arxiv:hep-th/ v1 29 May 2006

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv:hep-th/ v1 29 May 2006"

Transcript

1 Second Order Noncommutative Corrections to Gravity Xavier Calmet 1 and Archil Kobahidze 2 1 Univeité Libre de Bruxelles arxiv:hep-th/ v1 29 May 2006 Service de Physique Théorique, CP225 Boulevard du Triomphe (Campus plaine) B-1050 Brussels, Belgium 2 Department of Physics and Astronomy Univeity of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA May, 2006 Abstract In this wor, we calculate the leading order corrections to general relativity formulated on a canonical noncommutative spacetime. These corrections appear in the second order of the expansion in theta. Fit order corrections can only appear in the gravity-matter interactions. Some implications are briefly discussed. xcalmet@ulb.ac.be obahid@physics.unc.edu 1

2 It is a difficult to formulate General Relativity on noncommutative spaces and there are thus different approaches in the literature. In [1] for example a deformation of Einstein s gravity was studied using a construction based on gauging the noncommutative SO(4,1) de Sitter group and the Seiberg-Witten map with subsequent contraction to ISO(3,1). Most recently constructions of a noncommutative gravitational theory [2, 3] were proposed based on a twisted Poincaré algebra [4, 5]. The main problem in formulating a theory of gravity on noncommutative manifolds is that it is difficult to implement symmetries such as general coordinate covariance and local Lorentz invariance and to define derivatives which are toion-free and satisfy the metricity condition. Another approach has been proposed based on true physical symmetries [6, 7]. In that approach one restricts the noncommutative action to symmetries of the noncommutative algebra: [ˆx µ, ˆx ν ] = iθ µν. (1) (see also [8] where this idea was applied to Lorentz symmetry). Obviously, the commutator (1) explicitly violates general coordinate covariance since θ µν is constant in all reference frames. However, we can identify a subclass of general coordinate transformations, ˆx µ = ˆx µ + ˆξ µ (ˆx), (2) which are compatible with the algebra given by (1). The hat on the function ˆξ(ˆx) indicates that it is in the enveloping algebra. Under the change of coordinates (2) the commutator (1) transforms as: [ˆx µ, ˆx ν ] = ˆx µ ˆx ν ˆx ν ˆx µ = iθ µν + [ˆx µ, ˆξ ν ] + [ˆξ µ, ˆx ν ] + O(ˆξ 2 ) (3) Requiring that θ µν remains constant yields the following partial differential equations: θ µα ˆ αˆξν (ˆx) = θ νβ ˆ β ˆξµ (ˆx). (4) A nontrivial solution to this condition can be easily found: ˆξ µ (ˆx) = θ µν ˆ ν ˆf(ˆx), (5) where ˆf(ˆx) is an arbitrary field. This noncommutative general coordinate transformation corresponds to the following transformation: ˆξ µ (x) = θ µν ν ˆf(x). The Jacobian of this restricted coordinate transformations is equal to 1, meaning that the volume element is invariant: d 4 x = d 4 x. The veion of General Relativity based on volume-preserving diffeomorphism is nown as the unimodular theory of gravitation [11]. Thus we came to the conclusion that symmetries of canonical noncommutative spacetime naturally lead to the noncommutative 2

3 veion of unimodular gravity. We obtain the noncommutative field-strength of the SO(3,1) gauge symmetry: with ˆR = R + R (1) + R(2) + O(θ3 ), (6) R (1) = 1 2 θcd {R ac, R bd } 1 4 θcd {ω c, ( d + D d )R }. (7) The noncommutative Riemann tensor is then given by ˆR (ˆx) = 1 2 and the leading order correction in θ is found explicitly to be: ˆR cd (ˆx)Σ cd, (8) ˆR (1)cd (x) = 1 2 θcd Rac ij Rbd l d pq ijl 1 4 θcd wc ij ( d + D d )R l d (2)pq ijl (9) the coefficient d (2)pq ijl is defined by d (1)pq ijl = Tr ({Σ ij, Σ l }Σ pg ), (10) where trace goes over the matrix indices of the SO(3,1) generato Σ ij. The group-theoretic coefficients of eq. (10) are all vanishing by virtue of antisymmetricity of the SO(3,1) generato, Σij T = Σ ij and cyclic properties of the trace [12]. This can be explicitly demonstated for an arbitrary representation for the generato, e.g. Σ = i [γ 4 a, γ b ] The new result of this wor is the second order correction in θ which is given by (2) mn R = 1 32 θij θ l (2wi 2 l i R 4w ef +iw i 2iw iw +2 i (w w cd j l (R ri j w cd j w cd R ef R cd ri R cd R ef il R cd 2iwi R cd +R r R cd is w ef lr ef cdef Rsj cd ) l R ef sj r w ef j cdef + 2iw cdef 4i iw d (5)mn cdefgh ir l d (5)mn cdefgh 2R i + iw l w cd i j d (6)mn cdefgh + 2 iw ) j w ef l d (7)mn cdef + 2 irr R gh sl d (3)mn ghcdef R ef jl +2w l (wi cd j R ef iw ir cd efcd + 4i irr cdef w ef j l d (5)mn + iw w cd j R ef l R ef j d (3)mn cdefgh j l R cd d (4)mn cd i wj cd R ef 2R r R cd w ef i jr cd w cd j R cd i w ef l R ef sl l d (5)mn cdefgh j R ef jrsl cd d (4)mn cd w cd i cdefgh w j R ef wcd i R ef cdef (11) j l d (6)mn cdefgh sl cdef cdef efcd l d (5)mn cdefgh j w pq l d (8)mn cdefghpq ) 3

4 using the result obtained for a generic noncommutative gauge theory in [10] and where the coefficients d (i) are defined by: cdef = Tr ({{Σ, Σ cd }, Σ ef }Σ mn ), (12) d (3)mn cdefgh = Tr ({Σ, {[Σ cd, Σ ef ], Σ gh }}Σ mn ), (13) d (4)mn cd = Tr ([Σ, Σ cd ]Σ mn ), (14) d (5)mn cdefgh = Tr ({[{Σ, Σ cd }, Σ ef ], Σ gh }Σ mn ), (15) d (6)mn cdefgh = Tr ({[Σ, Σ cd ], {Σ ef, Σ gh }}Σ mn ), (16) d (7)mn cdef = Tr ([[Σ, Σ cd ], Σ ef ]Σ mn ), (17) d (8)mn cdefghpq = Tr ({[Σ, {[Σ cd, Σ ef ], Σ gh }], Σ pq }Σ mn ). (18) This coefficients are easily calculle using a specific representation, e.g. spinorial representation, for the matrices Σ and a computer algebra program such as Mathematica with the routine TRACER [9]. We give explicit expressions for these traces in the appendix. The noncommutative action is then given by S = d 4 x 1 2κ ˆR(ˆx) = 2 d 4 x 1 2κ 2 ( R(x) + R (2) (x) ) + O(θ 3 ). (19) This equation is an action for the noncommutative veion of the unimodular theory of gravitation. The unimodular theory is nown [11] to be classically equivalent to Einstein s General Relativity with a cosmological constant and it can be put in the form S NC = 1 16πG d 4 x gr(g µν ) + O(θ), (20) where R(g µν ) is the usual Ricci scalar and g is the determinant of the metric. If we restrict ouelves to the transformations (5), the determinant of the metric is always equal to minus one, the term g in the action is thus trivial. However, as mentioned previously, we recover full general coordinate invariance in the limit θ µν to zero and it is thus important to write this term explicitly to study the symmetries of the action. In order to obtain the equations of motion corresponding to this action, we need to consider variations of (20) that preserve g = detg µν = 1, i.e. not all the components of g µν are independent. One thus introduces a new varile g µν = g 1 4g µν, which has explicitly a determinant equal to one. The field equations are then R µν 1 4 gµν R + O(θ) = 0. (21) As done in e.g. [11] we can use the Bianchi identities for R and find: R ;µ = 0 (22) 4

5 which can be integrated easily and give R = Λ, where Λ is an integration constant. It can then be shown that the differential equations (21) imply R µν 1 2 gµν R Λg µν + O(θ) = 0, (23) i.e. Einstein s equations of General Relativity with a cosmological constant Λ that appea as an integration constant. Because any solution of Einstein s equations with a cosmological constant can, at least over any topologically R 4 open subset of spacetime, be written in a coordinate system with g = 1, the physical content of unimodular gravity is identical at the classical level to that of Einstein s gravity with some cosmological constant [11]. The form of the O(θ 2 ) corrections in eq. (11) suggests that in the linearized approximation, gravity is not affected by spacetime noncommutativity. Note also that in the full gravity-matter action the dominant O(θ) will generally be present in the matter Lagrangian, that in turn could affect the solutions for the metric in this order. It would be very interesting to study cosmological perturbations in the ove setting. Acnowledgments The wor of X.C. was supported in part by the IISN and the Belgian science policy office (IAP V/27). References [1] A. H. Chamseddine, Phys. Lett. B 504, 33 (2001) [arxiv:hep-th/ ]. [2] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp and J. Wess, Class. Quant. Grav. 22, 3511 (2005) [arxiv:hep-th/ ]; P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, Class. Quant. Grav. 23, 1883 (2006) [arxiv:hep-th/ ]. [3] A. Kobahidze, arxiv:hep-th/ [4] J. Wess, Deformed coordinate spaces: Derivatives, in Lectures given at BW2003 Wohop on Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Pepectives of Balans Colloration, Vrnjaca Banja, Serbia, 29 Aug - 2 Sep 2003, arxiv:hep-th/ [5] M. Chaichian, P. P. Kulish, K. Nishijima and A. Tureanu, Phys. Lett. B 604, 98 (2004) [arxiv:hep-th/ ]. [6] X. Calmet and A. Kobahidze, Phys. Rev. D 72, (2005) [arxiv:hep-th/ ]. [7] X. Calmet, arxiv:hep-th/

6 [8] X. Calmet, Phys. Rev. D 71, (2005) [arxiv:hep-th/ ] and arxiv:hep-th/ , to appear in the proceedings of 41st Rencontres de Moriond on Electrowea Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, Mar [9] M. Jamin and M. E. Lautenbacher, Comput. Phys. Commun. 74 (1993) 265. [10] L. Moller, JHEP 0410, 063 (2004) [arxiv:hep-th/ ]. [11] The equations of motion corresponding to this theory have fit been written down by A. Einstein in: A. Einstein, Siz. Preuss. Acad. Scis., (1919); Do Gravitational Fields Play an essential Role in the Structure of Elementary Particle of Matter, by A. Einstein et al (Dover, New Yor, 1952)[Eng. translation]. The theory has been rediscovered in J. J. van der Bij, H. van Dam and Y. J. Ng, Physica 116A, 307 (1982), and further developed by a number of autho, see e.g., F. Wilcze, Phys. Rept. 104, 143 (1984); W. Buchmuller and N. Dragon, Phys. Lett. B 207, 292 (1988); M. Henneaux and C. Teitelboim, Phys. Lett. B 222, 195 (1989); W. G. Unruh, Phys. Rev. D 40, 1048 (1989). [12] P. Muherjee, private communication. Appendix d (2) cdefmn = (η af η bn η cm η de η af η bm η cn η de η ae η bn η cm η df + η ae η bm η cn η df (24) η af η bn η ce η dm + η ae η bn η cf η dm + η af η be η cn η dm η ae η bf η cn η dm + η an (η bm (η cf η de η ce η df ) + η bf (η ce η dm η cm η de ) + η be (η cm η df η cf η dm )) +η af η bm η ce η dn η ae η bm η cf η dn η af η be η cm η dn + η ae η bf η cm η dn + η am (η bn (η ce η df η cf η de ) +η bf (η cn η de η ce η dn ) + η be (η cf η dn η cn η df )) + η ad η bc η en η fm η ac η bd η en η fm η ad η bc η em η fn + η ac η bd η em η fn ) d (3) cdefghmn = i(η ah η bg η cn η df η em η ag η bh η cn η df η em η ah η bg η cf η dn η em + (25) η ag η bh η cf η dn η em + η ah η bd η cf η gn η em η ad η bh η cf η gn η em η ah η bc η df η gn η em + η ac η bh η df η gn η em η ah η bg η cm η df η en + η ag η bh η cm η df η en + η ah η bg η cf η dm η en η ag η bh η cf η dm η en + η an η bm (η cf (η dg η eh η dh η eg ) + η ch (η df η eg η de η fg ) +η cg (η de η fh η df η eh ) + η ce (η dh η fg η dg η fh )) + η am η bn (η cf (η dh η eg η dg η eh ) +η ch (η de η fg η df η eg ) + η cg (η df η eh η de η fh ) + η ce (η dg η fh η dh η fg )) η ah η bg η cn η de η fm + η ag η bh η cn η de η fm +η ah η bg η ce η dn η fm η ag η bh η ce η dn η fm + η ah η bg η cm η de η fn η ag η bh η cm η de η fn η ah η bg η ce η dm η fn + η ag η bh η ce η dm η fn + η ah η bf η cn η de η gm η af η bh η cn η de η gm η ah η be η cn η df η gm + η ae η bh η cn η df η gm η ah η bf η ce η dn η gm + η af η bh η ce η dn η gm 6

7 +η ah η be η cf η dn η gm η ae η bh η cf η dn η gm η ah η bd η cf η en η gm + η ad η bh η cf η en η gm +η ah η bc η df η en η gm η ac η bh η df η en η gm + η ah η bd η ce η fn η gm η ad η bh η ce η fn η gm η ah η bc η de η fn η gm + η ac η bh η de η fn η gm η ah η bf η cm η de η gn +η af η bh η cm η de η gn + η ah η be η cm η df η gn η ae η bh η cm η df η gn + η ah η bf η ce η dm η gn η af η bh η ce η dm η gn η ah η be η cf η dm η gn + η ae η bh η cf η dm η gn η ah η bd η ce η fm η gn + η ad η bh η ce η fm η gn + η ah η bc η de η fm η gn η ac η bh η de η fm η gn η ag η bf η cn η de η hm + η af η bg η cn η de η hm + η ag η be η cn η df η hm η ae η bg η cn η df η hm + η ag η bf η ce η dn η hm η af η bg η ce η dn η hm η ag η be η cf η dn η hm + η ae η bg η cf η dn η hm + η ag η bd η cf η en η hm η ad η bg η cf η en η hm η ag η bc η df η en η hm + η ac η bg η df η en η hm η ag η bd η ce η fn η hm + η ad η bg η ce η fn η hm + η ag η bc η de η fn η hm η ac η bg η de η fn η hm + η af η bd η ce η gn η hm η ad η bf η ce η gn η hm η ae η bd η cf η gn η hm + η ad η be η cf η gn η hm η af η bc η de η gn η hm + η ac η bf η de η gn η hm + η ae η bc η df η gn η hm η ac η be η df η gn η hm + ( η bg (η af (η cm η de η ce η dm ) + η ae (η cf η dm η cm η df ) (η ad η cf η ac η df )η em + (η ad η ce η ac η de )η fm ) + η ag (η bf (η cm η de η ce η dm ) + η be (η cf η dm η cm η df ) (η bd η cf η bc η df )η em + (η bd η ce η bc η de )η fm ) (η ad (η be η cf η bf η ce ) + η af (η bd η ce η bc η de ) + η ae (η bc η df η bd η cf ) + η ac (η bf η de η be η df ))η gm )η hn ) d (4) cdmn = i( η am η bd η cn + η ad (η bm η cn η bn η cm ) (26) +η ac η bn η dm + η an (η bd η cm η bc η dm ) + η am η bc η dn η ac η bm η dn ) d (5) cdefghmn = i(η ah η bn η cm η df η eg η ah η bm η cn η df η eg η af η bn η cm η dh η eg (27) +η af η bm η cn η dh η eg η ah η bn η cf η dm η eg + η af η bn η ch η dm η eg + η ah η bf η cn η dm η eg η af η bh η cn η dm η eg + η a h η bm η cf η dn η eg η af η bm η ch η dn η eg η ah η bf η cm η dn η eg + η af η bh η cm η dn η eg η ag η bn η cm η df η eh + η ag η bm η cn η df η eh + η af η bn η cm η dg η eh η af η bm η cn η dg η eh + η ag η bn η cf η dm η eh η af η bn η cg η dm η eh η ag η bf η cn η dm η eh + η af η bg η cn η dm η eh η ag η bm η cf η dn η eh + η af η bm η cg η dn η eh + η ag η bf η cm η dn η eh η af η bg η cm η dn η eh η ah η bn η cg η df η em + η ag η bn η ch η df η em + η ah η bg η cn η df η em η ag η bh η cn η df η em + η ah η bn η cf η dg η em η af η bn η ch η dg η em η ah η bf η cn η dg η em + η af η bh η cn η dg η em η ag η bn η cf η dh η em + η af η bn η cg η dh η em + η ag η bf η cn η dh η em η af η bg η cn η dh η em η ah η bg η cf η dn η em + η ag η bh η cf η dn η em + η ah η bf η cg η dn η em 7

8 η af η bh η cg η dn η em η ag η bf η ch η dn η em + η af η bg η ch η dn η em + η ah η bm η cg η df η en η ag η bm η ch η df η en η ah η bg η cm η df η en + η ag η bh η cm η df η en η ah η bm η cf η dg η en + η af η bm η ch η dg η en + η ah η bf η cm η dg η en η af η bh η cm η dg η en + η ag η bm η cf η dh η en η af η bm η cg η dh η en η ag η bf η cm η dh η en +η af η bg η cm η dh η en + η ah η bg η cf η dm η en η ag η bh η cf η dm η en η ah η bf η cg η dm η en + η af η bh η cg η dm η en + η ag η bf η ch η dm η en η af η bg η ch η dm η en η ah η bn η cm η de η fg + η ah η bm η cn η de η fg + η ae η bn η cm η dh η fg η ae η bm η cn η dh η fg + η ah η bn η ce η dm η fg η ae η bn η ch η dm η fg η ah η be η cn η dm η fg + η ae η bh η cn η dm η fg η ah η bm η ce η dn η fg + η ae η bm η ch η dn η fg + η ah η be η cm η dn η fg η ae η bh η cm η dn η fg + η ag η bn η cm η de η fh η ag η bm η cn η de η fh η ae η bn η cm η dg η fh + η ae η bm η cn η dg η fh η ag η bn η ce η dm η fh + η ae η bn η cg η dm η fh + η ag η be η cn η dm η fh η ae η bg η cn η dm η fh + η ag η bm η ce η dn η fh η ae η bm η cg η dn η fh η ag η be η cm η dn η fh + η ae η bg η cm η dn η fh + η ah η bn η cg η de η fm η ag η bn η ch η de η fm η ah η bg η cn η de η fm + η ag η bh η cn η de η fm η ah η bn η ce η dg η fm + η ae η bn η ch η dg η fm + η ah η be η cn η dg η fm η ae η bh η cn η dg η fm + η ag η bn η ce η dh η fm η ae η bn η cg η dh η fm η ag η be η cn η dh η fm + η ae η bg η cn η dh η fm + η ah η bg η ce η dn η fm η ag η bh η ce η dn η fm η ah η be η cg η dn η fm + η ae η bh η cg η dn η fm + η ag η be η ch η dn η fm η ae η bg η ch η dn η fm + η an (η bf η cm η dh η eg η bf η ch η dm η eg + η bg η cm η df η eh η bf η cm η dg η eh η bg η cf η dm η eh + η bf η c g η dm η eh η bg η ch η df η em + η bf η ch η dg η em + η bg η cf η dh η em η bf η cg η dh η em η be η cm η dh η fg + η be η ch η dm η fg η bg η cm η de η fh + η be η cm η dg η fh + η bg η ce η dm η fh η be η cg η dm η fh + η bm (η cf (η dg η eh η dh η eg ) + η ch (η df η eg η de η fg ) + η cg (η de η fh η df η eh ) + η ce (η dh η fg η dg η fh )) + 8

9 (η bg (η ch η de η ce η dh ) + η be (η cg η dh η ch η dg ))η fm + η bh (η cf (η dm η eg η dg η em ) + η cm (η de η fg η df η eg ) + η cg (η df η em η de η fm ) + η ce (η dg η fm η dm η fg ))) + (η ah (η bm (η ce η dg η cg η de ) + η bg (η cm η de η ce η dm ) + η be (η cg η dm η cm η dg )) + η ag (η bm (η ch η de η ce η dh ) + η bh (η ce η dm η cm η de ) + η be (η cm η dh η ch η dm )) + η ae (η bm (η cg η dh η ch η dg ) + η bh (η cm η dg η cg η dm ) + η bg (η ch η dm η cm η dh )))η fn + η am ( η bf η cn η dh η eg + η bf η ch η dn η eg η bg η cn η df η eh + η bf η cn η dg η eh + η bg η cf η dn η eh η bf η cg η dn η eh + η bg η ch η df η en η bf η ch η dg η en η bg η cf η dh η en + η bf η cg η dh η en + η be η cn η dh η fg η be η ch η dn η fg + η bg η cn η de η fh η be η cn η dg η fh η bg η ce η dn η fh + η be η cg η dn η fh + η bn (η cf (η dh η eg η dg η eh ) + η ch (η de η fg η df η eg ) + η cg (η df η eh η de η fh ) + η ce (η dg η fh η dh η fg )) + (η bg (η ce η dh η ch η de ) + η be (η ch η dg η cg η dh ))η fn + η bh (η cf (η dg η en η dn η eg ) + η cn (η df η eg η de η fg ) + η cg (η de η fn η df η en ) + η ce (η dn η fg η dg η fn )))) d (6) cdefghmn = i(η am η bd η cn η eh η fg η ac η bn η dm η eh η fg (28) η am η bc η dn η eh η fg + η ac η bm η dn η eh η fg η am η bd η cn η eg η fh + η ac η bn η dm η eg η fh + η am η bc η dn η eg η fh η ac η bm η dn η eg η fh + η an (η bd η cm η bc η dm )(η eg η fh η eh η fg ) η ah η bd η cg η en η fm + η ag η bd η ch η en η fm + η ah η bc η dg η en η fm η ac η bh η dg η en η fm η ag η bc η dh η en η fm + η ac η bg η dh η en η fm + η ah η bd η cg η em η fn η ag η bd η ch η em η fn η ah η bc η dg η em η fn + η ac η bh η dg η em η fn + η ag η bc η dh η em η fn η ac η bg η dh η em η fn + η ah η bd η cf η en η gm η af η bd η ch η en η gm η ah η bc η df η en η gm + η ac η bh η df η en η gm + η af η bc η dh η en η gm η ac η bf η dh η en η gm η ah η bd η ce η fn η gm + η ae η bd η ch η fn η gm + η ah η bc η de η fn η gm η ac η bh η de η fn η gm η ae η bc η dh η fn η gm + η ac η be η dh η fn η gm η ah η bd η cf η em η gn + η af η bd η ch η em η gn + η ah η bc η df η em η gn η ac η bh η df η em η gn η af η bc η dh η em η gn + η ac η bf η dh η em η gn + η ah η bd η ce η fm η gn η ae η bd η ch η fm η gn η ah η bc η de η fm η gn + η ac η bh η de η fm η gn + 9

10 η ae η bc η dh η fm η gn η ac η be η dh η fm η gn η ag η bd η cf η en η hm + η af η bd η cg η en η hm + η ag η bc η df η en η hm η ac η bg η df η en η hm η af η bc η dg η en η hm + η ac η bf η dg η en η hm + η ag η bd η ce η fn η hm η ae η bd η cg η fn η hm η ag η bc η de η fn η hm + η ac η bg η de η fn η hm + η ae η bc η dg η fn η hm η ac η be η dg η fn η hm η af η bd η ce η gn η hm + η ae η bd η cf η gn η hm + η af η bc η de η gn η hm η ac η bf η de η gn η hm η ae η bc η df η gn η hm + η ac η be η df η gn η hm + (η ac η bg η df η em η ac η bf η dg η em + η ae η bd η cg η fm η ac η bg η de η fm η ae η bc η dg η fm + η ac η be η dg η fm + η ag (η bd (η cf η em η ce η fm ) + η bc (η de η fm η df η em )) + (η ae (η bc η df η bd η cf ) + η ac (η bf η de η be η df ))η gm + η af (η bd (η ce η gm η cg η em ) + η bc (η dg η em η de η gm )))η hn + η ad ((η bn η cm η bm η cn )(η eh η fg η eg η fh ) + η bf η ch η en η gm η be η ch η fn η gm η bf η ch η em η gn + η be η ch η fm η gn + η bh (η cg (η en η fm η em η fn ) + η cf (η em η gn η en η gm ) + η ce (η fn η gm η fm η gn )) η bf η c g η en η hm + η be η cg η fn η hm + η bf η ce η gn η hm η be η cf η gn η hm + (η bf (η cg η em η ce η gm ) + η be (η cf η gm η cg η fm ))η hn + η bg (η ch (η em η fn η en η fm ) + η cf (η en η hm η em η hn ) + η ce (η fm η hn η fn η hm )))) d (7) cdefmn = ( η af η bd η cn η em + η ac η bn η df η em + (29) η af η bc η dn η em η ac η bf η dn η em η am η bd η cf η en + η af η bd η cm η en + η am η bc η df η en η ac η bm η df η en η af η bc η dm η en + η ac η bf η dm η en + η ae η bd η cn η fm η ac η bn η de η fm η ae η bc η dn η fm + η ac η be η dn η fm + η an (η bd (η cf η em η ce η fm ) + η bc (η de η fm η df η em )) + (η am (η bd η ce η bc η de ) + η ae (η bc η dm η bd η cm ) + η ac (η bm η de η be η dm ))η fn + η ad (η bf (η cn η em η cm η en ) + η bn (η ce η fm η cf η em ) + η bm (η cf η en η ce η fn ) + η be (η cm η fn η cn η fm ))) d (8) cdefghpqmn = 1 2 (η deǫ cfgh η ec ǫ dfgh ǫ edgh η fc + ǫ ecgh η ld ) (30) (ǫ bmnp η aq ǫ anpq η bm + ǫ ampq η bn ǫ amnq η bp + ǫ amnp η bq ) 10

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Non-commutative Gauge Theories and Seiberg Witten Map to All Orders 1

Non-commutative Gauge Theories and Seiberg Witten Map to All Orders 1 Non-commutative Gauge Theories and Seiberg Witten Map to All Orders 1 Kayhan ÜLKER Feza Gürsey Institute * Istanbul, Turkey (savefezagursey.wordpress.com) The SEENET-MTP Workshop JW2011 1 K. Ulker, B Yapiskan

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 s Free graviton Hamiltonian Show that the free graviton action we discussed in class (before making it gauge- and Lorentzinvariant), S 0 = α d 4 x µ h ij µ h ij, () yields the correct free Hamiltonian

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Higher spin gauge theories and their CFT duals

Higher spin gauge theories and their CFT duals Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Riemannian Curvature

Riemannian Curvature Riemannian Curvature February 6, 013 We now generalize our computation of curvature to arbitrary spaces. 1 Parallel transport around a small closed loop We compute the change in a vector, w, which we parallel

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY Walter Wyss Department of Physics University of Colorado Boulder, CO 80309 (Received 14 July 2005) My friend, Asim Barut, was always interested in classical

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα