινόμηση σωρού ταξινόμηση σωρού άλλος ένας αλγόριθμος ταξινόμησης πολυπλοκότητας O(n lgn) Ιδιαίτερα χαρακτηριστικά: χρησιμοποιεί μια δομή δεδομένων που ονομάζεται «σωρός»
Διαβάστε περισσότεραΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1
B-Δένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: 2-3 Δένδρα, Υλοποίηση και πράξεις Β-δένδρα ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1 2-3 Δένδρα Γενίκευση των δυαδικών δένδρων αναζήτησης.
Διαβάστε περισσότεραΔομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη
Διαβάστε περισσότεραΚεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010
Κεφάλαιο 2 Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση., 2/05/200 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Σωρός και Ταξινόµηση
Διαβάστε περισσότεραΔοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
Διαβάστε περισσότεραΑλγόριθμοι Ταξινόμησης Μέρος 3
Αλγόριθμοι Ταξινόμησης Μέρος 3 Μανόλης Κουμπαράκης 1 Ταξινόμηση με Ουρά Προτεραιότητας Θα παρουσιάσουμε τώρα δύο αλγόριθμους ταξινόμησης που χρησιμοποιούν μια ουρά προτεραιότητας για την υλοποίηση τους.
Διαβάστε περισσότεραΕνότητα 7 Ουρές Προτεραιότητας
Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
Διαβάστε περισσότεραΔιάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα
Διαβάστε περισσότεραΔομές Δεδομένων. Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός. Καθηγήτρια Μαρία Σατρατζέμη
Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΚεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας
Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας Περιεχόμενα 14.1 Διωνυμικά Δένδρα... 255 14.2 Διωνυμικές Ουρές... 258 14.1.1 Εισαγωγή στοιχείου σε διωνυμική ουρά... 258 14.1.2 Διαγραφή μεγίστου από διωνυμική
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 3η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Απλοί Αλγόριθμοι & Δομές Δεδομένων Δύο Απλές
Διαβάστε περισσότερασωροί ταξινόμηση σωρού οόροςheap σωρός (heap) συστοιχία Α για έναν σωρό μια δομή δεδομένων που πχ.
Παύλος Εφραιμίδης άλλος ένας αλγόριθμος ταξινόμησης πολυπλοκότητας O(n lgn) Ιδιαίτερα χαρακτηριστικά: χρησιμοποιεί μια δομή δεδομένων που ονομάζεται «σωρός» είναι επιτόπια: το πλήθος των στοιχείων της
Διαβάστε περισσότεραΔομές Δεδομένων - Εργαστήριο 5. Ουρές Προτεραιότητας
Ουρές Προτεραιότητας Ουρά Προτεραιότητας (Priority Queue) Μια συλλογή αντικειμένων που χαρακτηρίζονται από μια συγκρίσιμη προτεραιότητα. Έχει την λογική εικόνα μιας δομής δεδομένων όπου, αντικείμενα εισέρχονται
Διαβάστε περισσότεραΆσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Διαβάστε περισσότεραΤαξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
Διαβάστε περισσότεραΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι
Διαβάστε περισσότεραΚατ οίκον Εργασία 3 Σκελετοί Λύσεων
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διαβάστε περισσότεραΔιάλεξη 08: ΛίστεςΙΙ Κυκλικές Λίστες. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 0: ΛίστεςΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες Λίστες - Τεχνικές Μείωσης Χώρου Διδάσκων:
Διαβάστε περισσότεραΚατ οίκον Εργασία 3 Σκελετοί Λύσεων
Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Ενότητα 3η
Εισαγωγή στους Αλγορίθμους Ενότητα 3η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΔομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Δομές Δεδομένων (Εργ.) Ακ. Έτος 2017-18 Διδάσκων: Ευάγγελος Σπύρου Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης 1. Στόχος του εργαστηρίου Στόχος του δέκατου εργαστηρίου
Διαβάστε περισσότεραΔένδρα Αναζήτησης Πολλαπλής Διακλάδωσης
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά
Διαβάστε περισσότεραΑλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017
Διαβάστε περισσότεραQuicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι
Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n
Διαβάστε περισσότεραΟντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές
Διαβάστε περισσότεραCuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Cuckoo Hashing Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο β Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη συλλογή αντικειμένων που αναγνωρίζονται με «κλειδί» (π.χ.
Διαβάστε περισσότερα