Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης"

Transcript

1 Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις.

2 Κωδικοποίηση Πηγής Λόγοι για την κωδικοποίηση: Συμπίεση στόχος η μείωση του συνολικού μήκους του μηνύματος εξοικονόμηση χώρου αποθήκευσης. μείωση του χρόνου αποστολής. περιορίζει την απαιτούμενη χωρητικότητα διαύλου για την μεταφορά πληροφοριών. Ασφάλεια ο κωδικοποιητής αντιστοιχεί τα σύμβολα πηγής με σύνολο λέξεων που είναι γνωστά μόνο στον πομπό και δέκτη. αποφυγή υποκλοπής και κατανόησης. Ανίχνευση και διόρθωση σφαλμάτων αντικατάσταση συμβόλων πηγής με λέξεις μεγαλύτερου μεγέθους, που περιλαμβάνουν πληροφορίες για το αρχικό μήνυμα. εισαγωγή πλεονάζουσας πληροφορίας. αντίθετη αρχή λειτουργίας με την συμπίεση. Θα μας απασχολήσει η κωδικοποίηση με στόχο την συμπίεση!

3 Ορισμοί Ορισμός : Κωδικοποίηση είναι η αντικατάσταση συμβόλων ή ομάδων συμβόλων πληροφορίας με νέα εναλλακτικά σύμβολα ή ομάδες συμβόλων. Όρισμός : Κώδικας είναι ο αλγόριθμος με τον οποίο πραγματοποιείται η κωδικοποίηση, δηλαδή, η αντικατάσταση συμβόλων από νέα σύμβολα. Ορισμός 3: Τα νέα διακεκριμένα σύμβολα w, w,, w M που προκύπτουν κατά την κωδικοποίηση ονομάζονται κωδικά σύμβολα. Το πλήθος τους Μ μπορεί να είναι πεπερασμένο ή άπειρο. Ορισμός 4: Το σύνολο W={w, w,, w M } όλων των κωδικών συμβόλων λέγεται αλφάβητο κωδικοποίησης. Ορισμός 5: Ο κώδικας που έχει M κωδικά σύμβολα ονομάζεται M-αδικός κώδικας. 3

4 Κωδικοποίηση Morse Παραδείγματα Απεικόνιση γραμμάτων αλφαβήτου σε κωδικές λέξεις που σχηματίζονται από τελείες, παύλες και κενά διαστήματα. Κωδικά σύμβολα:. κενό Πλήθος κωδικών συμβόλων M=3 Αλφάβητο Κωδικοποίησης W={., -, κενό} Ο κώδικας Morse είναι ένας 3-αδικός κώδικας. 4

5 Παραδείγματα Κωδικοποίηση ASCII-7 (American Standard Code for Information Interchange) Κωδικά σύμβολα: 0 και Πλήθος κωδικών συμβόλων M= Αλφάβητο Κωδικοποίησης W={0,} Ο κώδικας ASCII-7 είναι ένας -αδικός κώδικας 5

6 Ταξινόμηση Κωδίκων Ταξινόμηση με κριτήριο τις απώλειες Κώδικες χωρίς απώλειες Η απεικόνιση της πηγής είναι ένα-προς-ένα (δηλαδή ένα σύμβολο αλφαβήτου πηγής αντιστοιχεί σε ένα σύμβολο αλφαβήτου κωδικοποίησης ή μια κωδική λέξη). Η αποκωδικοποίηση του κωδικού μηνύματος θα μας δώσει το αρχικό μήνυμα (καμία απώλεια). π.χ. Κώδικας Morse. Κώδικες με απώλειες Η απεικόνιση συμβόλων πηγής σε κωδικά σύμβολα είναι πολλά-σεένα. η αποκωδικοποίηση ενδέχεται να μας δώσει διαφορετικό μήνυμα από αυτό που μεταδόθηκε. π.χ. Κωδικοποίηση έγχρωμης εικόνας σε αντίστοιχη με διαβαθμίσεις του γκρί. Θα μας απασχολήσουν ΜΟΝΟ κώδικες χωρίς απώλειες. 6

7 Ταξινόμηση Κωδίκων Ταξινόμηση με κριτήριο το μήκος των κωδικών λέξεων Σταθερού μήκους το μήκος των κωδικών λέξεων είναι σταθερό για κάθε σύμβολο της πηγής Χ. π.χ. ASCII-7 (κάθε χαρακτήρας πηγής κωδικοποιείται με έναν συνδυασμό από 7 δυαδικών ψηφίων). Μεταβλητού μήκους χρησιμοποιούνται για την συμπίεση δεδομένων. Τα σύμβολα πηγής με μεγαλύτερη πιθανότητα εμφάνισης, κωδικοποιούνται με μικρότερου μήκους κωδικές λέξεις. π.χ. Κώδικας Morse το γράμμα Ε που είναι το πιο σύνηθες στην αγγλική αντιστοιχίζεται με μικρότερη κωδική λέξη από το γράμμα Q που είναι το πιο σπάνια εμφανιζόμενο. Δεν μας απασχολούν διαδικασίες ανίχνευσης και διόρθωσης σφαλμάτων Το κανάλι είναι «αθόρυβο» είναι το κανάλι που δέχεται ως είσοδο ένα σύνολο από «κωδικούς χαρακτήρες» και αναπαράγει στην έξοδο του τους χαρακτήρες αυτούς χωρίς πιθανότητα λάθους. (Βλ. Ιδανικός Δίαυλος) 7

8 Αθόρυβη (Noiseless )Κωδικοποίηση Στόχος είναι: η ελαχιστοποίηση του μέσου μήκους της κωδικής λέξης. Συνοπτικά, τα «συστατικά» του προβλήματος της «αθόρυβης κωδικοποίησης» είναι: Η πηγή εισόδου (Χ, P X ) στον ιδανικό δίαυλο με αλφάβητο πηγής Χ={x, x,, x N } και κατανομή πιθανοτήτων P X ={p, p,, p N }. Το αλφάβητο κωδικοποίησης W ={w, w,, w Μ }. Σε κάθε σύμβολο x i πρόκειται να ανατεθεί μία πεπερασμένη ακολουθία από κωδικά σύμβολα η οποία αποτελεί την κωδική λέξη. Π.χ. το σύμβολο x μπορεί να αντιστοιχηθεί στην κωδική λέξη w w και το x στην λέξη w 3 w 7 w 3 w 8. 8

9 Σχεδιαστικά Ζητήματα Κωδίκων Έστω ο παρακάτω δυαδικός κώδικας: x 0 x 00 x 3 0 x 4 0 Ποιό είναι το πρόβλημα του κώδικα αυτού; Τα σύμβολα της πηγής x και x 4 αντιστοιχίζονται στην ίδια κωδική λέξη. Ο δέκτης θα παρουσιάζει δυσκολία αποκωδικοποίησης της λέξης «0». Κατά τον σχεδιασμό θα πρέπει να αποφεύγονται τέτοιες αντιστοιχίσεις που οδηγούν σε «σύγχιση» τον δέκτη. Ορισμός: ένας κώδικας που αντιστοιχεί κάθε σύμβολο της πηγής σε διαφορετική κωδική λέξη, λέγεται ευκρινής. Εξασφαλίζουμε την παραπάνω σχεδιαστική απαίτηση αποφεύγοντας να αναθέσουμε την ίδια κωδική λέξη σε παραπάνω από ένα σύμβολα πηγής. 9

10 Σχεδιαστικά Ζητήματα Κωδίκων Έστω ο παρακάτω δυαδικός κώδικας: x 0 x 00 x 3 0 x 4 0 Ποιό είναι το πρόβλημα του κώδικα αυτού; Στον δέκτη καταφθάνει η ακολουθία κωδικών συμβόλων «00». Ποιό σύμβολο ή ακολουθία συμβόλων θα προκύψει κατά την αποκωδικοποίηση; Απ.: x, x x 4, x 3 x Ο δέκτης δεν είναι σε θέση να αντιληφθεί με απόλυτη βεβαιότητα την αρχή και το τέλος μιας κωδικής λέξης. Είναι επιθυμητό να εξαλειφθούν καταστάσεις σύγχισης όπως η παραπάνω. Ορισμός: ένας κώδικας για τον οποίο κάθε κωδική λέξη αναγνωρίζεται με βεβαιότητα μέσα σε μία μακρά ακολουθία κωδικών συμβόλων λέγεται μονοσήματος. 0

11 Σχεδιαστικά Ζητήματα Κωδίκων Ένας τρόπος για την εξασφάλιση της μονοσημαντικότητας ενός κώδικα, είναι καμία κωδική λέξη να είναι πρόθεμα μιας άλλης. Η ιδιότητα αυτή λέγεται προθεματική ιδιότητα. Προσοχή! ένας κώδικας στον οποίο καμία κωδική λέξη δεν είναι πρόθεμα μιας άλλης, λέμε ότι έχει την προθεματική ιδιότητα. Ένας κώδικας για τον οποίο ισχύει η προθεματική ιδιότητα ονομάζεται στιγμιαία αποκωδικοποιήσιμος. (instantaneous) Πρακτικά, ένας στιγμιαία αποκωδικοποιήσιμος κώδικας επιτρέπει την αποκωδικοποίηση των κωδικών λέξεων που βρίσκονται σε μια ακολουθία χωρίς να χρειάζεται να εξεταστούν οι γειτονικές (στιγμιαία). x x x Λαμβανόμενη ακολουθία: Αποκωδικοποίηση: x x x x x 3 x

12 Σχεδιαστικά Ζητήματα Κωδίκων Κάθε στιγμιαία αποκωδικοποιήσιμος κώδικας είναι και μονοσήμαντος. Δεν ισχύει το αντίστροφο! Παράδειγμα x x x 3 x Δεν ισχύει η προθεματική ιδιότητα μη στιγμιαία αποκωδικοποιήσιμος, αλλά ο κώδικας είναι μονοσήμαντος! Κάθε μονοσήμαντος κώδικας είναι και ευκρινής. Δεν ισχύει το αντίστροφο! Παράδειγμα x 0 x x 3 x Ο κώδικας είναι ευκρινής αλλά η ακολουθία 00 οδηγεί είτε σε x x 3 είτε σε x x 4 x Κάθε ευκρινής κώδικας σταθερού μήκους είναι και στιγμιαία αποκωδικοποιήσημος.

13 Γενικά ισχύει: Σχεδιαστικά Ζητήματα Κωδίκων Κ: όλοι οι κώδικες Ε: Ευκρινείς Μ: Μονοσήμαντοι Σ: Στιγμιαία Απαοκωδικοποιήσιμοι Περιπτώσεις: Ένας Σ κώδικας είναι αυτομάτως και Μ και Ε. Ένας Μ κώδικας είναι αυτομάτως και Ε αλλά μπορεί να μην είναι Σ. Ένας Ε κώδικας μπορεί να μην είναι Μ ή/και Σ. (Στην περίπτωση σταθερού μήκους είναι αυτομάτως και Σ και Μ) Ένας κώδικας που δεν είναι Σ μπορεί να είναι Μ. Ένας κώδικας που δεν είναι Μ μπορεί να είναι Ε. Ένας κώδικας που δέν είναι Ε δεν είναι Σ και Μ. 3

14 Εφαρμογές Εφαρμογή Ι: Να ταξινομηθούν οι παρακάτω κώδικες. Σύμβολο Κώδικας Α Κώδικας Β Κώδικας Γ Κώδικας Δ x 00 0 x x x Ταξινόμιση Κώδικας Α Κώδικας Β Κώδικας Γ Κώδικας Δ Ευκρινής x Μονοσήμαντος x x Στιγμιαία αποκωδικοποιήσιμος x x x 4

15 Εφαρμογές Εφαρμογή ΙΙ: Να ταξινομηθούν οι παρακάτω κώδικες. Σύμβολο Κώδικας Α Κώδικας Β Κώδικας Γ Κώδικας Δ Κώδικας E x x x x Ταξινόμιση Κώδικας Α Κώδικας Β Κώδικας Γ Κώδικας Δ Κώδικας E ευκρινής Μονοσήμαντος X Στιγμιαία αποκωδικοποιήσιμος X X 5

16 Έλεγχος Μονοσημαντικότητας Ένας κώδικας που δεν είναι στιγμιαία αποκωδικοποιήσιμος μπορεί να είναι μονοσήμαντος. Είναι δυνατόν να ελέγξουμε πολύπλοκους κώδικες ως προς την μονοσημαντικότητα ακολουθώντας έναν έλεγχο που ονομάζεται Έλεγχος Sardinas-Patterson και παρουσιάζεται εδώ χωρίς απόδειξη. Η τεχνική βασίζεται στην διαδοχική κατασκευή συνόλων και έλεγχο των στοιχείων τους. Έστω ότι διαθέτουμε τον παρακάτω κώδικα: Κώδικας x a Παρατηρούμε οτι ο κώδικας δεν είναι στιγμιαία αποκωδικοποιήσιμος: η κωδική λέξη (σύμβολο) «a» είναι πρόθεμα των «ad» και «abb». x x 3 x 4 x 5 x 6 x 7 c ad abb bad deb bbcde 6

17 Έλεγχος Μονοσημαντικότητας Κατασκευάζουμε βήμα-βήμα μία ακολουθία από σύνολα S 0, S, S,, S n όπως παρακάτω: Το πρώτο σύνολο S 0 έχει ως στοιχεία τις αρχικές κωδικές λέξεις. Για την κατασκευή του S συγκρίνουμε όλες τις κωδικές λέξεις μέσα στο S 0. Εάν μια κωδική λέξη είναι πρόθεμα μιας άλλης, τότε το επίθεμα (αυτό που απομένει δηλαδή) της τελευταίας εισάγεται ως στοιχείο στο S. Κώδικας Σύνολα x x x 3 x 4 x 5 x 6 x 7 a c ad abb bad deb bbcde S 0 S a c ad abb bad deb bbcde d bb Κατόπιν εκτελούμε τον ακόλουθο έλεγχο: Υπάρχει κάποιο στοιχείο των δύο συνόλων που είναι ίδια; Ναι; Τότε ο κώδικας δεν είναι μονοσήμαντος. Όχι; Η διαδικασία συνεχίζεται όπως παρακάτω. 7

18 Έλεγχος Μονοσημαντικότητας Για τα υπόλοιπα σύνολα S n, n> συγκρίνουμε τα στοιχεία των S 0 και S n- και ψαχνουμε για κωδικές λέξεις του ενός συνόλου που είναι πρόθεμα του άλλου. Το επίθεμα τοποθετείται στο νέο σύνολο. Περιπτώσεις: Εάν δεν βρεθούν επιθέματα τότε το S n είναι το κενό σύνολο και η διαδικασία σταματά. Ο κώδικας είναι στιγμιαία αποκωδικοποιήσιμος. Εάν το προκύπτον σύνολο S n είναι ίσο με κάποιο από τα προηγούμενα σύνολα εκτός του S 0 η διαδικασία σταματά. Ο κώδικας είναι στιγμιαία αποκωδικοποιήσιμος. Εάν κάποιο από τα στοιχεία του S n είναι ίδιο με κάποιο από τα στοιχεία του S 0 η διαδικασία σταματά. Ο κώδικας δεν είναι στιγμιαία αποκωδικοποιήσιμος. Εάν δεν συμβεί τίποτε από τα παραπάνω η διαδικασία συνεχίζεται ομοίως. 8

19 Έλεγχος Μονοσημαντικότητας Κώδικας x x x 3 x 4 x 5 x 6 x 7 a c ad abb bad deb bbcde Σύνολα S 0 S S S 3 S 4 S 5 S 6 S 7 S 8 a d eb de b ad d eb {empty} c ad abb bad deb bbcde bb cde bcde Ο παραπάνω κώδικας δεν είναι στιγμιαία αποκωδικοποιήσιμος διότι ένα στοιχείο του S 5 είναι ίδιο με ένα στοιχείο του S 0 («ad»). 9

20 Εφαρμογές Εφαρμογή Ι: Να ελεγχθεί ως προς την μονοσημαντικότητα ο παρακάτω κώδικας: x 00 x 000 x 3 x 4 x 5 x 6 x 7 x Εφαρμογή ΙΙ: Να ελεγχθεί ως προς την μονοσημαντικότητα ο παρακάτω κώδικας: x S0 S S S3 S4 S5 S6 S7 S8 S9 S0 x x 3 x 4 x 5 x 6 x 7 x 8 abc abcd e dba bace ceac ceab eabd Απ: S0 S S S3 S4 S5 S abc d ba ce ac c eac ac c eac ac abcd abd ab cd eab ab cd eab ab e dba bace ceac ceab eabd Απ: d ba ce d 0

21 Δενδροδιάγραμμα Απόφασης Ένας στιγμιαία αποκωδικοποιήσιμος κώδικας μπορεί να αναπαρασταθεί με ένα δενδροδιάγραμμα. Δενδροδιάγραμμα: γράφος με τα εξής στοιχεία: ρίζα κόμβους ή φύλλα ένας κόμβος λέγεται φύλο όταν αναπαριστά ένα σύμβολο πηγής. ακμές (κατευθυνόμενες). Παράδειγμα:

22 Δενδροδιάγραμμα Απόφασης Χαρακτηριστικά δενδροδιαγράμματος: επίπεδα όσα και το μήκος της μεγαλύτερης κωδικής λέξης (μη συμπεριλαμβανομένου του επιπέδου της ρίζας) λέγεται και ύψος του δένδρου φύλλα όσα και τα σύμβολα της πηγής (μπορεί και να μην είναι στο υψηλότερο επίπεδο) κατευθυνόμενες ακμές που εκκινούν από κάθε κόμβο το πολύ όσες και τα κωδικά σύμβολα Σύμβολα πηγής Επίπεδο 3 Επίπεδο Ακμές = Μ Επίπεδο Επίπεδο 0

23 Δενδροδιάγραμμα Απόφασης Το δενδροδιάγραμμα είναι σημαντικό εργαλείο για την γρήγορη αποκωδικοποίηση ενός κωδικού μηνύματος. Διαδικασία αποκωδικοποίησης ενός μηνύματος:. Ξεκινάμε από την ρίζα. Με την λήψη ενός κωδικού συμβόλου, μεταβαίνουμε στον κόμβο του αμέσως υψηλότερου επιπέδου μέσω της ακμής που αντιστοιχεί στο ληφθέν σύμβολο. 3. Επαναλαμβάνουμε το ο βήμα μέχρι να φθάσουμε σε φύλλο και καταγράφουμε το σύμβολο της πηγής που αντιστοιχεί σε αυτό. 4. Μεταβαίνουμε στην ρίζα του δένδρου και επαναλαμβάνουμε την διαδικασία 3

24 Δενδροδιάγραμμα Απόφασης Παράδειγμα: λαμβάνουμε την ακολουθία «00000» Ακολουθία Συμβόλων Πηγής: ΒΔΓ 4

25 Εφαρμογές Εφαρμογή Ι: Έστω ο στιγμιαία αποκωδικοποιήσιμος κώδικας {00,0,,00} που κωδικοποιεί μία πηγή με αλφάβητο {A,B,C,D}. Να φτιάξετε το δενδροδιάγραμμα. Να αποκωδικοποιηθεί το μήνυμα με τη χρήση του δενδροδιαγράμματος. Απ.: DADA Εφαρμογή ΙΙ: Έστω ο στιγμιαία αποκωδικοποιήσιμος κώδικας {a,c,d,bb,bad,eb,bcde} που κωδικοποιεί μία πηγή με αλφάβητο {x,x,x 3,x 4,x 5,x 6,x 7 }. Να φτιάξετε το δενδροδιάγραμμα. Να αποκωδικοποιηθεί το μήνυμα cbbbcdebaddad με τη χρήση του δενδροδιαγράμματος. Απ.: x x 4 x 7 x 5 x 3 x x 3 5

26 Οι Ταυτοανισότητες Kraft - McMillan Ταυτοανισότητα McMillan: Τα μήκη των κωδικών λέξεων l,l,,l N ενός μονοσήμαντου Μ-αδικού κώδικα θα πρέπει να ικανοποιούν την ταυτοανισότητα: i Ταυτοανισότητα Kraft: Υπάρχει στιγμιαία αποκωδικοποιήσιμος Μ-αδικός κώδικας με μήκη κωδικών λέξεων l,l,,l N, αν και μόνο αν ισχύει η παρακάτω ταυτοανισότητα: i N N M M Και οι δύο ταυτοανισότητες αναφέρονται στην ύπαρξη ή όχι στιγμιαίου αποκωδικοποιήσιμου κώδικα (Kraft) ή μονοσήμαντου (McMillan) εφόσον γνωρίζουμε τα μήκη l i των κωδικών λέξεων: l i l i 6

27 Παραδείγματα Έστω ο στιγμιαία αποκωδικοποιήσιμος κώδικας: Κώδικας Μήκη A 0 B C D N M i l i 3 3 Έστω ο μονοσήμαντος κώδικας: Κώδικας Μήκη A 0 3 B C D N i M l i Έστω ο κώδικας: Κώδικας Μήκη A 0 B C D 0 0 N i M l i.5 7

28 Οι Ταυτοανισότητες Kraft - McMillan Παρατηρήσεις: Οι ταυτοανισότητες Kraft-McMillan δεν λένε ότι: ένας συγκεκριμένος Μ-αδικός κώδικας με συγκεκριμένα μήκη κωδικών λέξεων είναι στιγμιαία αποκωδικοποιήσιμος ή μονοσήμαντος. Εάν ξέρουμε ότι ένας συγκεκριμένος Μ-αδικός κώδικας με δεδομένα μήκη κωδικών λέξεων είναι μονοσήμαντος τότε θα υπάρχει και στιγμιαία αποκωδικοποιήσιμος κώδικας με αυτά τα μήκη λέξεων. Ένας μονοσήμαντος κώδικας δεν παρουσιάζει ενδιαφέρον διότι θα υπάρχει στιγμιαία αποκωδικοποιήσιμος κώδικας με τα ίδια μήκη λέξεων που θα αποκωδικοποιείται με μεγαλύτερη ευκολία. 8

29 Οι Ταυτοανισότητες Kraft - McMillan Εάν η ταυτοανισότητα Kraft ισχύει ως ανισότητα τότε ο κώδικας έχει πλεόνασμα (redundancy) Πρακτικά μπορούμε να προσθέσουμε και νέα κωδική λέξη. i N M l i 3 4 Εάν η ταυτοανισότητα Kraft ισχύει ως ισότητα τότε ο κώδικας θεωρείται ολόκληρος (complete) χωρίς πλεονασμό Πρακτικά δεν μπορούμε να προσθέσουμε και νέα κωδική λέξη. i N M l i Ποιόν από τους δύο κώδικες θα επιλέγατε; Θα μπορούσατε να προτείνετε έναν καλύτερο; 9

30 Μέσο Μήκος Κώδικα Εάν θεωρήσουμε: Πηγή πληροφορίας με Αλφάβητο Χ={x,x,,x N } και Κατανομή P X ={p,p,,p N } M-αδικό Κώδικα με Αλφάβητο W={w,w,,w M } Ότι κάθε σύμβολο της πηγής x i αντιστοιχίζεται σε μία κωδική λέξη u i με μήκος l i Ορίζουμε Μέσο Μήκος Κώδικα: L i N p i l i Εκφράζει το μέσο αριθμό των κωδικών συμβόλων ανά σύμβολο πηγής. Παράδειγμα ASCII-7 μέσο μήκος: 7-bit δεν υπολογίζονται οι πιθανότητες εμφάνισης των συμβόλων πηγής σύμβολα με μικρή πιθανότητα εμφάνισης κωδικοποιούνται όπως και τα σύμβολα με μεγάλη πιθανότητα εμφάνισης Δεν είναι η βέλτιστη λύση στην «αθόρυβη κωδικοποίηση» 30

31 Βέλτιστος Κώδικας Είναι ο στιγμιαία αποκωδικοποιήσιμος κώδικας με το μικρότερο μέσο μήκος κώδικα: L * l, min l { L} min Ο σχεδιασμός του βέλτιστου κώδικα απαιτεί τον προσδιορισμό των μηκών των κωδικών λέξεων που ελαχιστοποιούν το μέσο μήκος. { N,..., ln l, l,..., ln i Αποδεικνύεται ότι τα μήκη των κωδικών λέξεων του βέλτιστου στιγμιαία αποκωδικοποιήσιμου κώδικα είναι ίσα με: p i l i } * li log M ( pi ) Άρα, για δυαδικό κώδικα θα ισχύει: i N L * H( X ) 3

32 Εφαρμογές Εφαρμογή Ι: Υπάρχει δυαδικός στιγμιαία αποκωδικοποιήσιμος κώδικας με κωδικές λέξεις μήκους {,4,3,3,,3}; Απ.: 9/6, όχι δεν υπάρχει. Εφαρμογή ΙΙ: Υπάρχει τριαδικός στιγμιαία αποκωδικοποιήσιμος κώδικας με κωδικές λέξεις μήκους {,,3,3,,3}; Απ.: 8/7, υπάρχει. Εφαρμογή ΙΙΙ: Ποιοί από τους παρακάτω στιγμιαία αποκωδικοποιήσιμους κώδικες έχουν πλεονασμό και ποιοί όχι. I II III Απ.: Οι ΙΙ και ΙΙΙ έχουν. Ο Ι δεν έχει. Για τον ΙΙ: {00} Για τον ΙΙΙ: {0000} Αναφέρατε από μια κωδική λέξη που μπορούμε να προσθέσουμε στους κώδικες με πλεονασμό για να τους μετατρέψουμε σε ολόκληρους. 3

33 Εφαρμογές Εφαρμογή ΙV (Εξεταστική 007): Παρακάτω δίνεται πίνακας με 4 κώδικες κωδικοποίησης τεσσάρων συμβόλων πηγής, καθώς και οι πιθανότητες εμφάνισης των συμβόλων. a) Να ταξινομηθούν οι κώδικες. b) Να υπολογιστεί το μέσο μήκος τους. c) Εάν έπρεπε να επιλέξουμε έναν από τους παρακάτω κώδικες ποιος θα ήταν ο βέλτιστος και γιατί? x i p i I II III IV A B C D

34 Ασκήσεις Επανάληψης Εφαρμογή Ι (Εξεταστική 00): Δίνεται ο εξής κώδικας: Α:000, Β:00, Γ:0, Δ:0, Ε:. Μπορούμε να προσθέσουμε ένα ακόμα σύμβολο Ζ (με την κατάλληλη κωδικοποίηση) έτσι ώστε ο νέος κώδικας που θα προκύψει να είναι στιγμιαία αποκωδικοποιήσιμος; Απ: Ναί Εφαρμογή ΙΙ (Εξεταστική 009): α) Έστω ότι για έναν τριαδικό κώδικα γνωρίζουμε τα μήκη των κωδικών λέξεων που είναι τα εξής {,,3,,,3,}. Ο κώδικας αυτός i) Είναι σίγουρα στιγμιαία αποκωδικοποιήσιμος ii) Σίγουρα δεν είναι στιγμιαία αποκωδικοποιήσιμος iii) Μπορεί ναι, μπορεί και όχι (πρέπει να γνωρίζουμε τις κωδικές λέξεις για να αποφανθούμε) β) Επιλύστε το παραπάνω ερώτημα για έναν κώδικα με τα εξής μήκη {,,3,3,,3}. Εφαρμογή ΙΙΙ (Εξεταστική 009): Έστω Μ-αδικός ευκρινής κώδικας σταθερού μήκους (k κωδικών λέξεων με μήκος l η κάθε μία) α) Τι πρέπει να προσέξουμε στην κατασκευή της νέας κωδικής λέξης έτσι ώστε ο νέος κώδικας να είναι στιγμιαία αποκωδικοποιήσιμος; β) Σε ποιά περίπτωση δεν μπορεί να κατασκευαστεί στιγμιαία αποκωδικοποιήσιμος κώδικας με τον παραπάνω τρόπο; Απ: α) το ii), β) το iii) 34

35 Ασκήσεις Επανάληψης Εφαρμογή ΙV (Εξεταστική 009): Έστω ότι δίνεται ένας κώδικας ο οποίος είναι μονοσήμαντος αλλά όχι στιγμιαία αποκωδικοποιήσιμος. Μας ζητείται να μετατρέψουμε τον κώδικα αυτό σε στιγμιαία αποκωδικοποιήσιμο με την παρακάτω διαδικασία: Σε μερικές (ή όλες) τις κωδικές λέξεις αλλάζουμε τα σύμβολα τους (όσα επιθυμούμε και όπως εμείς επιθυμούμε) χωρίς όμως να προσθέσουμε ή να αφαιρέσουμε σύμβολο. (π.χ. Εάν είναι δυαδικός κώδικας κάποια μηδενκά μπορώ να τα κάνω άσσους και το αντίστροφο) Πότε μπορούμε με την παραπάνω διαδικασία να μετατρέψουμε έναν μονοσήμαντο αλλά μη στιγμιαία αποκωδικοποιήσιμο κώδικα σε στιγμιαία αποκωδικοποήσιμο: Ποτέ (κανένας μονοσήμαντος και μή στιγμιαία αποκωδικοποιήσιμος κώδικας δεν μπορεί να μετατραπεί σε στιγμιαία αποκωδικοποιήσιμο με την παραπάνω διαδικασία). Μερικές φορές (μπορεί να γίνει, αλλά για κάποιους μονοσήμαντους και μη στιγμαία αποκωδικοποιήσιμους κώδικες μόνο). Πάντα (μπορεί να γίνει για όλους τους μονοσήμαντους και μη στιγμιαία αποκωδικοποιήσιμους κώδικες). Απ: Πάντα 35

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα):

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Κωδικοποίηση Πηγής Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Coder Decoder Μεταξύ πομπού-καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας

Διαβάστε περισσότερα

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 3: Κωδικοποίηςη Πηγήσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε

Διαβάστε περισσότερα

Συμπίεση χωρίς Απώλειες

Συμπίεση χωρίς Απώλειες Συμπίεση χωρίς Απώλειες Στόχοι της συμπίεσης δεδομένων: Μείωση του απαιτούμενου χώρου αποθήκευσης των δεδομένων. Περιορισμός της απαιτούμενης χωρητικότητας διαύλου επικοινωνίας για την μετάδοση. μείωση

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 4: Συμπίεςη χωρίσ Απώλειεσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:

Διαβάστε περισσότερα

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε. Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να

Διαβάστε περισσότερα

Κεφάλαιο 2 Πληροφορία και εντροπία

Κεφάλαιο 2 Πληροφορία και εντροπία Κεφάλαιο 2 Πληροφορία και εντροπία Άσκηση. Έστω αλφάβητο Α={0,} και δύο πηγές p και q. Έστω οτι p(0)=-r, p()=r, q(0)=-s και q()=s. Να υπολογιστούν οι σχετικές εντροπίες Η(Α,p/q) και Η(Α,q/p). Να γίνει

Διαβάστε περισσότερα

Ψηφιακή Μετάδοση Αναλογικών Σηµάτων

Ψηφιακή Μετάδοση Αναλογικών Σηµάτων Ψηφιακή Μετάδοση Αναλογικών Σηµάτων Τα σύγχρονα συστήµατα επικοινωνίας σε πολύ µεγάλο ποσοστό διαχειρίζονται σήµατα ψηφιακής µορφής, δηλαδή, σήµατα που δηµιουργούνται από ακολουθίες δυαδικών ψηφίων. Τα

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Κώδικες, 1ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Προγραμματισμός Υπολογιστών

Προγραμματισμός Υπολογιστών Προγραμματισμός Υπολογιστών Αναπαράσταση Πληροφορίας Κ. Βασιλάκης, ΣΤΕΦ, ΤΕΙ Κρήτης Δεδομένα και πληροφορία Δεδομένα είναι ένα σύνολο διακριτών στοιχείων σχετικά με ένα συμβάν ή μια διαδικασία χωρίς κάποια

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Γιώργος Δημητρακόπουλος 1 Αποκωδικοποιητής κώδικα Huffman συμπίεση δεδομένων Ξέρουμε ότι με n bits μπορούμε να κωδικοποιήσουμε 2 n διαφορετικά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ :

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από: Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Καναλιού. Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών. Κατηγορίες Κωδικών Καναλιού. Τι πετυχαίνει η Κωδ. Καναλιού. Κωδικοποίηση Καναλιού.

Καναλιού. Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών. Κατηγορίες Κωδικών Καναλιού. Τι πετυχαίνει η Κωδ. Καναλιού. Κωδικοποίηση Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών Πηγή Δεδομένων Κωδικοποίηση Καναλιού Κώδικας Πηγής Κώδικας Καναλιού Διαμόρφωση Κανάλι Δέκτης Δεδομένων Αποκωδ/ση Πηγής Αποκωδ/ση Καναλιού Αποδιαμόρφωση Κωδικοποίηση Καναλιού

Διαβάστε περισσότερα

Ο Αλγόριθμος FP-Growth

Ο Αλγόριθμος FP-Growth Ο Αλγόριθμος FP-Growth Με λίγα λόγια: Ο αλγόριθμος χρησιμοποιεί μια συμπιεσμένη αναπαράσταση της βάσης των συναλλαγών με τη μορφή ενός FP-δέντρου Το δέντρο μοιάζει με προθεματικό δέντρο - prefix tree (trie)

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Αριθμητική Κωδικοποίηση

Αριθμητική Κωδικοποίηση Αριθμητική Κωδικοποίηση Σύμβολο Πιθανότητα a 0,2 b 0,5 c 0,3 Αντιστοίχιση κάθε συμβόλου σε τμήμα του διαστήματος [0, 1] ανάλογα με την πιθανότητα εμφάνισής του. Αναπαράσταση του συμβόλου με έναν αριθμό

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2 ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση

Διαβάστε περισσότερα

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων... Περιεχόμενα Ανάλυση προβλήματος 1. Η έννοια πρόβλημα...13 2. Επίλυση προβλημάτων...17 Δομή ακολουθίας 3. Βασικές έννοιες αλγορίθμων...27 4. Εισαγωγή στην ψευδογλώσσα...31 5. Οι πρώτοι μου αλγόριθμοι...54

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Αναπαράσταση Δεδομένων

Αναπαράσταση Δεδομένων Αναπαράσταση Δεδομένων Περιεχόμενα Ανακεφαλαίωση Αναπαράσταση Δεδομένων Εσωτερικό Υπολογιστή Αναπαράσταση Κειμένου Αναπαράσταση Εικόνας Αναπαράσταση Ήχου Δεδομένα στο Εσωτερικό του Η/Υ Αναπαράσταση Δεδομένων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή 1 1. Αριθμοί: Το Δυαδικό Σύστημα Οι ηλεκτρονικοί υπολογιστές

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος.

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος. Σειρές Σειρές και μερικά αθροίσματα: Το πρόβλημα της άθροισης μιας σειράς άπειρων όρων είναι πολύ παλιό. Μερικές φορές μια τέτοια σειρά καταλήγει σε πεπερασμένο αποτέλεσμα, μερικές φορές απειρίζεται και

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων

Διαβάστε περισσότερα

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Τι θα μάθουμε σήμερα: Να αναφέρουμε τον τρόπο αναπαράστασης των δεδομένων (δυαδικό σύστημα) Να αναγνωρίζουμε πώς γράμματα και σύμβολα από

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών Συμπίεση Δεδομένων Δοκιμής (Test Data Compression), Παν Πατρών Test resource partitioning techniques ΑΤΕ Automatic Test Equipment (ATE) based BIST based Έλεγχος παραγωγής γής βασισμένος σε ΑΤΕ Μεγάλος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ: Κυκλικός Έλεγχος Πλεονασμού CRC codes Cyclic Redundancy Check codes Ο μηχανισμός ανίχνευσης σφαλμάτων στις επικοινωνίες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Το κύριο αντικείμενο της Συνδυαστικής Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνό-

Διαβάστε περισσότερα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα οµή Η/Υ: Αναπαράσταση εδοµένων Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα Περιεχόµενα Κωδικοποίηση δεδοµένων Κώδικας ASCII Άλλοι κώδικες Παραδείγµατα Συστήµατα Αρίθµησης Τα συνηθέστερα

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Κώδικες µεταβλητού µήκους

Κώδικες µεταβλητού µήκους 6 Κώδικες µεταβλητού µήκους Στο κεφάλαιο αυτό µελετώνται οι κώδικες µεταβλητού µήκους, στους οποίους όλες οι λέξεις δεν έχουν το ίδιο µήκος και δίνονται οι µέ- ϑοδοι Fano-Shannon και Huffman για την κατασκευή

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA Κινητές επικοινωνίες Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA 1 Πολυπλεξία Η πολυπλεξία επιτρέπει την παράλληλη μετάδοση δεδομένων από διαφορετικές πηγές χωρίς αλληλοπαρεμβολές. Τρία βασικά είδη TDM/TDMA

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, }

{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, } ΣΥΝΟΛΑ Ένα σύνολο είναι µία συλλογή διακεκριµένων αντικειµένων, τα δε αντικείµενά του οµάζονται στοιχεία του συνόλου. Γράφουµε S { a, b, } =, όταν θέλουμε να δηλώσουµε ότι το σύνολο που ονοµάζεται είναι

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 15-10-13 Μ. Παπαδημητράκης. 1 Παράδειγμα. Ως εφαρμογή της Αρχιμήδειας Ιδιότητας θα μελετήσουμε το σύνολο { 1 } A = n N = {1, 1 n 2, 1 } 3,.... Κατ αρχάς το σύνολο A έχει προφανώς

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Αναπαράσταση δεδομένων

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Αναπαράσταση δεδομένων ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Αναπαράσταση δεδομένων Υπολογιστικά συστήματα: Στρώματα 1 επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Τύποι δεδομένων 2 Τα δεδομένα

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Συμπίεση Πολυμεσικών Δεδομένων

Συμπίεση Πολυμεσικών Δεδομένων Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων /

ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων / βλ. αρχείο PLH22_OSS4_slides διαφάνειες 47-57 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων/ Ν.Δημητρίου σελ. 1 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων/ Ν.Δημητρίου σελ. 2 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Θεώρημα κωδικοποίησης πηγής

Θεώρημα κωδικοποίησης πηγής Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ 5. Εισαγωγή Ο σκοπός κάθε συστήματος τηλεπικοινωνιών είναι η μεταφορά πληροφορίας από ένα σημείο (πηγή) σ ένα άλλο (δέκτης). Συνεπώς, κάθε μελέτη ενός τέτοιου συστήματος

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα