Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Οπτικό θεώρημα και συντονισμοί
|
|
- Μυρίνα Γεννάδιος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Οπτικό θεώρημα και συντονισμοί Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 21 Μαρτίου 2013
2 Τι θα συζητήσουμε σήμερα Οπτικό θεώρημα: Η ολική ενεργός διατομή μπορεί να βρεθεί γνωρίζοντας την ελαστική σε γωνία μηδέν Η ολική ενεργός διατομή έχει άνω όριο Συντονισμοί Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 2
3 Α. Οπτικό Θεώρημα Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 3
4 Σκέδαση Σκέδαση: (a) Εισερχόμενα σωμάτια = επίπεδο αδιατάρακτο κύμα (a) Αρχική κατάσταση: Εισερχόμενο κύμα k= 2 π λ = 1 ƛ = p ħ e i kz ωt Εισερχόμενα σωμάτια: συγκεκριμένη ορμή p Κέντρο σκέδασης z ψ i =e ikz ikr cosθ =e (b) Τελική κατάσταση: Εξερχόμενο κύμα z ψ f =e ikz eikr r F θ, φ (b) Εξερχόμενα σωμάτια = επίπεδο κύμα + σφαιρικό κύμα από το κέντρο σκέδασης Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 4
5 Κύμα σκέδασης και ενεργός διατομή Σκέδαση: (a) Εισερχόμενα σωμάτια = επίπεδο κύμα (b) Εξερχόμενα σωμάτια = επίπεδο κύμα + σφαιρικό κύμα από το κέντρο σκέδασης (a) Αρχική κατάσταση: Εισερχόμενο κύμα Κέντρο σκέδασης ψ i =e ikz ikr cosθ =e (b) Τελική κατάσταση: Εξερχόμενο κύμα z ψ f =e ikz eikr r F θ, φ ψ σ κ ε δ =ψ f ψ i = eikr r F θ, φ Κύμα σκέδασης = τελικό αρχικό κύμα z dσ =[ F θ,φ ]2 dω Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 5
6 Ανάλυση επίπεδων κυμάτων Επίπεδο κύμα = υπέρθεση μιας σειράς εισερχόμενων και εξερχόμενων σφαιρικών κυμάτων, το καθ ένα με συγκεκριμένη γωνιακή στροφορμή (και m=0 ανεξάρτητα του φ) ψ i =e ikz i = 2 1 e ikr P 2 kr cos θ i 2 1 e ikr P 2 kr εισερχόμενα σφαιρικά κύματα + εξερχόμενα σφαιρικά κύματα Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 6
7 Ανάλυση επίπεδων κυμάτων Επίπεδο κύμα = υπέρθεση μιας σειράς εισερχόμενων και εξερχόμενων σφαιρικών κυμάτων, το καθ ένα με συγκεκριμένη γωνιακή στροφορμή (και m=0 ανεξάρτητα του φ) ψ i =e ikz i = 2 1 e ikr P 2 kr cos θ i 2 1 e ikr P 2 kr εισερχόμενα σφαιρικά κύματα + εξερχόμενα σφαιρικά κύματα ψ i =e ikz = i 2 kr 2 1 [ e ikr e ikr ]P Εισερχόμενο αδιατάρακτο επίπεδο κύμα ψ f = i 2 kr 2 1 [ e ikr n e i2δ e ikr ] P Εξερχόμενο παραμορφωμένο επίπεδο κύμα Το δυναμικό σκέδασης μπορεί να μεταβάλλει τη φάση (δ ) το πλάτος (n ) των εξερχόμενων σφαιρικών κυμάτων Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 7
8 Ανάλυση επίπεδων κυμάτων Επίπεδο κύμα = υπέρθεση μιας σειράς εισερχόμενων και εξερχόμενων σφαιρικών κυμάτων, το καθ ένα με συγκεκριμένη γωνιακή στροφορμή (και m=0 ανεξάρτητα του φ) ψ i =e ikz i = 2 1 e ikr P 2 kr cos θ i 2 1 e ikr P 2 kr εισερχόμενα σφαιρικά κύματα + εξερχόμενα σφαιρικά κύματα ψ i =e ikz = i 2 kr ψ f = i 2 kr 2 1 [ e ikr e ikr ]P 2 1 [ e ikr n e i2δ e ikr ] P Η ανάπτυξη αυτή ισχύει όταν kr >> 1 Τυπικά έχουμε: p~100 MeV/c και r~10cm ==> ΟΚ Το δυναμικό σκέδασης μπορεί να μεταβάλλει Εισερχόμενο αδιατάρακτο επίπεδο κύμα Εξερχόμενο παραμορφωμένο επίπεδο κύμα τη φάση (δ ) το πλάτος (n ) των εξερχόμενων σφαιρικών κυμάτων Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 8
9 Κύμα σκέδασης οι λεπτομέρειες Εισερχομενο και εξερχόμενο κυμα = υπέρθεση σφαιρικών κυμάτων, εισερχομένων και εξερχομένων καθ' ένα με συγκεκριμένη γωνιακή στροφορμή ψ i =e ikz = i 2 kr ψ f = i 2 kr 2 1 [ e ikr e ikr ]P 2 1 [ e ikr n e i2δ e ikr ] P Εισερχόμενο αδιατάρακτο επίπεδο κύμα Εξερχόμενο παραμορφωμένο επίπεδο κύμα ψ σ κ ε δ =ψ f ψ i = eikr kr 2 1 [ n ei2δ ] P ψ σ κ ε δ =ψ f ψ i = eikr r F θ, φ F θ = 1 k 2 1 n ei2δ P Πλάτος σκέδασης:συνάρτηση των αλλαγών φάσεων δ & των επί μέρους πλατών η Partia wave anaysis of the Scattering ampitude Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 9
10 Ελαστική σκέδαση dσ =[ F θ,φ ]2 dω F θ = 1 k Οπτικό θεώρημα 2 1 n ei2δ Ολική ενεργός διατομή: P Ανελαστική σκέδαση: σ ε λ =4π ƛ 2 σ α ν =π ƛ 2 σ ο λ =σ α ν σ ε λ =π ƛ 2 Eλαστική σκέδαση 2 1 [ n ei2δ n n cos2δ ]2 Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 10
11 Ελαστική σκέδαση dσ =[ F θ,φ ]2 dω F θ = 1 k Οπτικό θεώρημα 2 1 n ei2δ Ολική ενεργός διατομή: F θ = 1 k Im F 0 = 1 2k 2 1 n ei2 δ P Ανελαστική σκέδαση: σ ε λ =4π ƛ 2 σ α ν =π ƛ 2 σ ο λ =σ α ν σ ε λ =π ƛ 2 P n cos2δ Eλαστική σκέδαση 2 1 [ n ei2δ n n cos2δ [ θ =0, P 1 =1, ] Im F 0 = k 4π σ ο λ Θυμηθείτε: εισερχόμενα σωμάτια με συγκεκριμένη ορμή p k= 2 π λ = 1 ƛ = p ħ Οπτικό θεώρημα: Το φανταστικό μέρος του πλάτους της πρόσω (θ=0) ελαστικής σκέδασης δίνει την ΟΛΙΚΗ ενεργό διατομή!!! (σε όλες τις γωνίες) Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 11 ]2
12 Μερικές, αλλά ενδιαφέρουσες, περιπτώσεις σ ελ =4π ƛ 2 (2+1)[ n ei2δ n=1 : ]2 σελ =4π ƛ 2 ( 2+1)sin 2 δ Για συγκεκριμένη στροφορμή, όταν δ = π/2, τότε έχω max. ελαστική ενεργό διατομή σ max ελ =4πƛ 2 ( 2+1) Μέγιστη ελαστική σ αν =π ƛ 2 ( 2+1)(1 n 2 ) n =0 : σ max αν =π ƛ 2 ( 2+1) Μέγιστη ανελαστική Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 12
13 Μερικές, αλλά ενδιαφέρουσες, περιπτώσεις σ ε λ =4π ƛ [ n ei2δ n=1: σ ]2 ε λ=4π ƛ sin 2 δ Για συγκεκριμένη στροφορμή, όταν δ = π/2, τότε έχω max. ελαστική ενεργό διατομή σ α ν =π ƛ n 2 σ max ελ =4πƛ 2 ( 2+1) n =0 : σ max α ν =π ƛ Σημειώστε ότι σ' αυτή την περίπτωση (η = 0 ) η ελαστική ενεργός διατομή ΔΕΝ είναι μηδέν, αλλά είναι ίση με την ανελαστική: σ ελ =π ƛ 2 ( 2+1) Μέγιστη ελαστική Μέγιστη ανελαστική Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 13
14 Μερικές, αλλά ενδιαφέρουσες, περιπτώσεις σ ε λ =4π ƛ [ n ei2δ n=1: σ ]2 ε λ=4π ƛ sin 2 δ Για συγκεκριμένη στροφορμή, όταν δ = π/2, τότε έχω max. ελαστική ενεργό διατομή σ α ν =π ƛ n 2 Απλή κλασική εικόνα για την ανελαστική σκέδαση: Η τροχιακή στροφορμή συνδέεται με την παράμετρο κρούσης και η ενεργός διατομή θεωρείται γεωρμετρική επιφάνεια σ max ε λ =4π ƛ n =0 : σ max α ν =π ƛ Μέγιστη ελαστική Μέγιστη ανελαστική Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 14
15 Μερικές, αλλά ενδιαφέρουσες, περιπτώσεις σ ε λ =4π ƛ [ n ei2δ n=1: σ ]2 ε λ=4π ƛ sin 2 δ Για συγκεκριμένη στροφορμή, όταν δ = π/2, τότε έχω max. ελαστική ενεργό διατομή σ α ν =π ƛ n 2 σ max ε λ =4π ƛ n =0 : σ max α ν =π ƛ Μέγιστη ελαστική Μέγιστη ανελαστική Ολική ενεργός διατομή: Μέγιστο, για τη μέγιστη παράμετρο κρούσης (που είναι η εμβέλεια της δύναμης αλληλεπίδρασης) max σ ολ =σ αν + σ ελ =π ƛ 2 =0 σ ολ max max =4 π ƛ 2 (2+1 )) (2+1)2 (1 n cos 2δ ) Μέγιστη ολική Οι θεωρίες που φτιάχνουμε δεν επιτρέπεται να δίνουν ενεργές διατομές πάνω από αυτό το ανώτατο όριο!!! (unitarity imit) Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 15
16 Β. Συντονισμοί Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 16
17 Συντονισμός προτιμητέο partia wave dσ =[ F θ,φ ]2 dω F θ = 1 k σ ε λ =4π ƛ n ei2 δ P 2 1 [ n ei2δ ]2 f ( ) n ei2δ = i 2 in 2 ei2δ Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 17
18 Συντονισμός προτιμητέο partia wave dσ =[ F θ,φ ]2 dω F θ = 1 k σ ε λ =4π ƛ 2 f ( ) n ei2δ 2 1 n ei2 δ P 2 1 [ n ei2δ = i 2 in 2 ei2δ ]2 Μπορεί κάποιο από τα να κυριαρχεί στο άθροισμα Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 18
19 Συντονισμός προτιμητέο partia wave Γ=ħ /τ σ ε λ Ε =4 π ƛ 2 Γ 2 /4 2 1 Ε ΣΥΝ Ε 2 Γ 2 / 4 Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 19
20 Συντονισμός προτιμητέο partia wave σ ε λ Ε =4 π ƛ 2 Γ 2 /4 2 1 Ε ΣΥΝ Ε 2 Γ 2 / 4 Για σκεδαση σωνματιδίων a,b με spin=0, o συντονισμος θα έχει J = σ ε λ Ε =4 π ƛ 2 Γ 2 / 4 2J 1 Ε ΣΥΝ Ε 2 Γ 2 /4 Για σκεδαση σωματιδίων a, b με σπιν s a και s b, παίρνουμε το μέσο όρο μεταξύ των (2s a +1)*(2s b +1) δυνατών αρχικών καταστάσεων σπίν σ ε λ Ε = 4π ƛ2 2J 1 2 s a 1 2 s b 1 Γ 2 /4 Ε ΣΥΝ Ε 2 Γ 2 /4 σ ελ σ max Γ Καμπύλη συντονισμού Breit Wigner (υποθέτουμε ότι ο συντονισμός διασπάται ελαστικά) π n Δ π n Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 20
21 Συντονισμός παράδειγμα σ ε λ Ε = 4π ƛ2 2J 1 2 s a 1 2 s b 1 Γ 2 /4 Ε ΣΥΝ Ε 2 Γ 2 /4 π p Δ Μ εv π p σ ε λ Ε Σ Υ Ν = 4 π ƛ2 2J 1 2 s a 1 2 s b 1 ολική ενεργός διατομή από διατήρηση της πιθανότητας (unitary principe) s a =s π =0 κ α ι s b =s p =1/2 σ ε λ =2 π λ 2 2J 1 J=3/2 σ ε λ =8π λ 2 J = 3/2 επιβεβαιώνεται και από τη γωνιακή κατανομή του πιονίου (κατεύ8υνση σκεδαζόμενου πιονίου σε σχέση με το προσπίπτον) Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 21
22 Συντονισμός παράδειγμα Θ/νίκη, 21-Μαρτίου-2013 Κ. Κορδάς - Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων 22
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6α: Οπτικό θεώρημα και συντονισμοί
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6α: Οπτικό θεώρημα και συντονισμοί Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 05 Απριλίου
Μάθημα 7o Οπτικό θεώρημα και Συντονισμοί 23/4/2015
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7o Οπτικό θεώρημα και Συντονισμοί 23/4/2015 Οπτικό θεώρημα: Τι θα συζητήσουμε σήμερα Η ολική ενεργός διατομή έχει άνω όριο Η ολική ενεργός διατομή
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 8: Παραγωγή σωματιδίων σε υψηλές ενέργειες + Πρότυπο αδρονίων με στατικά quarks
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 8: Παραγωγή σωματιδίων σε υψηλές ενέργειες + Πρότυπο αδρονίων με στατικά quarks Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη
Μάθημα 6o Οπτικό θεώρημα και Συντονισμοί 10/4/2014
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6o Οπτικό θεώρημα και Συντονισμοί 10/4/014 Οπτικό θεώρημα: Συντονισμοί Τι θα συζητήσουμε σήμερα Η ολική ενεργός διατομή μπορεί να βρεθεί γνωρίζοντας
ΟΠΤΙΚΟ ΘΕΩΡΗΜΑ (Optical Theorem)
ΟΠΤΙΚΟ ΘΕΩΡΗΜΑ (Optica heorem Συνδέει την ολική ενεργό διατοµή σκέδασης µε το φανταστικό µέρος του πρόσω πλάτους ελαστικής σκέδασης (Forward eastic scattering Im k 4& F (' % "#$? ελαστ. k / (κυµατάριθµος
Μάθημα 7o Συντονισμοί & Παραγωγή Σωματιδίων στις Υψηλές Ενέργειες 27/4/2017
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7o Συντονισμοί & Παραγωγή Σωματιδίων στις Υψηλές Ενέργειες 7/4/017 Σύνδεση σχέσης Breit-Wigner με τον χρόνο ζωης τ και το πλάτος Γ Οι Συντονισμοί
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 3a: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς Μάθημα 3a: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6: Xρυσός κανόνας του Fermi, χώρος των φάσεων, υπολογισμοί, ισοσπίν
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6: Xρυσός κανόνας του Fermi, χώρος των φάσεων, υπολογισμοί, ισοσπίν Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο
Μάθημα 4 Mέγεθος πυρήνα
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 4 Mέγεθος πυρήνα Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική
Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή
Στοιχειώδη Σωμάτια ΙΙ (8ου εξαμήνου, εαρινό 2011-12) Χ. Πετρίδου & Κ. Κορδάς Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη
Μάθημα 9o' 12/5/2014
Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Μάθημα 9o' 12/5/2014! Λεπτονικές διασπάσεις διανυσµατικών µεσονίων Παράδειγµα ουδέτερων διανυσµατικών µεσονιων Τύπος VanRoyen Weisskopf για το επιµέρους πλάτος διάσπασης
Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης
Σκέδαση Δομή Διάλεξης Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης Κβαντική θεωρία σκέδασης Πλάτος σκέδασης Υπολογισμός διατομής σκέδασης με την μέθοδο στοιχειωδών κυμάτων (partial waves) Υπολογισμός
Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2018-19 Τμήμα T3: Χ. Πετρίδου Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη
Μάθημα 4 Mέγεθος πυρήνα
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 Mέγεθος πυρήνα Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική
Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια
Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας
Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σκέδαση Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σκέδαση Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3β: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3β: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης,
Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ
Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Λεπτονικές διασπάσεις διανυσµατικών µεσονίων Παράδειγµα ουδέτερων διανυσµατικών µεσονιων V Q Q V " l l ( : e, µ ) l ( V : #,", ) l l, 0 0 0 6# " Q &( V % l l ' ) $
Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 20 Μαρτίου 2014 Σκέδαση, ενεργός διατομή
Σημαντικό: Σε περίπτωση προβλήματος επικοινωνήστε με το διδάσκοντα
Σημαντικό: Οι διαφάνειες που ακολουθούν αποτελούν συμπληρωματικό υλικό -ΚΑΙ ΜΟΝΟ- των διαλέξεων της Παρασκευής (Θ. Μερτζιμέκης) και ως τέτοιες πρέπει να λαμβάνονται. Σε περίπτωση προβλήματος επικοινωνήστε
Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη
Πειραµατική Θεµελείωση της Φυσικής
Πειραµατική Θεµελείωση της Φυσικής Στοιχειωδών Σωματιδίων (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 23 Μαρτίου 2017
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 19 Μαρτίου 2015 Σκέδαση, ενεργός διατομή
Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
55/377. 2E A 2E 1 (2π) 3 d 3 p n. p f
55/377 Ο ρυθμός διάσπασης ως συνάρτηση του M Για διασπάσεις της μορφής A 1 + 2 + 3 +... + n ακολουθούμε την ίδια μέθοδο dγ = 1 M 2 d 3 p 1 2E A 2E 1 (2π) 3 d 3 p n 2E n (2π) 3 (2π)4 δ 4 (p A p 1 p 2...
Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & X. Πετρίδου Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή,
Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη
Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό
Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2013-14 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ
Ο Πυρήνας του Ατόμου
1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,
Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου
Επταχθντές - Ανιχνευτές Δ. Σαμψωνίδης & Κ.Κορδάς Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 5: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi. Λέκτορας Κώστας Κορδάς
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 5: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης,
Μάθημα 10 & 11 Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 10 & 11 Πυρηνικό μοντέλο των φλοιών Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
γ-διάσπαση Διάλεξη 17η Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου 1 Τι θα μάθουμε σήμερα 2 Τι είναι η γ-διάσπαση γ-αποδιέγερση ηλεκτρόνια εσωτερικών μετατροπών εσωτερική δημιουργία ζεύγους (e + e - ) Πως προκύπτει?
ΦΥΣΙΚΗ θετικής τεχνολογικής κατεύθυνσης
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 04 ΦΥΣΙΚΗ θετικής τεχνολογικής κατεύθυνσης Α. γ. Α. β. Α. γ. Α4. β. Α. Α. Σωστό Β. Σωστό Γ. Λάθος Δ. Λάθος Ε. Σωστό ΘΕΜΑ Α ΘΕΜΑ Β Β.. Η ταχύτητα που έχει το αριστερό σώμα ακριβώς
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman. Λέκτορας Κώστας Κορδάς
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 18 Μαϊου 2010 Λίγο
Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση
ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο
ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ ΜΑΘΗΜΑ 4ο Αλληλεπιδράσεις αδρονίου αδρονίου Μελέτη χαρακτηριστικών των ισχυρών αλληλεπιδράσεων (αδρονίων-αδρονίων) Σε θεµελιώδες επίπεδο: αλληλεπιδράσεις µεταξύ quark
Ενεργός Διατοµή (Cross section)
Ενεργός Διατοµή (Cross section) σ = # αλληλεπδράσεων / µ. Χρ. / σωµάτιο στόχου προσπίπτουσα ροή σ, µπορεί να θεωρηθεί ως η ενεργός επιφάνεια του στόχου, δηλ. το άθροισµα των ενεργών επιφανειών των σωµατίων
Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες διασπάσεις)
ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ
ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ 2015 2 ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ: ΘΕΜΑ Α Στις Ερωτήσεις πολλαπλής επιλογής 1 έως 4 να γράψετε
Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων
Στοιχειώδη Σωμάτια ΙΙ (8ου εξαμήνου, εαρινό 2011-12) Χ. Πετρίδου Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 6 Μαρτίου 2014 Μαθηµα
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ
1 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Σε κάθε κρούση ισχύει α. η αρχή διατήρησης της μηχανικής ενέργειας. β. η αρχή διατήρησης της ορμής. γ. η αρχή διατήρησης του ηλεκτρικού φορτίου. δ. όλες οι παραπάνω αρχές.
Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα
Θεωρία Yukawa Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα έφτασε στο συμπέρασμα ότι η εμβέλεια της δύναμης εξαρτάται από τη μάζα, m, του κβάντου. t /mc R c t /mc Η εξίσωση Klein-Gordon
Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1 Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου
Επταχυντές - Ανιχνευτές Δ. Σαμψωνίδης & Κ.Κορδάς Ανιχνευτές : Μάθημα 1 Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Επιταχυντές
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1 Ορμή και Δύναμη Η ορμή p είναι διάνυσμα που ορίζεται από
Διάλεξη 6: Φυσική Ραδιενέργεια και πυρηνικές αντιδράσεις
Διάλεξη 6: Φυσική Ραδιενέργεια και πυρηνικές αντιδράσεις Φυσική Ραδιενέργεια Οι ραδιενεργοί πυρήνες ταξινομούνται σε δύο βασικές κατηγορίες. Αυτούς που υπήρχαν και υπάρχουν στην φύση πριν από την πρώτη
Ανακλώμενο ηλεκτρόνιο KE = E γ - E γ = E mc 2
Σκέδαση Compton Το φαινόμενο Compton περιγράφει τη σκέδαση ενός φωτονίου από ένα ελεύθερο ατομικό ηλεκτρόνιο: γ + γ +. To φωτόνιο δεν εξαφανίζεται μετά τη σκέδαση αλλά αλλάζει κατεύθυνση και ενέργεια.
P = E /c. p γ = E /c. (p) 2 = (p γ ) 2 + (p ) 2-2 p γ p cosθ E γ. (pc) (E γ ) (E ) 2E γ E cosθ E m c Eγ
Σκέδαση Compton Το φαινόμενο Compton περιγράφει ργρ τη σκέδαση ενός φωτονίου από ένα ελεύθερο ατομικό ηλεκτρόνιο: γ + e γ + e. To φωτόνιο δεν εξαφανίζεται μετά τη σκέδαση αλλά αλλάζει κατεύθυνση και ενέργεια.
Μάθημα 3 Αυθόρητη διάσπαση και χρόνος ζωής, Σκεδάσεις και Ενεργός διατομή
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 3 Αυθόρητη διάσπαση και χρόνος ζωής, Σκεδάσεις και Ενεργός διατομή Κώστας Κορδάς
ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ
Σχολικό έτος 2012-2013 Πελόπιο, 23 Μαΐου 2013 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 1 : AΤΟΜΙΚΟ ΠΡΟΤΥΠΟ
ΚΕΦΑΛΑΙΟ 1 : AΤΟΜΙΚΟ ΠΡΟΤΥΠΟ Ο J.J. Thomson πρότεινε στο ομώνυμο πρότυπο του πυρήνα ότι τα ηλεκτρόνια κινούνται μηχανικά σε σταθερές τροχιές με ισοδύναμο θετικό φορτίο κατανεμημένο ομογενώς στη μάζα του
Δυναμική Συστήματος Σωμάτων
Σύστημα από μάζες με ταχύτητες ως προς αδρανειακό σύστημα αναφοράς ολική ορμή (διάνυσμα) και μάζα (βαθμωτό): Δυναμική Συστήματος Σωμάτων P ttal ttal........ Αν το σύστημα ισοδυναμεί με ΕΝΑ σώμα, ίδιας
Μάθημα 3 Αυθόρητη διάσπαση και χρόνος ζωής, Σκεδάσεις και Ενεργός διατομή
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 3 Αυθόρητη διάσπαση και χρόνος ζωής, Σκεδάσεις και Ενεργός διατομή Κώστας
Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί Κώστας Κορδάς
ΕΡΩΣΗΕΙ ΣΙ ΚΡΟΤΕΙ. Φυσική Γ Λυκείου - Κρούσεις
. Σε κάθε κρούση ισχύει α. η αρχή διατήρησης της μηχανικής ενέργειας. β. η αρχή διατήρησης της ορμής. γ. η αρχή διατήρησης του ηλεκτρικού φορτίου. δ. όλες οι παραπάνω αρχές. ΕΡΩΣΗΕΙ ΣΙ ΚΡΟΤΕΙ. Κατά την
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Ασκήσεις #1 επιστροφή 11/11/2011
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #1 επιστροφή 11/11/2011 Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j
Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω
Το Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Το Ισοτοπικό σπιν Μαθηµα 5ο 3/3/217 Ισοσπίν 3/3/217 Τι θα συζητήσουµε σήµερα Ισοσπίν 3/3/217 2 1. Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η
Το Ισοτοπικό σπιν. και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων. Κώστας Κορδάς. LHEP, University of Bern
Το Ισοτοπικό σπιν και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων Κώστας Κορδάς LHEP, University of Bern ιάλεξη υπό τύπο διδασκαλίας σε προπτυχιακούς φοιτητές Αριστοτέλειο Πανεπιστήµιο
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ Λ Υ Κ Ε Ι Ο Υ 08/01/2017 ΘΕΜΑ Α
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ Λ Υ Κ Ε Ι Ο Υ 08/01/2017 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις πολλαπλού τύπου 1-7, να επιλέξετε τη σωστή απάντηση και στο απαντητικό σας φύλλο να μεταφέρετε τον αριθμό και το γράμμα της
ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 20 ΑΠΡΙΛΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 20 ΑΠΡΙΛΙΟΥ 2016-1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α. ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΧΤΩ (8) Στις ερωτήσεις 1-4 να γράψετε
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)
ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2009
ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 009 Θέμα 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από
Το Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014
Το Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014 Ισοσπίν 27/3/2014 Τι θα συζητήσουµε σήµερα 1. Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η αρχική ιδέα του Heisenberg για πρωτόνιο και νετρόνιο 2. Φορµαλισµός
Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Η ιδιοσυχνότητα ενός συστήματος
γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
γ - διάσπαση Δήμος Σαμψωνίδης (21-11- 2017) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ:
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ: 20-4-2017 ΘΕΜΑ A Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
γ - διάσπαση Δήμος Σαμψωνίδης (6-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές
, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m 2. Οι ταχύτητες υ και υ των σφαιρών μετά την κρούση
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 13 ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Μάθημα 5 α) β-διάσπαση β) Ασκήσεις
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Μάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa Δευτέριο Βάθος πηγαδιού δυναμικού νουλεονίνων Ενέργεια Fermi
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 017-18) Τμήμα T: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa
ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.
Ασκήσεις #7 αποδιεγέρσεις γ
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2014-15) Τμήμα Τ3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #7 αποδιεγέρσεις γ Κ. Κορδάς, Δ. Σαμψωνίδης Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 23η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 5 ΜΑÏΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ)
Προτεινόμενα θέματα για τις εξετάσεις 2011
Προτεινόμενα θέματα για τις εξετάσεις 011 Τάξη: Γ Γενικού Λυκείου Μάθημα: Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΘΕΜΑ Α Α1-A4 Να επιλέξετε τη σωστή από τις απαντήσεις Α1. Ένα σώμα μάζας είναι στερεωμένο
1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.
Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2018-19 Τμήμα T3: Χ. Πετρίδου Μάθημα 9 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις) Πετρίδου Χαρά
Και τα στερεά συγκρούονται
Και τα στερεά συγκρούονται Εξετάζοντας την ελαστική κρούση υλικών σημείων, ουσιαστικά εξετάζουμε την κρούση μεταξύ δύο στερεών σωμάτων, δύο μικρών σφαιρών, τα οποία εκτελούν μόνο μεταφορική κίνηση. Τι
Ασκήσεις #1 επιστροφή 11/11/2011
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #1 επιστροφή 11/11/2011 Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6β β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)
Περιστροφική Κινηματική
Περιστροφική Κινηματική Μεταφορική κίνηση Περιστροφική κίνηση Τα Τρία Είδη Κίνησης Τι Χαρακτηριστικό έχει κάθε μια από τις κινήσεις που θα εμφανιστούν Συνδυασμένη κίνηση Περιστροφική Κινηματική Ανακεφαλαίωση
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005
ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού
P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!
Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ÈÅÌÅËÉÏ
ΘΕΜΑ 1ο ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 2 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΙΟΥΝΙΟΥ 004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο. δ. γ.3 β.4 α Λ β Σ γ Λ δ Σ ε Λ.5 Φυσικό μέγεθος
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ & Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 09 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ