Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 3a: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi
|
|
- Ἰοῦστος Ευταξίας
- 1 χρόνια πριν
- Προβολές:
Transcript
1 Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς Μάθημα 3a: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 7 Μαρτίου 2013
2 Σκέδαση και ενεργός διατομή Χρυσός κανόνας του Fermi Phase-space = xώρος των φάσεων Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 2
3 Σκέδαση και ενεργός διατομή α b σ=κάτι σαν την επιφάνεια που παρουσίαζει το σωματίδιο b στο επερχόμενο σωματίδιο α Αλλά δεν είναι το ίδιο! Δεν έχουμε hit or miss στην αλληλεπίδραση σωματιδίων Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 3
4 Σκέδαση και ενεργός διατομή Ισύει και για δέσμες σωματιδίων Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 4
5 Ενεργός διατομή: επί μέρους και ολική Η ενεργός διατομή δεν είναι γεωμετρικός παράγοντας Εξαρτάται από τα σωματίδια που αλληλεπιδρούν π.χ. σ(π+p) > σ(e+p) > σ(ν+p) Εξαρτάται επίσης και από τα παραγόμενα σωματίδια Mπορούμε να ορίσουμε τις επί μέρους ενεργές διατομές = exclusive cross section ) = σ i π.χ., σ(pp W), σ(pp Z) ολική ενεργός διατομή = inclusive cross section = σ t o t = Σ σ i Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 5
6 Ενεργός διατομή: συνάρτηση πολλών παραγόντων Η ενεργός διατομή δεν είναι γεωμετρικός παράγοντας Εξαρτάται από τα σωματίδια που αλληλεπιδρούν π.χ. σ(π+p) > σ(e+p) > σ(ν+p) Εξαρτάται επίσης και από τα παραγόμενα σωματίδια Επίσης, πού πάνε (γωνίες) και γενικά με τι 4-ορμή παράγονται τα σωματίδια αυτά Κάθε δυνατή τελική κατάσταση έχει μια πιθανότητα να συμβεί σ = συνάρτηση πολλών παραγόντων (θ, φ, p, m...) Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 6
7 Χρυσός κανόνας του Fermi M i f = <f H I N T i> = πλάτος της διαδικασίας ή martrix element...ρ f = phase-space factor = παράγοντας του χώρου των φάσεων Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 7
8 Χώρος φάσεων Ίσα που γίνεται: Με τίποτα! Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 8
9 Χωρος φάσεων Χώρος φάσεων: χώρος ορμών και θέσεων των σωματιδίων Κάθε σωματίδιο στο χώρο των φάσεων καταλαμβάνει όγκο h 3 Eρώτηση: πόσα σωματίδια έχουν ορμή με μέτρο μεταξύ p και p + dp και βρίσκονται σε μια στερεά γωνία dω??? Απάντηση: dn = (4π p 2 dp)(v * dω/4π) / h 3 dn = V dω p 2 dp / h 3 dn = dω p 2 dp / h 3 αριθμ. τέτοιων σωματιδίων σε V=1 Εφραγμογή στη σέδαση a + b c + d ρ f = dn/de o Πυκνότητα σωματιδίων στην τελική κατάσταση. ( Εο = ενέργεια στο κέντρο μάζας ) Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 9
10 Χωρος φάσεων Χώρος φάσεων: χώρος ορμών και θέσεων των σωματιδίων Κάθε σωματίδιο στο χώρο των φάσεων καταλαμβάνει όγκο h 3 Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 10
11 Χωρος φάσεων Χώρος φάσεων: χώρος ορμών και θέσεων των σωματιδίων Κάθε σωματίδιο στο χώρο των φάσεων καταλαμβάνει όγκο h 3 Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 11
12 Υπολογισμός μόνο με χώρο φάσεων σχετική ταχύτητα συκρουόμενων σωματιδίων Σημείωση: hbar = h/2π h = 2π * hbar = 2π (αφού hbar = 1) Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 12
13 Υπολογισμός μόνο με χώρο φάσεων σχετική ταχύτητα συκρουόμενων σωματιδίων Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 13
14 Τι μαθαινουμε? Αν δεν μπορώ να υπολογίσω το Μ, δεν έχω πρόβλευη για το τι θα μετρήσει το πείραμα. Αλλά μπορώ, μελετώντας τα αποτελέσματα του πειράματος και χρησιμοποιώντας συμμετρίες να καταλάβω κάτι για την αλληλεπίδραση και τα συμμετέχοντα σωματίδια Σε ισχυρές αλληλεπιδράσεις κάνουμε συχνή χρήση συμμετριών (δύσκολος ο υπολογισμός των Matrix Elements) Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 14
15 Αρχή λεπτομερούς ισοζυγίου principle of detailed balance Εφραγμογή στη σέδαση a + b c + d Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 15
16 Αρχή λεπτομερούς ισοζυγίου Εφραγμογή στη σέδαση a + b c + d principle of detailed balance Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 16
17 Αρχή λεπτομερούς ισοζυγίου Εφραγμογή στη σέδαση a + b c + d principle of detailed balance Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 17
18 Εφαρμογή: Το σπιν του πιονίου Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 18
19 Εφαρμογή: Το σπιν του πιονίου Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 19
20 Γενικά: Συχνή χρήση συμμετριών στισ ισχυρές αλληλεπιδράσεις Αν δεν μπορώ να υπολογίσω το Μ, δεν έχω πρόβλεψη για το τι θα μετρήσει το πείραμα. Αλλά μπορώ, μελετώντας τα αποτελέσματα του πειράματος και χρησιμοποιώντας συμμετρίες να καταλάβω κάτι για την αλληλεπίδραση και τα συμμετέχοντα σωματίδια Σε ισχυρές αλληλεπιδράσεις κάνουμε συχνή χρήση συμμετριών (δύσκολος ο υπολογισμός των Matrix Elements) θα δούμε λίγο το ΙΣΟΣΠΙΝ Θ/νίκη - 7-Μαρ-2013 Κ. Κορδάς - Σκέδαση - Χρυσος κανόνας Fermi - παράγοντας φάσεων 20
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6: Xρυσός κανόνας του Fermi, χώρος των φάσεων, υπολογισμοί, ισοσπίν
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6: Xρυσός κανόνας του Fermi, χώρος των φάσεων, υπολογισμοί, ισοσπίν Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 19 Μαρτίου 2015 Σκέδαση, ενεργός διατομή
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 5: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi. Λέκτορας Κώστας Κορδάς
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 5: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης,
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη
Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων
Στοιχειώδη Σωμάτια ΙΙ (8ου εξαμήνου, εαρινό 2011-12) Χ. Πετρίδου Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 6 Μαρτίου 2014 Μαθηµα
Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,
Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου
Επταχθντές - Ανιχνευτές Δ. Σαμψωνίδης & Κ.Κορδάς Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Μάθημα 3 Αυθόρητη διάσπαση και χρόνος ζωής, Σκεδάσεις και Ενεργός διατομή
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 3 Αυθόρητη διάσπαση και χρόνος ζωής, Σκεδάσεις και Ενεργός διατομή Κώστας Κορδάς
Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα D3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ)
Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2013-14 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ
Ασκήσεις #1 επιστροφή 15/10/2012
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #1 επιστροφή 15/10/2012 Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα
ΦΥΕ 40 Κβαντική Φυσική Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα Μαθημα 5.1 - διασπάσεις Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας
Διάλεξη 6: Φυσική Ραδιενέργεια και πυρηνικές αντιδράσεις
Διάλεξη 6: Φυσική Ραδιενέργεια και πυρηνικές αντιδράσεις Φυσική Ραδιενέργεια Οι ραδιενεργοί πυρήνες ταξινομούνται σε δύο βασικές κατηγορίες. Αυτούς που υπήρχαν και υπάρχουν στην φύση πριν από την πρώτη
Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις
Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων + + 0 K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων
ΚΕΦΑΛΑΙΟ 1 : AΤΟΜΙΚΟ ΠΡΟΤΥΠΟ
ΚΕΦΑΛΑΙΟ 1 : AΤΟΜΙΚΟ ΠΡΟΤΥΠΟ Ο J.J. Thomson πρότεινε στο ομώνυμο πρότυπο του πυρήνα ότι τα ηλεκτρόνια κινούνται μηχανικά σε σταθερές τροχιές με ισοδύναμο θετικό φορτίο κατανεμημένο ομογενώς στη μάζα του
Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό
Το Ισοτοπικό σπιν. και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων. Κώστας Κορδάς. LHEP, University of Bern
Το Ισοτοπικό σπιν και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων Κώστας Κορδάς LHEP, University of Bern ιάλεξη υπό τύπο διδασκαλίας σε προπτυχιακούς φοιτητές Αριστοτέλειο Πανεπιστήµιο
Ασκήσεις #1 επιστροφή 11/11/2011
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #1 επιστροφή 11/11/2011 Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Μάθημα 18 Αλληλεπίδραση ακτινοβολίας με την ύλη.
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 18 Αλληλεπίδραση ακτινοβολίας με την ύλη. Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6β β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)
Ασκήσεις #7 αποδιεγέρσεις γ
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2014-15) Τμήμα Τ3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #7 αποδιεγέρσεις γ Κ. Κορδάς, Δ. Σαμψωνίδης Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4)
ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 8 Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Η θεωρία των μαγνητικών μονοπόλων προβλέπει οτι αυτά αντιδρούν με πρωτόνια και δίνουν M + p M + e + + π 0 (1) με ενεργό διατομή σ 0.01 barn. Το
ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ
Μάθηµα 1 ο, 30 Σεπτεµβρίου 2008 (9:00-11:00). ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Ακτινοβολία µέλανος σώµατος (1900) Plank: έδωσε εξήγηση του φάσµατος (κβαντική ερµηνεία*) ΠΑΡΑ ΟΧΗ Το φως δεν είναι µόνο κύµα. Είναι
Ρυθµός Διάσπασης Σωµατιδίου
Ρυθµός Διάσπασης Σωµατιδίου Ας θεωρήσουµε την «two-body» διάσπαση i! q 1! Θέλουµε να υπολογίσουµε τον ρυθµό διάσπασης σε πρώτης τάξης θεωρίας διαταραχών, περιγράφοντας τα αρχικά σωµάτια ως ελεύθερα, επίπεδα
ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ
ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ 2015 2 ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ: ΘΕΜΑ Α Στις Ερωτήσεις πολλαπλής επιλογής 1 έως 4 να γράψετε
Με διεθνή σύμβαση το 1961, καθιερώθηκε ότι 1 amu (atomic mass unit) είναι το 1/12 της μάζας του ουδέτερου ατόμου του άνθρακα 12 C, επομένως:
ΚΕΦΑΛΑΙΟ : ΑΤΟΜΙΚΟΣ ΠΥΡΗΝΑΣ-ΙΔΙΟΤΗΤΕΣ Ο πυρήνας του ατόμου αποτελείται από πρωτόνια και νετρόνια, τα νουκλεόνια που είναι φερμιόνια με σπιν ½, όπως και τα λεπτόνια. Η μάζα του νετρονίου είναι 0.14% μεγαλύτερη
Μάθημα 7 Διαγράμματα Feynman
Στοιχειώδη Σωμάτια (M.Sc Υπολογιστικής Φυσικής) Μάθημα 7 Διαγράμματα Feynman Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη M.Sc. Υπολ. Φυσ., AΠΘ, 2 Δεκεμβρίου 2013 Κουάρκ και Λεπτόνια
β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 2β: Πειράματα-Ανιχνευτές
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς Μάθημα 2β: Πειράματα-Ανιχνευτές Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης,
Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.
Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 8 ο μάθημα 1 Κεφάλαιο 11 Συγκρούσεις 2 Συγκρούσεις Στις συγκρούσεις μεταξύ
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,
Γ. Τσιπολίτης.
Εφαρμογές των Ιοντιζουσών Ακτινοβολιών στην Ιατρική & τη Βιολογία http://www.physics.ntua.gr/~yorgos/med/index.php 1 Βιβλιογραφία Ε. Ν. Γαζής, Ιοντίζουσες Ακτινοβολίες Εφαρμογές στη Βιολογία & Ιατρική.
Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 2η Πετρίδου Χαρά Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 10-Jan-11 Πετρίδου Χαρά Στοιχειώδη Σωµάτια
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΑNΔΡIΑNΑ ΜΑΡΤΙΝΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ
Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα
Θεωρία Yukawa Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα έφτασε στο συμπέρασμα ότι η εμβέλεια της δύναμης εξαρτάται από τη μάζα, m, του κβάντου. t /mc R c t /mc Η εξίσωση Klein-Gordon
Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου
Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Τρέχοντα Κύματα Κύμα ονομάζεται η διάδοση μιας διαταραχής σε όλα τα σημεία του ελαστικού μέσου με ορισμένη ταχύτητα. Κατά τη διάδοση ενός κύματος
Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Σύγχρονη Φυσική ΙΙ. Κεφάλαιο 1 Τα Μοντέλα των J.J. Thompson και E. Rutherford Σκέδαση Rutherford
Τα Μοντέλα των J.J. Thompson και E. Rutherford Σκέδαση Rutherford Σκοποί της πρώτης διάλεξης: I. Να εισάγει τους φοιτητές στα ατομικά μοντέλα των J.J. Thompson και E. Rutherford. 03/06/ II. III. IV. Την
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας
Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 10η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Σωμάτια & Αντισωμάτια Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2011 Πετρίδου Χαρά Στοιχειώδη Σωμάτια
Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία
Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:
Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και
Διάσπαση σωµατιδίων. = m C 2 + p 2 = m C 2 + E B 2! m B E C = (E B = (E C. p B. , p), p C. ,- p) = (m A , 0) p A = E B. + m C 2 + E B 2! m B.
πριν: µετά: Διάσπαση σωµατιδίων p A = (m A, 0) p B = (E B, p), p C = (E C,- p) E C = m C + p = m C + E B! m B m A = E B + m C + E B! m B " ( m A! E ) B = m C + E B! m B " m A! m A E B = m C! m B " E B
ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ
ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ Αποδείξαμε πειραματικά, με τη βοήθεια του φαινομένου της περίθλασης, ότι τα ηλεκτρόνια έχουν εκτός από τη σωματιδιακή και κυματική φύση. Υπολογίσαμε τις σταθερές πλέγματος του γραφίτη
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: ΘΕΜΑ 1ο Να γράψετε στο τετράδιο σας
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,
Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά
Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:
Το άτομο και η δομή του Ανακάλυψη του πυρήνα
Το άτομο και η δομή του Ανακάλυψη του πυρήνα Δημόκριτος Schrödinger J.J. Thomson Rutherford Bohr De Broglie Dalton Heisenberg Born και άλλοι 1 Πόσο μεγάλα είναι τα άτομα? Πόσο μεγάλοι είναι οι πυρήνες?
. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
Μέγεθος, πυκνότητα και σχήμα των πυρήνων. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
Μέγεθος, πυκνότητα και σχήμα των πυρήνων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής ΕΡΩΤΗΜΑΤΑ Ποιο είναι το μέγεθος των πυρήνων; Τι πυκνότητα έχουν οι πυρήνες; Πως κατανέμεται η πυρηνική ύλη στον πυρήνα; Πώς
Ανιχνευτές σωματιδίων
Ανιχνευτές σωματιδίων Προκειμένου να κατανοήσουμε την φύση του πυρήνα αλλά και να καταγράψουμε τις ιδιότητες των στοιχειωδών σωματιδίων εκτός των επιταχυντικών συστημάτων και υποδομών εξίσου απαραίτητη
Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16
Διάλεξη 13: Στοιχειώδη σωμάτια Φυσική στοιχειωδών σωματίων Η φυσική στοιχειωδών σωματιδίων είναι ο τομέας της φυσικής ο οποίος προσπαθεί να απαντήσει στο βασικότατο ερώτημα: Ποια είναι τα στοιχειώδη δομικά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα
Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων
Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων 1) Ποιες από τις πιο κάτω αντιδράσεις επιτρέπονται και ποιες όχι βάσει των αρχών διατήρησης που ισχύουν για τις ασθενείς αλληλεπιδράσεις ν μ + p μ + +n ν e +
www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html
Σύγχρονη Φυσική Στοιχειώδη Σωµατίδια Σωµατίδια Επιταχυντές Ανιχνευτές Αλληλεπιδράσεις Συµµετρίες Νόµοι ιατήρησης Καθιερωµένο Πρότυπο www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική: Στοιχειώδη
P = E /c. p γ = E /c. (p) 2 = (p γ ) 2 + (p ) 2-2 p γ p cosθ E γ. (pc) (E γ ) (E ) 2E γ E cosθ E m c Eγ
Σκέδαση Compton Το φαινόμενο Compton περιγράφει ργρ τη σκέδαση ενός φωτονίου από ένα ελεύθερο ατομικό ηλεκτρόνιο: γ + e γ + e. To φωτόνιο δεν εξαφανίζεται μετά τη σκέδαση αλλά αλλάζει κατεύθυνση και ενέργεια.
ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ
ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης ρευστού
p T cosθ B Γ. Τσιπολίτης K - + p K - + p p slow high ionisation Κατά τον ιονισμό το εκπεμπόμενο μ e θα έχει κινητική ενέργεια : 0 T T max
δ rays Κατά τον ιονισμό το εκπεμπόμενο μ e θα έχει κινητική ενέργεια : 0TT max q, p -ray με κινητική ενέργεια T e και ορμή p e παράγεται σε μια γωνία cosθ Te p p T e max max όπου p max η ορμή ενός e με
ΤΟ ΑΤΟΜΟ. ΔΗΜΟΚΡΗΤΟΣ [Η ύλη αποτελείται από πολύ μικρές αδιαίρετες και άφθαρτες μονάδες ΑΤΟΜΑ]
ΤΟ ΑΤΟΜΟ ΔΗΜΟΚΡΗΤΟΣ [Η ύλη αποτελείται από πολύ μικρές αδιαίρετες και άφαρτες μονάδες ΑΤΟΜΑ] Μελέτη των ηλεκτρικών εκκενώσεων μέσα σε πολύ αραιωμένο αέρια [Εκκένωση αίγλης ] Καοδικές Ακτίνες Διαυλικές
Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15
Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων
Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας
Προλεγόµενα Σπύρος Ευστ. Τζαµαρίας 2016 1 S.I. UNITS: kg m s Natural Units δεν είναι ιδιαίτερα «βολικές» για τους υπολογισµούς µας αντί αυτών χρησιµοποιούµε Natural Units που βασίζονται σε θεµελιώδεις
John Bardeen, William Schockley, Walter Bratain, Bell Labs τρανζίστορ σημειακής επαφής Γερμανίου, Bell Labs
Ψηφιακή τεχνολογία Ε. Λοιδωρίκης Δ. Παπαγεωργίου Η εφεύρεση του τρανζίστορ Το πρώτο τρανζίστορ John rn, Willi Schocl Wltr rtin, ll Ls 948 τρανζίστορ σημειακής επαφής Γερμανίου, ll Ls 4 Τεχνολογία πυριτίου
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική
Διάλεξη 17: Το μοντέλο των κουάρκ
Διάλεξη 17: Το μοντέλο των κουάρκ Από την επιτυχία της αναπαράστασης των σωματιδίων σε οκταπλέτες ή δεκαπλέτες προκύπτει ένα πολύ εύλογο ερώτημα. Τι συμβαίνει και οι ιδιότητες των σωματιδίων που έχουν
Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα
Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Ενέργεια σύνδεσης Η συνολική μάζα ενός σταθερού πυρήνα είναι πάντοτε μικρότερη από αυτή των συστατικών του. Ως παράδειγμα μπορούμε να θεωρήσουμε έναν πυρήνα
ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Κβαντική Φυσική Ι. Ενότητα 3: Κυματική φύση σωματιδίων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 3: Κυματική φύση σωματιδίων Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να κατανοηθεί η κυματική φύση των σωματιδίων καθώς και
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U
A A N A B P Y T A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Σωλήνας U Γ U= B Θ.Ι. B Κατακόρυφος ισοπαχής σωλήνας σχήματος U περιέχει ιδανικό υγρό, δηλαδή, υγρό που σε κάθε επιφάνεια ασκεί δυνάμεις κάθετες στην
δ-ray με κινητική ενέργεια T e και ορμή p e παράγεται σε μια γωνία Θ q, p
δ rays Κατά τον ιονισμό το εκπεμπόμενο θα έχει κινητική ενέργεια : 0 T T max q, p δ-ray με κινητική ενέργεια T και ορμή p παράγεται σε μια γωνία Θ T p cosθ = p T max max όπου p max η ορμή ενός με τη μέγιστη
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
Παραγωγή ακτίνων Χ. V e = h ν = h c/λ λ min = h c/v e λ min (Å) 12400/V
Παραγωγή ακτίνων Χ Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε µήκη κύµατος της τάξης των Å (=10-10 m). Στο ηλεκτροµαγνητικό φάσµα η ακτινοβολία Χ εκτείνεται µεταξύ της περιοχής των ακτίνων γ και
( ) ( 0 ) ( e. ( t) ( ) ( ) λ ( ) λ N λ λ. ln λ / λ. dt = = λ λ. Ιδανική ισορροπία! t, ο λόγος των ενεργοτήτων Β/Α: N b. c b b.
Αλυσίδες Ραδιενεργών ιασπάσεων A B C ιαδοχικές διασπάσεις: λ λ (σταθερός πυρήνας) dn λnd N 0 η ενεργότητα dn λnd λnd Αρχικές συνθήκες: της πηγης N ( 0) 0 N δεν ειναι λ dn λ N d Nc ( 0) 0 c λ N ( ) N (
ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο
ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» 2 ο κεφάλαιο: «ΚΥΜΑΤΑ» 1.1 Ένα σώµα εκτελεί ταυτόχρονα δύο γραµµικές αρµονικές ταλαντώσεις γύρω από την ίδια θέση ισορροπίας και µε την ίδια διεύθυνση, που περιγράφονται
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 1α Ύλη, τρόπος διαβάσματος και εξέτασης Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Νουκλεόνια και ισχυρή αλληλεπίδραση
Νουκλεόνια και ισχυρή αλληλεπίδραση Πρωτόνια και νετρόνια. Το πρότυπο των κουάρκ για τα νουκλεόνια. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Κουάρκ: τα δομικά στοιχεία των αδρονίων ΑΣΚΗΣΗ Διασπάσεις σωματιδίων
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη
Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ
ΔΙΩΝΙΣΜ: Μ Θ Η Μ : www.paideia-agrinio.gr ΤΞΗΣ ΛΥΕΙΟΥ Φ Υ ΣΙ Η ΤΕ ΥΘ ΥΝ ΣΗ Σ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ :...... Σ Μ Η Μ :..... Η Μ Ε Ρ Ο Μ Η Ν Ι : 23 / 0 3 / 2 0 1 4 Ε Π Ι Μ Ε Λ ΕΙ Θ ΕΜ Σ Ω Ν : ΥΡΜΗ
ΠΑΡΑΡΤΗΜΑ Β. ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States
ΠΑΡΑΡΤΗΜΑ Β ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States Στατιστική Φυσική Διαφάνεια 1 DOS H DOS περιγράφει τον αριθμό των καταστάσεων που είναι προσιτές σε ένα σύστημα
Πληροφορίες για την δέσμη Τ9 και τις πειραματικές εγκαταστάσεις
Πληροφορίες για την δέσμη Τ9 και τις πειραματικές εγκαταστάσεις Η δέσμη πρωτονίων, που έρχεται από τον επιταχυντή PS, προσκρούει στον Βόρειο στόχο, δημιουργώντας έτσι τα σωματίδια της δέσμης Τ9. Οι σύγκρουση
Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 6-7 Κβαντομηχανική Ι 6o Σετ Ασκήσεων Άσκηση a) Τρόπος α : Λύνουμε όλους (ή έστω μερικούς από) τους συνδυασμούς [l i, r j ]: [l x, x] = [l y, y] = [l z, x] = i ħ y Κ.ο.κ., και συμπεραίνουμε
Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.
Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου
L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2016
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Θέμα 1: Ερωτήσεις (10 Μονάδες) (Σύντομη αιτιολόγηση.
Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Κώστας Κορδάς Αριστοτέλειο
Διάλεξη 9: Στατιστική Φυσική
Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική
Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής
501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ Γ.Ο.Ι. ΧΩΡΟΥΣ
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 204 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το
Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )
vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς
Οι φυσικές διαδικασίες της Αστροφυσικής Υψηλών Ενεργειών
Οι φυσικές διαδικασίες της Αστροφυσικής Υψηλών Ενεργειών 3 Το φάσμα της φωτεινής ενέργειας που εκπέμπουν οι αστέρες παράγεται και διαμορφώνεται στο εσωτερικό τους σύμφωνα με καλά καθορισμένους φυσικούς
# αλλ/σεων με e # αλλ/σεων με πυρήνες
Απώλεια ενέργειας φορτισμένων σωματιδίων Όταν ένα φορτισμένο σωματίδιο κινείται μέσα στην ύλη αλληλεπιδρά ΗΜ με τα αρνητικά e και τους θετικούς πυρήνες ανταλλάσσοντας φωτόνια. Το αποτέλεσμα αυτών των αλλ/σεων
16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια
Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς
Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται