7 η διάλεξη Ακολουθιακά Κυκλώματα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "7 η διάλεξη Ακολουθιακά Κυκλώματα"

Transcript

1 7 η διάλεξη Ακολουθιακά Κυκλώματα 1

2 2

3 3

4 4

5 5

6 6

7 7

8 Παραπάνω βλέπουμε ακολουθιακό κύκλωμα σχεδιασμένο με μανταλωτές διαφορετικής φάσης. Παρατηρούμε ότι συνδυαστική λογική μπορεί να προστεθεί μεταξύ και των δυο ζευγών (PN και NP). Ο χρόνος αξιολόγησης/καθυστέρηση της λογικής είναι Τ/2, για να ικανοποιείται ο χρόνος πρόθεσης ως προς το κλείσιμο των N και P. Επίσης παρατηρούμε ότι οι παραπάνω μανταλωτές είναι κλειστοί εναλλάξ, δηλ. μια ο ένας και μια ο άλλος. 8

9 9

10 10

11 Τα XXXX στα δεδομένα επιδεικνύουν τους χρόνους που τα δεδομένα μπορούν να αλλάξουν αυθαίρετα από 0 σε 1. Τα «μάτια», ή σταθερά παράθυρα, επιδεικνύουν τους χρόνους που τα δεδομένα πρέπει να είναι σταθερά, δηλαδή είτε 0 είτε 1. 11

12 Τα XXXX στα δεδομένα επιδεικνύουν τους χρόνους που τα δεδομένα μπορούν να αλλάξουν αυθαίρετα από 0 σε 1. Τα «μάτια», ή σταθερά παράθυρα, επιδεικνύουν τους χρόνους που τα δεδομένα πρέπει να είναι σταθερά, δηλαδή είτε 0 είτε 1. 12

13 13

14 14

15 15

16 Για να υπολογίσουμε την μέγιστη συχνότητα ενός κυκλώματος με ρολόι και καταχωρητές, δηλ. το πάνω όριο της και έτσι και την ελάχιστη περίοδο εξετάζουμε (α) την καθυστέρηση των FF tc2q, (β) την καθυστέρηση του κρίσιμου μονοπατιού του κυκλώματος, δηλ. χείριστη συνδυαστική καθυστέρηση από καταχωρητή σε καταχωρητή (ή είσοδο σε καταχωρητή ή καταχωρητή σε έξοδο) και (γ) τον χρόνο πρόθεσης tsu. Έτσι έχουμε από την έξοδο του καταχωρητή που αφορά την κρίσιμη οδό: (tc2q + tcp + tsu) είναι ο ελάχιστος χρόνος που μπορεί να εμφανιστεί η επόμενη ακμή άρα και η ελάχιστη περίοδος, και το αντίστροφο της η μέγιστη συχνότητα. 16

17 17

18 Παραπάνω βλέπουμε την βασική λειτουργία του απλούστερου δισταθές κυκλώματος, δηλ. δυο αντιστροφέων. Ο συνδυασμός των χαρακτηριστικών γραφικά οδηγεί στην χαρακτηριστική του κυκλώματος στην οποία φαίνεται ότι υπάρχουν τρία σημεία λειτουργίας, A, B και C. To C μια και είναι στο κέντρο της χαρακτηριστικής προφανώς δεν αποτελεί σημείο ψηφιακής λειτουργίας. Μεταβατικά, όσο η λειτουργία του κυκλώματος εμμένει κοντά στα A και B, δηλ. στα όρια όπου g >= 1 (κέρδος αντιστροφέα) το κύκλωμα διαρκώς ενισχύει την οποιαδήποτε απόκλιση του δυναμικού από τα δυο σταθερά σημεία A και B. 18

19 19

20 20

21 21

22 22

23 23

24 Αν χρησιμοποιήσουμε μόνο τρανζίστορ NMOS τότε μειώνουμε σημαντικά το φορτίο (χωρητικότητα) στο ρολόι του κυκλώματος, όπως φαίνεται παραπάνω. Το μειονέκτημα είναι η πτώση τάσης στην είσοδο του 1 ου αντιστροφέα, το σχετικό στατικό ρεύμα που καταναλώνεται εκεί (το PMOS είναι συνέχεια ανοικτό) και η μείωση των επιπέδων θορύβου. 24

25 Μόνο στην ακμή 0 1 αλλάζουν τα δεδομένα του καταχωρητή στην παραπάνω διάταξη. Στην άλλη ακμή 1 0 αλλάζουν ταυτόχρονα οι καταστάσεις του αφέντη και σκλάβου, δηλ. ο σκλάβος κλείνει (δεν αλλάζει η έξοδος) ενώ ο αφέντης ανοίγει (για να ξεκινήσει να διαβάζει το επόμενο δεδομένο). 25

26 26

27 27

28 28

29 29

30 30

31 Ο παραπάνω καταχωρητής λειτουργεί στην θετική ακμή (0 1) 31

32 32

33 Ο παραπάνω καταχωτηρής λειτουργεί στην αρνητική ακμή (1 0). Όταν τα ρολόγια επικαλύπτονται με δυο συνέπειες: (α) να υπάρχει στιγμιαίο μονοπάτι από το D στο Q της εξόδου, και (β) η ανάδραση και η διέλευση της νέας κατάστασης είναι ενεργές ταυτόχρονα. Άρα, στην μη ενεργή ακμή μπορεί να υπάρξει αλλαγή δεδομένου στην έξοδο αν δεν κλείσει το CLK και αλλάξει η κατάσταση του σκλάβου. Επιπλέον, η ταυτόχρονη οδήγηση του Α μπορεί να οδηγήσει σε ενδιάμεσο δυναμικό. Ένας τρόπος αντιμετώπισης είναι η χρήση διαφορετικών, μη-επικαλυπτόμενων ρολογιών, αντί για ένα ρολόι και την αντιστροφή του, όπου αυτά μπορούν να παραχθούν οδηγώντας έναν SR μανταλωτή από το ρολόι. 33

34 34

35 35

36 Ο πίνακας αλήθειας της NOR έχει ως εξής: x y (x + y) Η NOR είναι μια OR με αντεστραμμένη έξοδο Η τιμή 1 είναι τιμή ελέγχου στην έξοδο (παράγει 0) Στην περίπτωση που οι είσοδοί είναι 11, τότε τα Q και Q θα γίνουν 0. Αν μετά έχουμε σαν επόμενη είσοδο την 00, δηλαδή την διατήρηση της κατάστασης, το κύκλωμα έχει δρόμηση (race) αφού η τελικές τιμές των Q, Q εξαρτώνται από το ποια από τις 2 NOR (μαζί με τα σχετικά τους καλώδια, τις συνθήκες θορύβου, κτλ.) θα κάνει πρώτη μια από τις Q, Q ένα. 36

37 Ο πίνακας αλήθειας της NAND έχει ως εξής: x y (x + y) Η NAND είναι μια AND με αντεστραμμένη έξοδο Η τιμή 1 είναι τιμή ελέγχου στην έξοδο (παράγει 0) Στην περίπτωση που οι είσοδοί είναι 00, τότε τα Q και Q θα γίνουν 1. Αν μετά έχουμε σαν επόμενη είσοδο την 11, δηλαδή την διατήρηση της κατάστασης, το κύκλωμα έχει δρόμηση (race) αφού η τελικές τιμές των Q, Q εξαρτώνται από το ποια από τις 2 NOR (μαζί με τα σχετικά τους καλώδια, τις συνθήκες θορύβου, κτλ.) θα κάνει πρώτη μια από τις Q, Q μηδέν. 37

38 Στην παραπάνω διάταξη η ανάδραση γίνεται σε επίπεδο CMOS, δηλ. διασταυρώνοντας τις εξόδους όπως στην διαφορική λογική. Με αυτό τον τρόπο έχουμε σημαντικό κέρδος σε τρανζίστορ, σε σχέση με την υλοποίηση σε επίπεδο πυλών. 38

39 Πάνω δεξιά βλέπουμε ότι τα μεγέθη των Μ5, Μ6 (και Μ7, Μ8) πρέπει να είναι μεγαλύτερα από αυτά των Μ2, Μ4 για να αλλάξει κατάσταση η πύλη 39

40 40

41 Η περίπτωση S = R = 0, στο SR Latch του μανταλωτή δεν μπορεί να συμβεί λόγω του αντιστροφέα στο D. Οι εξισώσεις έχουν ως εξής: S = (D. C) = D + C, και S = 0 συνεπάγεται DC = 11 R = (D. C) = D + C, και R = 0 συνεπάγεται DC = 01 Άρα, σε λογικό επίπεδο δεν συντρέχει η περίπτωση S = R = 0, λόγω της διαφορετικής ανάθεσης τιμών στα DC. Σε ηλεκτρικό επίπεδο, ανάλογα με την καθυστέρηση του αντιστροφέα μπορεί να υπάρχει κίνδυνος για το SR και εξαρτάται από την σχετική ταχύτητα του αντιστροφέα και των NAND πριν το SR. Τέτοιες περιπτώσεις εξασφαλίζονται στην σχεδίαση του D latch χρησιμοποιώντας κατάλληλα μεγέθη στις πύλες (τρανζίστορ) και κάνοντας χρονική ανάλυση της χειρότερης περίπτωσης. 41

42 Το παραπάνω κύκλωμα είναι καλύτερα να αναλυθεί δόκιμα, σε επίπεδο δηλαδή εξισώσεων και ΜΠΚ των τμημάτων του (των τριών μανταλωτών που αντιστοιχούν σε 3 ΜΠΚ). Πρακτικά και περιγραφικά, η λειτουργία του είναι η εξής. 1. Όσο το CLK είναι 0, τα σήματα S και R μένουν στο μηδέν και το Q διατηρείται ανεξάρτητα του D. 2. Όταν το CLK γίνει 1, τότε ενεργοποιείται η λειτουργία των 2 αριστερών μανταλωτών Αν το D είναι μηδέν, τότε το R γίνεται 0 και το FF αποθηκεύει 0 Αν το D είναι ένα, τότε το S γίνεται 0 και το FF αποθηκεύει 1 3. Όσο το CLK παραμένει 1, τα S και R διατηρούν την τιμή που είχαν στη μετάβαση 0 1. Το παραπάνω ακμοπυροδότητο FF έχει ως ενεργή ακμή την

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 O C2MOS καταχωρητής είναι ακμοπυροδότητος καταχωρητής υλοποιημένος με δυναμική λογική και έχει αρχιτεκτονική Αφέντη-Σκλάβου. Το χαρακτηριστικό του C2MOS καταχωρητή είναι ότι δεν τον επηρεάζει η τυχόν στιγμιαία (και μεταβατική) επικάλυψη στα σήματα του ρολογιού (θετικής και αρνητικής πολικότητας). 57

58 Παραπάνω φαίνεται η αντιμετώπιση της επικάλυψης των λογικών τιμών στα σήματα του ρολογιού από τον C2MOS καταχωρητή. Αριστερά φαίνεται η 0-0 επικάλυψη (CLK = 0, CLK = 0 στιγμιαία) και δεξιά η 1-1 επικάλυψη (CLK = 1, CLK = 1 στιγμιαία). Έτσι, όπως φαίνεται παραπάνω και στις δυο περιπτώσεις η επικάλυψη δεν επηρεάζει την τιμή του κόμβου Χ ή της εξόδου Q. 58

59 59

60 Μια δυναμική υλοποίηση μανταλωτή είναι η TSPC, η οποία φαίνεται παραπάνω και στην θετική και στην αρνητική της εκδοχή. Ο μανταλωτής TSPC όπως φαίνεται παραπάνω εκ πρώτης όψεως δεν έχει κάποιο ιδιαίτερο πλεονέκτημα από τις ψευδοστατικές εκδοχές που παρουσιάστηκαν νωρίτερα. Όμως, το κρυφό πλεονέκτημα της παραπάνω αρχιτεκτονικής μανταλωτή είναι ότι η δομή της με τα δίκτυα PUN/PDN επιτρέπει για την συγχώνευση συνδυαστικής λογικής στο εσωτερικό του μανταλωτή. 60

61 Παραπάνω φαίνεται η αρχιτεκτονική TSPC και η ενσωμάτωση λογικής στον μανταλωτή αριστερά. Δεξιά παρουσιάζεται ένας μανταλωτής AND. Προφανώς η αρχιτεκτονική τύπου δυο αντιστροφών συνεπάγεται ότι οι συνδυαστικές πύλες που ενσωματώνονται στον TSPC είναι θετικής πολικότητας. 61

62 Παραπάνω βλέπουμε έναν TSPC καταχωρητή. Απαιτεί τέσσερα συνολικά στάδια, αντί για δυο στάδια του μανταλωτή. Το 1 ο οδηγεί το Χ στο 0 όταν D = 1 ή στο 1 όταν CLK = 0 και D = 0. Το 2 ο προφορτίζει το Y στο 1 όταν CLK = 0, και κατεβάζει το Υ όταν CLK = 1 και Χ = 1. Έτσι, όταν CLK = 0 ο κόμβος Q δεν οδηγείται και ο καταχωρητής παραμένει στην προηγούμενη του κατάσταση. Προετοιμάζεται όμως ο κόμβος Χ ο οποίος περιέχει την άρνηση του D. Όταν CLK = 1, το Υ οδηγείται από την προηγούμενη τιμή του D και η D περνάει στο Q (D περνά στο Q). Αν το D αλλάξει τιμή, γίνει 1, όταν CLK = 1, τότε θα κατέβει το Y (ήταν 1). Το Q μπορεί να έχει πάρει την τελική του τιμή (0 αφού το Y ήταν 1 ή όχι). Η καθυστέρηση CLK στο Q αποτελεί την συνθήκη διατήρησης (hold) του παραπάνω καταχωρητή. 62

63 63

64 Για μικρότερο εμβαδό, μικρότερο φορτίο στο σήμα ρολογιού και στις περισσότερες περιπτώσεις μεγαλύτερη ταχύτητα, στα κυκλώματα υψηλής απόδοσης χρησιμοποιούνται παλμικοί μανταλωτές αντί ακμοπυροδότητων καταχωρητών. Μάλιστα, τα πρώτα σύγχρονα κυκλώματα (δεκαετίες 50-60) χρησιμοποιούσαν παλμικούς μανταλωτές. Το βασικό μειονέκτημα του παλμικού μανταλωτή είναι ότι η ορθή λειτουργία βασίζεται στο πλάτος του παλμού. Αν το πλάτος γίνει μικρό (λόγω χωρητικοτήτων) ο μανταλωτής μπορεί να μην αντιδράσει στον παλμό. Έτσι, τέτοια κυκλώματα εκτός από περιορισμούς πρόθεσης και διατήρησης έχουν και περιορισμό πλάτους παλμού! 64

65 Παραπάνω φαίνονται δυο τρόποι για να μετατρέψουμε ακμές σε παλμούς. Στην 1 η περίπτωση (AND) η θετικές ακμές (0 1) μετατρέπονται σε παλμό πλάτους ανάλογου με την αρνητική καθυστέρηση. Στην 2 η περίπτωση (XOR) και οι δυο ακμές μετατρέπονται σε παλμό πλάτους ανάλογου με την (θετική) καθυστέρηση. Η καθυστέρηση στα παραπάνω σχήματα μπορεί να υλοποιηθεί από οποιαδήποτε πύλη της βιβλιοθήκη (συνήθως αντιστροφείς) την οποία συνδέουμε πολλαπλές φορές σε διάταξη αλυσίδας. 65

66 Παραπάνω φαίνεται ένας μανταλωτής TSPC, ο οποίος οδηγείται από έναν μετατροπέα ακμής σε παλμό. Ο μετατροπέας κατεβάζει τον Χ όταν ο Χ και το CLK είναι 1 και η καθυστέρηση του είναι ανάλογη με την (θετική) αλυσίδα αντιστροφέων. 66

67 67

68 68

69 69

70 70

71 71

72 72

73 73

74 74

75 75

76 76

77 77

78 78

79 79

80 80

81 81

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. 1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.  1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα HY330 Ψηφιακά - Εισαγωγή στα Συστήματα VLSI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://inf-server.inf.uth.gr/courses/ce330 1 Μανταλωτές θετικής, αρνητικής πολικότητας Σχεδίαση με Μανταλωτές

Διαβάστε περισσότερα

Κυκλώματα αποθήκευσης με ρολόι

Κυκλώματα αποθήκευσης με ρολόι Κυκλώματα αποθήκευσης με ρολόι Latches και Flip-Flops Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης 1 Γιατί χρειαζόμαστε τα ρολόγια Συνδιαστική λογική Η έξοδος εξαρτάται μόνο

Διαβάστε περισσότερα

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Ακολουθιακή Λογική Κεφάλαιο 7 ο Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταστάθεια 2. Μανδαλωτές 3. Flip Flops Flops 4. Δομές διοχέτευσης 5. Διανομή ρολογιού 6. Συγχρονισμός

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα

Κεφάλαιο 10 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 10 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Ακολουθιακή Λογική Κεφάλαιο 10 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταευστάθεια 2. Μανδαλωτές 3. Flip

Διαβάστε περισσότερα

Καθυστέρηση στατικών πυλών CMOS

Καθυστέρηση στατικών πυλών CMOS Καθυστέρηση στατικών πυλών CMOS Πρόχειρες σημειώσεις Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Άνοιξη 2008 Παρόλο που οι εξισώσεις των ρευμάτων των MOS τρανζίστορ μας δίνουν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9. Tα Flip-Flop

ΑΣΚΗΣΗ 9. Tα Flip-Flop ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Ακολουθιακή Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωμα Έξοδοι Στοιχεία Μνήμης Κατάσταση

Διαβάστε περισσότερα

6 η διάλεξη Σχεδίαση και Υλοποίηση Συνδυαστικών Κυκλωμάτων σε επίπεδο Τρανζίστορ

6 η διάλεξη Σχεδίαση και Υλοποίηση Συνδυαστικών Κυκλωμάτων σε επίπεδο Τρανζίστορ 6 η διάλεξη Σχεδίαση και Υλοποίηση Συνδυαστικών Κυκλωμάτων σε επίπεδο Τρανζίστορ 1 2 Οποιοδήποτε κύκλωμα εμπεριέχει την έννοια της τρέχουσας κατάστασης είναι ακολουθιακό. Έτσι, κυκλώματα όπως ΜΠΚ, καταχωρητές,

Διαβάστε περισσότερα

Κεφάλαιο 9 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Λογικές ομές 2

Κεφάλαιο 9 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Λογικές ομές 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Συνδυαστική Λογική Κεφάλαιο 9 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Στατική CMOS λογική και λογική 2. Διαφορική λογική 3.

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

4/10/2008. Στατικές πύλες CMOS και πύλες με τρανζίστορ διέλευσης. Πραγματικά τρανζίστορ. Ψηφιακή λειτουργία. Κανόνες ψηφιακής λειτουργίας

4/10/2008. Στατικές πύλες CMOS και πύλες με τρανζίστορ διέλευσης. Πραγματικά τρανζίστορ. Ψηφιακή λειτουργία. Κανόνες ψηφιακής λειτουργίας 2 η διάλεξη 25 Σεπτεμβρίου Πραγματικά τρανζίστορ Στατικές πύλες CMOS και πύλες με τρανζίστορ διέλευσης Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Η τάση στο gate του τρανζίστορ

Διαβάστε περισσότερα

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η λειτουργία RESET R IN OUT Εάν το σήμα R είναι λογικό «1» στην έξοδο

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Συστημάτων

Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 27 Νοε-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα:

Διαβάστε περισσότερα

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 2 η :

Διαβάστε περισσότερα

Βασικές CMOS Λογικές οικογένειες (CMOS και Domino)

Βασικές CMOS Λογικές οικογένειες (CMOS και Domino) Βασικές CMOS Λογικές οικογένειες (CMOS και Domino) CMOS Κάθε λογική πύλη αποτελείται από δύο τμήματα p-mos δικτύωμα, τοποθετείται μεταξύ τροφοδοσίας και εξόδου. Όταν είναι ενεργό φορτίζει την έξοδο στην

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops

K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 5 η :

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ, Θεωρητικής Κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και

Διαβάστε περισσότερα

Μνήμες RAM. Διάλεξη 12

Μνήμες RAM. Διάλεξη 12 Μνήμες RAM Διάλεξη 12 Δομή της διάλεξης Εισαγωγή Κύτταρα Στατικής Μνήμης Κύτταρα Δυναμικής Μνήμης Αισθητήριοι Ενισχυτές Αποκωδικοποιητές Διευθύνσεων Ασκήσεις 2 Μνήμες RAM Εισαγωγή 3 Μνήμες RAM RAM: μνήμη

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών) Διεργασίες Μικροηλεκτρονικής Τεχνολογίας, Οξείδωση, Διάχυση, Φωτολιθογραφία, Επιμετάλλωση, Εμφύτευση, Περιγραφή CMOS

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. 6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική Υλοποίηση λογικών πυλών µε τρανζίστορ MOS Εισαγωγή στην Ηλεκτρονική Λογική MOS Η αναπαράσταση των λογικών µεταβλητών 0 και 1 στα ψηφιακά κυκλώµατα γίνεται µέσω κατάλληλων επιπέδων τάσης, όπου κατά σύµβαση

Διαβάστε περισσότερα

7 η διάλεξη Ακολουθιακά Κυκλώματα

7 η διάλεξη Ακολουθιακά Κυκλώματα 7 η διάλεξη Ακολουθιακά Κυκλώματα 1 2 3 4 5 Παραπάνω παρουσιάζεται ο πιο συνήθης χωροθέτηση αριθμητικών, λογικών κυκλωμάτων. Η μονάδα επεξεργασίας είναι η λέξη (λ.χ. 32-bit σε επεξεργαστές, 8-bit σε DSP)

Διαβάστε περισσότερα

Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS

Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS Γενικές Γραμμές Ακολουθιακή Λογική Μεταστάθεια S-R RLatch h( (active high h&l low) S-R Latch with Enable Latch Flip-Flop Ασύγχρονοι είσοδοι PRESET

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία ΙΙ, Πρακτικής

Διαβάστε περισσότερα

Εισαγωγή στα κυκλώµατα CMOS 2

Εισαγωγή στα κυκλώµατα CMOS 2 1 η Θεµατική Ενότητα : Εισαγωγή στα κυκλώµατα CMOS Επιµέλεια διαφανειών:. Μπακάλης Εισαγωγή Τεχνολογία CMOS = Complementary Metal Oxide Semiconductor Συµπληρωµατικού Ηµιαγωγού Μετάλλου Οξειδίου Αποτελείται

Διαβάστε περισσότερα

Εισαγωγή στα ακολουθιακά στοιχεία CMOS

Εισαγωγή στα ακολουθιακά στοιχεία CMOS Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στη Σχεδίαση VLSI Εισαγωγή στα ακολουθιακά στοιχεία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ FLIP-FLOP ΤΟ ΒΑΣΙΚΟ FLIP-FLOP ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ FF ΤΥΠΟΥ D FLIP-FLOP Τ FLIP-FLOP ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOP ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ FLIP-FLOP ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOP ΚΥΚΛΩΜΑΤΑ

Διαβάστε περισσότερα

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. ΘΕΜΑ 1ο MINORITY A B C. C out

ΑΣΚΗΣΗ 7. ΘΕΜΑ 1ο MINORITY A B C. C out ΑΣΚΗΣΗ 7 ΘΕΜΑ 1ο MINORITY A B C C out S S C out C OUT = MAJ(A,B,C) = Majority(A,B,C) = 1 when at least 2 (majority) of A, B, and C are equal to 1. Opposite Minority MAJ(A,B,C) = AB + BC + AC (PMOS and

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα

Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα επαναληπτικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 5. Ρυθμίζοντας τη Φορά Περιστροφής. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 5. Ρυθμίζοντας τη Φορά Περιστροφής. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 5 Ρυθμίζοντας τη Φορά Περιστροφής DC Κινητήρα. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 6. Εισαγωγή Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά και ακολουθιακά. Τα κυκλώματα που εξετάσαμε στα προηγούμενα κεφάλαια ήταν συνδυαστικά. Οι τιμές των

Διαβάστε περισσότερα

ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο Κυκλώματα CMOS. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο Κυκλώματα CMOS. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005 Κυκλώματα CMOS Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κυκλώματα CMOS Περίληψη Τρανζίστορ και μοντέλα διακόπτη ίκτυα CMOS

Διαβάστε περισσότερα

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Χειμερινό Εξάμηνο 2015-2016 ΗΥ220 -Γιώργος Καιλοκαιρινός & Βασίλης Παπαευσταθίου 1 Λογικές Πύλες, Στοιχεία Μνήμης, Συνδυαστική Λογική και Κυματομορφές ΗΥ220 -Γιώργος

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop. Διάλεξη 6

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop. Διάλεξη 6 Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop Διάλεξη 6 Δομή της διάλεξης Εισαγωγή στην ακολουθιακή λογική Ομανδαλωτής SR Latch JK Flip-Flop D Flip-Flop Timing Definitions Latch vs Flip-Flop Ασκήσεις

Διαβάστε περισσότερα

Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2

Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2 Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs Διάλεξη 2 Δομή της διάλεξης Επανάληψη άλγεβρας Boole Λογική με διόδους Λογική Αντιστάσεων-Τρανζίστορ (Resistor-Transistor Logic ή RTL) Λογική Διόδων-Τρανζίστορ

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

Κυκλώµατα CMOS και Λογική Σχεδίαση 2

Κυκλώµατα CMOS και Λογική Σχεδίαση 2 5 η Θεµατική Ενότητα : Κυκλώµατα CMOS και Λογική Σχεδίαση Επιµέλεια διαφανειών:. Μπακάλης Σχεδίαση Λογικών Πυλών CMOS Παράγοντες που µπορούν να οδηγήσουν µία λογική πύλη CMOS σε λανθασµένη λειτουργία:

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 5ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 5ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 5ο. Λιούπης Τεχνολογία CMOS Υλοποιεί την πλειοψηφία των µοντέρνων ψηφιακών κυκλωµάτων λογικές πύλες µνήµες επεξεργαστές άλλα σύνθετα κυκλώµατα Συνδυάζει συµπληρωµατικά pmos και

Διαβάστε περισσότερα

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες)

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες) Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το ανωτέρω διάγραμμα καταστάσεων,

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 FLIP - FLOP

ΑΣΚΗΣΗ 7 FLIP - FLOP ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1η: ΜΕΛΕΤΗ ΤΟΥ MOSFET Σκοπός της άσκησης Στην άσκηση αυτή θα μελετήσουμε το τρανζίστορ τύπου MOSFET και τη λειτουργία

Διαβάστε περισσότερα

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009. ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται

Διαβάστε περισσότερα

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Εισαγωγή

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Εργαστηριακή άσκηση. Θεωρητικός και πρακτικός υπολογισμός καθυστερήσεων σε αναστροφείς CMOS VLSI

Εργαστηριακή άσκηση. Θεωρητικός και πρακτικός υπολογισμός καθυστερήσεων σε αναστροφείς CMOS VLSI Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

Πολυσύνθετες πύλες. Διάλεξη 11

Πολυσύνθετες πύλες. Διάλεξη 11 Πολυσύνθετες πύλες NMOS και CMOS Διάλεξη 11 Δομή της διάλεξης Εισαγωγή ΗσύνθετηλογικήNMOS ΗσύνθετηλογικήCMOS Η πύλη μετάδοσης CMOS Ασκήσεις 2 Πολυσύνθετες πύλες NMOS και CMOS Εισαγωγή 3 Εισαγωγή Στη λογική

Διαβάστε περισσότερα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές

Διαβάστε περισσότερα

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 6.1: Συνδυαστική Λογική - Βασικές Πύλες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 4ο. Λιούπης Λογική συζευγµένου εκποµπού Emitter-coupled logic (ECL) Χρησιµοποιούνται BJT transistor, µόνο στην ενεργή περιοχή Εµφανίζονται µικρές αλλαγές δυναµικού µεταξύ των

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Μάθημα 5: Στοιχεία µνήµης ενός ψηφίου Διδάσκων: Καθηγητής Ν. Φακωτάκης Στοιχεία μνήμης Ένα ψηφιακό λογικό κύκλωμα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία Τεχνικών Σχολών

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS Α. Αναστροφέας MOSFET. Α.1 Αναστροφέας MOSFET µε φορτίο προσαύξησης. Ο αναστροφέας MOSFET (πύλη NOT) αποτελείται από

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops

Διαβάστε περισσότερα

Χρονισμός ψηφιακών κυκλωμάτων

Χρονισμός ψηφιακών κυκλωμάτων Χρονισμός ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Γ. Δημητρακόπουλος HY422 1 Tρόποι χρονισμού Πως μπορούμε να συνδέσουμε τα στοιχεία αποθήκευσης με τη

Διαβάστε περισσότερα

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Απαντήσεις 1. Η παραγγελία είναι σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες η οποία μπορεί να αναλυθεί ως σάντουιτς ή (σουβλάκι και τηγανητές πατάτες)

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

Ασύγχρονοι Απαριθμητές. Διάλεξη 7 Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ A. Πίνακες αληθείας λογικών πυλών. Στη θετική λογική το λογικό 0 παριστάνεται µε ένα χαµηλό δυναµικό, V L, ενώ το λογικό 1

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (10 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (10 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (10 η σειρά διαφανειών) Σχεδιασμός και Προσομοίωση Βασικών Κυκλωμάτων Τεχνολογίας CMOS Με βάση το εργαλείο σχεδιασμού Microwind Σκοπός: η

Διαβάστε περισσότερα

Κεφάλαιο 11. Κυκλώματα Χρονισμού

Κεφάλαιο 11. Κυκλώματα Χρονισμού Κεφάλαιο 11. Κυκλώματα Χρονισμού Σύνοψη Στο κεφάλαιο αυτό αναλύεται η λειτουργία των κυκλωμάτων χρονισμού. Τα κυκλώματα αυτά παρουσιάζουν πολύ μεγάλο πρακτικό ενδιαφέρον και απαιτείται να λειτουργούν με

Διαβάστε περισσότερα

PWM (Pulse Width Modulation) Διαμόρφωση εύρους παλμών

PWM (Pulse Width Modulation) Διαμόρφωση εύρους παλμών PWM (Pulse Width Modulation) Διαμόρφωση εύρους παλμών Μία PWM κυματομορφή στην πραγματικότητα αποτελεί μία περιοδική κυματομορφή η οποία έχει δύο τμήματα. Το τμήμα ΟΝ στο οποίο η κυματομορφή έχει την μέγιστη

Διαβάστε περισσότερα

4 η διάλεξη Καθυστέρηση Διασυνδέσεων Μοντέλο Elmore

4 η διάλεξη Καθυστέρηση Διασυνδέσεων Μοντέλο Elmore 1 4 η διάλεξη Καθυστέρηση Διασυνδέσεων Μοντέλο Elmore 2 3 Εξετάζοντας αναλυτικά την φυσική υπόσταση μιας διασύνδεσης φαίνεται ότι διασύνδεει έναν αποστολέα του σήματος με έναν δέκτη μέσω επιμέρους τμημάτων

Διαβάστε περισσότερα

V Vin $N PULSE 1.8V p 0.1p 1n 2n M M1 $N 0002 $N 0001 Vout $N 0002 MpTSMC180 + L=180n + W=720n + AD=0.324p + AS=0.

V Vin $N PULSE 1.8V p 0.1p 1n 2n M M1 $N 0002 $N 0001 Vout $N 0002 MpTSMC180 + L=180n + W=720n + AD=0.324p + AS=0. Εργασία Μικροηλεκτρονικής 2013-2014 Θέμα: Σχεδίαση και Ανάλυση CMOS Αντιστροφέα και CMOS Λογικών Κυκλωμάτων στο SPICE Ονοματεπώνυμο: Αλέξανδρος Γεώργιος Μουντογιαννάκης Σχολή: Τμήμα Επιστήμης Υπολογιστών

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ 1.1 ΣΚΟΠΟΣ Η εξοικείωση με τη λειτουργία των Λογικών Πυλών και των Πινάκων Αληθείας. 1.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Οι λογικές πύλες είναι ηλεκτρονικά κυκλώματα που δέχονται στην είσοδο ή στις

Διαβάστε περισσότερα

Κεφάλαιο 4 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Λογικός Φόρτος 2

Κεφάλαιο 4 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Λογικός Φόρτος 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Λογικός Φόρτος Κεφάλαιο 4 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση. Μοντέλο γραμμικής καθυστέρησης. Λογικός και ηλεκτρικός φόρτος

Διαβάστε περισσότερα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα 6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από

Διαβάστε περισσότερα

Λογικά Κυκλώματα CMOS. Διάλεξη 5

Λογικά Κυκλώματα CMOS. Διάλεξη 5 Λογικά Κυκλώματα CMOS Διάλεξη 5 Δομή της διάλεξης Εισαγωγή Η τεχνολογία αντιστροφέων CMOS Λειτουργία του κυκλώματος Χαρακτηριστική μεταφοράς τάσης Περιθώρια θορύβου Κατανάλωση ισχύος Οι πύλες CMOS NOR

Διαβάστε περισσότερα

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 5: Αντιστροφέας CMOS Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Οικογένειες Ψηφιακής Λογικής Τάση τροφοδοσίας Λογικά επίπεδα - Περιθώριo θορύβου Χρόνος μετάβασης Καθυστέρηση διάδοσης Κατανάλωση ισχύος Γινόμενο

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Ερωτήσεις Επανάληψης 1. Ένας καθηγητής λογικής μπαίνει σε ένα εστιατόριο και λέει : Θέλω ένα σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες. Δυστυχώς,

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 10: Ασύχρονα ακολουθιακά κυκλώµατα (µερος Α ) Διδάσκων: Καθηγητής Ν. Φακωτάκης Ασύγχρονα ακολουθιακά κυκλώµατα

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 24/01/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 24/01/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΘΕΜΑ 1 ο (1.5 μονάδες) (α) Να προσδιορίσετε την διακριτική ικανότητα (resolution) ενός ψηφιακού βτομέτρου με ενδείκτη (display) τριών ψηφίων και μέγιστη ένδειξη 99.9 olts. (0.5 μ.) (β) Στα ακόλουθα σχήματα

Διαβάστε περισσότερα