ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21"

Transcript

1 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ (ΚΑΤ ΑΛΦΑΒΗΤΙΚΗ ΣΕΙΡΑ): Γ. ΑΛΕΞΙΟΥ Χ. ΒΕΡΓΟΣ Κ. ΕΥΣΤΑΘΙΟΥ Γ. ΘΕΟΔΩΡΙΔΗΣ Χ. ΚΑΒΟΥΣΙΑΝΟΣ Ο. ΚΟΥΦΟΠΑΥΛΟΥ Κ. ΛΑΜΠΡΙΝΟΥΔΑΚΗΣ Φ. ΛΙΟΤΟΠΟΥΛΟΣ Α. ΜΟΣΧΟΒΟΣ Δ. ΜΠΑΚΑΛΗΣ Σ. ΝΙΚΟΛΑΪΔΗΣ Δ. ΝΙΚΟΛΟΣ Β. ΠΑΛΙΟΥΡΑΣ Ι. ΠΑΠΑΕΥΣΤΑΘΙΟΥ Δ. ΠΑΠΑΚΩΣΤΑΣ Α. ΣΤΟΥΡΑΙΤΗΣ Α. ΣΚΟΔΡΑΣ Β. ΦΩΤΟΠΟΥΛΟΣ Α. ΧΑΤΖΟΠΟΥΛΟΣ ΕΠΙΜΕΛΕΙΑ ΕΚΔΟΣΗΣ: Φ. ΛΙΟΤΟΠΟΥΛΟΣ Δ. ΜΠΑΚΑΛΗΣ Χ. ΚΑΒΟΥΣΙΑΝΟΣ ΠΑΤΡΑ 28

2 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Το παρόν υλικό αποτελεί το κύριο τμήμα των ασκήσεων που δόθηκαν προς επίλυση στους φοιτητές του Ελληνικού Ανοικτού Πανεπιστημίου στα πλαίσια της Θεματικής Ενότητας ΠΛΗ-2: Ψηφιακά Συστήματα του Προγράμματος Σπουδών της Πληροφορικής κατά τα ακαδημαϊκά έτη ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Σύμφωνα με το Ν. 22/993, απαγορεύεται η συνολική ή αποσπασματική αναδημοσίευση του παρόντος υλικού ή αναπαραγωγή του με οποιοδήποτε μέσο χωρίς έγγραφη άδεια. Σελίδα 2 από 73

3 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Περιεχόμενα I. Αριθμητικά Συστήματα... 4 II. Κώδικες Αναπαράστασης Δεδομένων III. Άλγεβρα Boole IV. Σχεδίαση συνδυαστικών κυκλωμάτων με λογικές πύλες V. Αποκωδικοποιητές Πολυπλέκτες - Αθροιστές VI. Ακολουθιακά κυκλώματα VII. Σχεδίαση Καταχωρητών Σελίδα 3 από 73

4 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ I. Αριθμητικά Συστήματα Δίνονται οι αριθμοί: χ = και ψ = σε δεκαδική αναπαράσταση. Α. Να μετατραπούν σε δυαδική αναπαράσταση (χ 2, ψ 2 ) με 8 ψηφία για το ακέραιο μέρος και 4 ψηφία για το κλασματικό μέρος καθώς και σε δεκαεξαδική αναπαράσταση (χ 6, ψ 6 ) με 2 ψηφία για το ακέραιο μέρος και ψηφίο για το κλασματικό μέρος. Η μετατροπή να εξηγηθεί αναλυτικά μόνο για τον αριθμό χ. Β. Να μετατραπούν πάλι σε δεκαδική αναπαράσταση οι αριθμοί (χ 2, ψ 2 και χ 6, ψ 6 ) που προέκυψαν από το ερώτημα Α. Σχολιάστε τις διαφορές που παρατηρείτε ανάμεσα στις δεκαδικές αναπαραστάσεις που υπολογίσατε στο ερώτημα Β και στις αρχικές. (Υπόδειξη: Συμβουλευτείτε το Παράρτημα Α του Β τόμου Αρχιτεκτονική Υπολογιστών Ι ). Λύση: A. Για να μετατρέψουμε τον αριθμό χ = σε δυαδική μορφή αντιμετωπίζουμε ξεχωριστά το ακέραιο (244) από το κλασματικό (.75) μέρος. Για τη μετατροπή του ακεραίου μέρους από δεκαδική σε δυαδική μορφή, εκτελούμε τη διαδικασία των διαδοχικών διαιρέσεων, ως εξής: ΛΣΨ 5 2 ακεραίου 7 2 μέρους 3 2 ΠΣΨ ακεραίου 2 μέρους όπου διαιρούμε το πηλίκο κάθε διαίρεσης με τη βάση στην οποία θέλουμε να μετατρέψουμε την αρχική αναπαράσταση, δηλ. με το δύο, μέχρις ότου το πηλίκο να μηδενιστεί. Τότε, το τελικό αποτέλεσμα σχηματίζεται από τα υπόλοιπα των διαιρέσεων, με το περισσότερο σημαντικό ψηφίο να είναι το υπόλοιπο το οποίο προέκυψε τελευταίο. Άρα η δυαδική έκφραση του ακεραίου μέρους είναι 2, το οποίο προκύπτει εκφρασμένο με 8 δυαδικά ψηφία. Για το κλασματικό μέρος, δηλ. το.75, εφαρμόζουμε τη μέθοδο των διαδοχικών πολλαπλασιασμών, ως εξής:.75 2 =.5 = +.5 ΠΣΨ κλασματικού μέρους.5 2 =. = =. = +. 2 =. = + ΛΣΨ κλασματικού μέρους όπου πολλαπλασιάζουμε διαδοχικά με τη βάση, δηλ. το 2, το κλασματικό μέρος του αποτελέσματος του προηγούμενου πολλαπλασιασμού. Η διαδικασία τερματίζεται όταν το κλασματικό μέρος απομείνει μηδέν ή όταν εξαντληθούν τα διαθέσιμα για την αναπαράσταση δυαδικά ψηφία. Στην άσκηση αυτή ζητείται η έκφραση του κλασματικού μέρους με τέσσερα ψηφία. Το αποτέλεσμα προκύπτει από τις τιμές των ακεραίων μερών των γινομένων, με λιγότερο σημαντικό το ψηφίο που υπολογίστηκε τελευταίο. Άρα το κλασματικό μέρος εκφράζεται σε δυαδική αναπαράσταση ως Σελίδα 4 από 73

5 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ. 2. Συνεπώς η τελική έκφραση του χ η οποία περιλαμβάνει ακέραιο και κλασματικό μέρος είναι χ 2 =. 2 Για τη μετατροπή στο δεκαεξαδικό, αντιστοιχίζουμε ένα δεκαεξαδικό ψηφίο σε κάθε τέσσερα δυαδικά. Έτσι:. {{ { F 4 C άρα η δεκαεξαδική αναπαράσταση είναι χ 6 = F4.C 6 Ομοίως για το , προκύπτει ότι η δυαδική έκφραση είναι ψ 2 =. 2. Επειδή ζητείται η έκφραση με οκτώ δυαδικά ψηφία ακεραίων ενώ αρκούν έξι, έχουν προστεθεί δύο μηδενικά στις δύο περισσότερο σημαντικές θέσεις. Η μετατροπή στο δεκαεξαδικό γίνεται ως εξής: {{{., δηλ. η δεκαεξαδική έκφραση είναι ψ 6 = Β. Η έκφραση χ 2 μετατρέπεται σε δεκαδική πολλαπλασιάζοντας κάθε δυαδικό ψηφίο με το αντίστοιχο βάρος εκφρασμένο σε δεκαδική μορφή: = Αντίστοιχα, η δεκαεξαδική έκφραση χ 6 μετατρέπεται σε δεκαδική ως ακολούθως: F C6 6 = = Παρατηρούμε ότι και στις δύο περιπτώσεις προκύπτει η αρχική έκφραση χ, ακριβώς. Αυτό συμβαίνει γιατί τα τέσσερα δυαδικά ψηφία είναι αρκετά για την ακριβή αναπαράσταση του συγκεκριμένου κλασματικού μέρους, μιας και το υπόλοιπο της διαδικασίας των διαδοχικών πολλαπλασιασμών για τη μετατροπή σε δυαδικό, είναι μηδέν. Επίσης τα οκτώ δυαδικά ψηφία αρκούν για την αναπαράσταση του ακεραίου μέρους, μιας και το 244 είναι μικρότερο από το 255(=2 8 -), ποσότητα η οποία είναι η μέγιστη αναπαραστάσιμη με 8 δυαδικά, όταν δεν έχουμε πρόσημο. Επαναλαμβάνοντας τη διαδικασία για τα ψ 2 και ψ 6, προκύπτει ότι = και = = Παρατηρούμε ότι η ποσότητα που προκύπτει είναι κατά =.7 μικρότερη από την ψ. Αυτό οφείλεται στο ότι κατά τη μετατροπή της αναπαράστασης του κλασματικού μέρους σε δυαδική μορφή, με τους διαδοχικούς πολλαπλασιασμούς, έμεινε ένα μη μηδενικό υπόλοιπο. ΑΣΚΗΣΗ 2 Απαντήστε στις ακόλουθες ερωτήσεις. Δικαιολογήστε τις απαντήσεις σας και αναλύστε τον τρόπο επίλυσης, όπου χρειάζεται. Δίνονται οι αριθμοί α=375, β=568, γ=35, δ=6, ε=45.5 και ζ= α. Να γραφούν σε δυαδική και δεκαεξαδική αναπαράσταση. Να δηλωθεί σε κάθε περίπτωση, το περισσότερο και το λιγότερο σημαντικό ψηφίο. β. Να γραφούν οι αντίθετοί τους στο δυαδικό και στο δεκαεξαδικό σε μορφή συμπληρώματος του δύο και του δεκαέξι αντίστοιχα. γ. Να γίνουν αναλυτικά οι πράξεις α + β, β + γ, α γ, α + δ στο δυαδικό και στο δεκαεξαδικό. Οι διαφορές να υπολογιστούν χρησιμοποιώντας συμπληρώματα ως προς τις αντίστοιχες βάσεις. Ομοίως, να υπολογιστεί στο δυαδικό το άθροισμα ε+ζ και η διαφορά ε ζ. Λύση: Ερώτημα (α) Σελίδα 5 από 73

6 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Το πλήθος των απαιτούμενων δυαδικών ψηφίων είναι n = log X + 2, άρα απαιτούνται n = log = 9 2 δυαδικά ψηφία. Άρα διαιρούμε με τις δυνάμεις του 2: 2 8, 2 7,..., Συνεπώς, από τα πηλίκα των ανωτέρω διαδοχικών διαιρέσεων και το υπόλοιπο της τελευταίας, προκύπτει ότι 375 =. 2 Υπάρχουν δύο τρόποι για τη μετατροπή σε δεκαεξαδικό. Τρόπος ος Η διαδικασία επαναλαμβάνεται για βάση 6: n = log X 6 + = log = 3. 6 Συνεπώς, απαιτούνται τρία δεκαεξαδικά ψηφία, άρα διαιρούμε με τις δυνάμεις του 6, 6: Άρα, το 375 γράφεται 375 = = 256 και Τρόπος 2ος Επίσης από τη δυαδική αναπαράσταση του 375, προκύπτει ότι 375 = = 2 {{{ = Δυαδική αναπαράσταση: ( ) 2. MSB LSB Δεκαεξαδική: 375 = ( 7 7 ) 6 MSB LSB Ομοίως για τους άλλους αριθμούς. Τα αποτελέσματα δίνονται στον Πίνακα Ι. Αριθμός Δεκαδική Δυαδική Δεκαεξαδική α β γ 35 5Ε δ 6 6A ε D.8 ζ C Πίνακας Ι: Δυαδική και Δεκαεξαδική Αναπαράσταση. Ερώτημα (β) Το συμπλήρωμα ως προς δύο του 375 προκύπτει αντιστρέφοντας τα δυαδικά ψηφία και προσθέτοντας μονάδα στο λιγότερο σημαντικό ψηφίο. Έτσι για το 375 ισχύει ότι: Σελίδα 6 από 73

7 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ αντιστροφη ψηφιων + συμπληρωμα του 2 Ομοίως για την δεκαεξαδική αναπαράσταση προκύπτει ότι: 77 (5 )(5 )(5 7)(5 7) = (5)(4)88 = FE88 + FE89 συμπληρωμα του 6 Αριθμός Δεκαδική Δυαδική Συμπληρώματος Δεκαεξαδικό Συμπλήρωμα α 375 FΕ89 β 568 FDC8 γ 35 FEA2 δ 6 F96 ε FD2.8 ζ FCF.4 Πίνακας ΙΙ: Δυαδική και Δεκαεξαδική Αναπαράσταση των Αντιθέτων. Άλλος τρόπος υπολογισμού του συμπληρώματος ως προς 2 του αριθμού Α, είναι με τη χρήση του τύπου 2 n A, ως εξής: Όπως προκύπει από το ερώτημα (α), το 375 χρειάζεται 9 δυαδικά ψηφία, και η αναπαράσταση του είναι. Παρατηρούμε ότι επειδή το περισσότερο σημαντικό ψηφίο είναι, πρέπει να προστεθεί ένα αρχικό μηδέν για να δηλωθεί ότι ο αριθμός είναι θετικός, δηλαδή να εκφραστεί ως. Άρα η δεκαδική αναπαράσταση του συμπληρώματος του 2 του 375 είναι = 649, γιατί απαιτούνται 9 + = ψηφία, εξαιτίας του αρχικού. Μετατρέποντας το 649 σε δυαδική μορφή, προκύπτει ότι το συμπλήρωμα ως προς 2 του 375 είναι το 2 το οποίο συμφωνεί με το αποτέλεσμα του άλλου τρόπου. Ομοίως εφαρμόζεται η διαδικασία για τους άλλους αριθμούς. Ερώτημα (γ) Το άθροισμα α + β υπολογίζεται ως εξής: (Κρατούμενα) + (Άθροισμα) Στο α προστίθεται ένα αρχικό μηδέν για να έχουν ίσο μήκος λέξης οι δύο αριθμοί. Το άθροισμα β +γ υπολογίζεται ως εξής + Η διαφορά α γ υπολογίζεται αθροίζοντας το α με το συμπλήρωμα του γ ως προς 2. (κρατούμενα) + ) (άθροισμα) Στο α προστίθεται ένα αρχικό μηδέν για να έχουν ίσο μήκος λέξης οι δύο αριθμοί. Στην περίπτωση αυτή το αποτέλεσμα είναι 25. Το κρατούμενο από την περισσότερο σημαντική θέση στην περίπτωση αυτή αγνοείται. Σελίδα 7 από 73

8 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Το άθροισμα α + δ υπολογίζεται ως εξής. (κρατούμενα) + (άθροισμα). Στο δεκαεξαδικό σύστημα, τα αθροίσματα υπολογίζονται ως εξής: Α F E F E A 2 ) A E Με τον ίδιο τρόπο υπολογίζονται και τα αθροίσματα ε + ζ και η διαφορά ε ζ. Αρχικά σε δυαδικό:. +.. Η διαφορά υπολογίζεται με πρόσθεση σε συμπλήρωμα του ). Σε δεκαεξαδικό, οι πράξεις γίνονται ως εξής: 2 D C 5 E. 4 2 D. 8 + F C F. 4 )F F C. C ΑΣΚΗΣΗ 3 Δίνονται οι αριθμοί α=247, β=932 και γ=63. Α. Να γραφούν οι αριθμοί α,β,γ σε δυαδική αναπαράσταση με 2 ψηφία και σε δεκαεξαδική αναπαράσταση με 3 ψηφία. Η μετατροπή να εξηγηθεί αναλυτικά μόνο για τον αριθμό α. Β. Να γραφούν οι αντίθετοί τους στο δυαδικό και στο δεκαεξαδικό σε μορφή συμπληρώματος του δύο και του δεκαέξι, διατηρώντας το μήκος λέξης των αριθμών σε κάθε περίπτωση, δηλ. 2 δυαδικά ψηφία και 3 δεκαεξαδικά ψηφία. Γ. Να γίνουν αναλυτικά οι πράξεις α + β και α γ στο δυαδικό και στο δεκαεξαδικό σύστημα χρησιμοποιώντας την αναπαράσταση του πρώτου ερωτήματος. Οι διαφορές (α γ) να υπολογιστούν χρησιμοποιώντας τα συμπληρώματα ως προς τις αντίστοιχες βάσεις από το ερώτημα Β. Λύση: Σελίδα 8 από 73

9 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Α. Το πλήθος των απαιτούμενων δυαδικών ψηφίων είναι n = log X + 2, άρα απαιτούνται n = log = 8 2 δυαδικά ψηφία. Άρα διαιρούμε με τις δυνάμεις του 2: 2 7,2 6,..., Συνεπώς, από τα πηλίκα των ανωτέρω διαδοχικών διαιρέσεων και το υπόλοιπο της τελευταίας, προκύπτει ότι 247 =, 2 όπου απλώς προσθέτουμε τέσσερα μηδενικά στο περισσότερο σημαντικό μέρος, για να εκφραστεί ο αριθμός στη ζητούμενη μορφή των 2 δυαδικών ψηφίων. Υπάρχουν δύο τρόποι για τη μετατροπή στο δεκαεξαδικό σύστημα αναπαράστασης. Τρόπος ος Η διαδικασία μετατροπής σε βάση 2 επαναλαμβάνεται για βάση 6: n = log X 6 + = log = 2. 6 Συνεπώς, απαιτούνται δύο δεκαεξαδικά ψηφία, άρα διαιρούμε με 6: Άρα, το 247 γράφεται 247 = F7 = F7 6 6, γιατί 5 = F6. Τρόπος 2ος Επίσης η μετατροπή στο δεκαεξαδικό μπορεί να γίνει μετατρέποντας τα ψηφία της δυαδικής αναπαράστασης ανά τέσσερα σε ένα δεκαεξαδικό ψηφίο. Ξεκινώντας από τα λιγότερο σημαντικά ψηφία προκύπτει ότι: 247 = = 2 { { { = F 7. 6 F 7 Ομοίως για τους άλλους αριθμούς. Τα αποτελέσματα δίνονται στον Πίνακα Ι. Αριθμός Αναπαράσταση Δεκαδική Δυαδική Δεκαεξαδική α 247 F7 β 932 3Α4 γ 63 A3 Πίνακας Ι: Δυαδική και Δεκαεξαδική Αναπαράσταση. Β. Το συμπλήρωμα ως προς δύο του 247 προκύπτει αντιστρέφοντας τα δώδεκα δυαδικά ψηφία και προσθέτοντας μονάδα στο λιγότερο σημαντικό ψηφίο. Έτσι για το 247 ισχύει ότι: αντιστροφη ψηφιων + συμπληρωμα του 2 Με αντίστοιχο τρόπο, για την δεκαεξαδική αναπαράσταση προκύπτει ότι: Σελίδα 9 από 73

10 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ ( )( ) F7 (5 )(5 5)(5 7) = (5) 8 = F8 + F9 συμπληρωμα του 6 Αριθμός Δεκαδική Δυαδική Συμπληρώματος Δεκαεξαδικό Συμπλήρωμα α 247 F9 β 932 C5C γ 63 F5D Πίνακας ΙΙ: Δυαδική και Δεκαεξαδική Αναπαράσταση των Αντιθέτων. Άλλος τρόπος υπολογισμού του συμπληρώματος ως προς 2 του αριθμού Α, είναι με τη χρήση του τύπου 2 n A, ως εξής: Όπως προκύπει από το ερώτημα (α), το 247 αναπαριστάται με δώδεκα δυαδικά ψηφία, και η αναπαράσταση του είναι. Άρα η δεκαδική αναπαράσταση του συμπληρώματος του 2 2 του 247 είναι = Μετατρέποντας το 3849 σε δυαδική μορφή, προκύπτει ότι το συμπλήρωμα ως προς 2 του 247 είναι το 2 το οποίο συμφωνεί με το αποτέλεσμα του πρώτου τρόπου υπολογισμού του συμπληρώματος, ανά ψηφίο. Ομοίως εφαρμόζεται η διαδικασία για τους άλλους αριθμούς. Γ. Το άθροισμα α + β υπολογίζεται ως εξής: (Κρατούμενα) + (Άθροισμα) Η διαφορά α γ υπολογίζεται αθροίζοντας το α με το συμπλήρωμα του γ ως προς 2. (Κρατούμενα) + (Άθροισμα) Το αποτέλεσμα στο δεκαδικό σύστημα είναι ίσο με 84. Το κρατούμενο από την περισσότερο σημαντική θέση στην περίπτωση αυτή αγνοείται. Στο δεκαεξαδικό σύστημα, οι πράξεις υπολογίζονται ως εξής: F Α Β F 7 + F 5 D 5 4 ΑΣΚΗΣΗ 4 Δίνονται οι αριθμοί α=247, β=352, γ=46 και δ=. α. Να γραφούν οι αριθμοί α έως δ σε δυαδική αναπαράσταση με 2 ψηφία και σε δεκαεξαδική αναπαράσταση με 3 ψηφία. Η μετατροπή να εξηγηθεί αναλυτικά για τον αριθμό α και συνοπτικά για τους λοιπούς. β. Να γραφούν οι αντίθετοί τους στο δυαδικό και στο δεκαεξαδικό σε μορφή συμπληρώματος του δύο και του δεκαέξι, διατηρώντας το μήκος λέξης των αριθμών σε κάθε περίπτωση, δηλ. 2 δυαδικά ψηφία και 3 δεκαεξαδικά ψηφία. Σελίδα από 73

11 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ γ. Να γίνουν αναλυτικά οι πράξεις α + β, β + γ, α γ και α + δ στο δυαδικό και στο δεκαεξαδικό σύστημα χρησιμοποιώντας την αναπαράσταση του πρώτου ερωτήματος. Οι διαφορές να υπολογιστούν χρησιμοποιώντας συμπληρώματα ως προς τις αντίστοιχες βάσεις. Λύση: Ερώτημα (α) Το πλήθος των απαιτούμενων δυαδικών ψηφίων είναι n = log X + 2, άρα απαιτούνται n = log = 8 2 δυαδικά ψηφία. Άρα διαιρούμε με τις δυνάμεις του 2: 2 7,2 6,..., Συνεπώς, από τα πηλίκα των ανωτέρω διαδοχικών διαιρέσεων και το υπόλοιπο της τελευταίας, προκύπτει ότι 247 =, 2 όπου απλώς προσθέτουμε τέσσερα μηδενικά στο περισσότερο σημαντικό μέρος, για να εκφραστεί ο αριθμός στη ζητούμενη μορφή των 2 δυαδικών ψηφίων. Άλλος τρόπος για μετατροπή σε δυαδικό Διαιρούμε διαδοχικά με τη βάση, δηλ. το 2, μέχρις ότου το πηλίκο να μηδενιστεί. Το τελικό αποτέλεσμα σχηματίζεται από τα υπόλοιπα των διαδοχικών διαιρέσεων, με περισσότερο σημαντικό ψηφίο το τελευταίο υπόλοιπο, δηλαδή όπως δείχνει το βέλος στο παρακάτω σχήμα Άρα, η δυαδική αναπαράσταση του 247 είναι 2. (Τοποθετήθηκαν τέσσερα μηδενικά στην αρχή της δυαδικής λέξης, γιατί αυτή ζητείται με δώδεκα ψηφία.) Υπάρχουν δύο τρόποι για τη μετατροπή στο δεκαεξαδικό σύστημα αναπαράστασης. Τρόπος ος Η διαδικασία μετατροπής σε βάση 2 επαναλαμβάνεται για βάση 6: n = log X 6 + = log = 2. 6 Συνεπώς, απαιτούνται δύο δεκαεξαδικά ψηφία, άρα διαιρούμε με 6: Άρα, το 247 γράφεται 247 = F7 = F7 6 6, γιατί 5 = F6. Σελίδα από 73

12 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Τρόπος 2ος Επίσης από τη δυαδική αναπαράσταση, προκύπτει ότι 247 = = { { { = F F 7 Ομοίως για τους άλλους αριθμούς. Τα αποτελέσματα δίνονται στον Πίνακα Ι. Αριθμός Αναπαράσταση Δεκαδική Δυαδική Δεκαεξαδική α 247 F7 β γ 46 CC δ 65 Πίνακας Ι: Δυαδική και Δεκαεξαδική Αναπαράσταση. Ερώτημα (β) Το συμπλήρωμα ως προς δύο του 247 προκύπτει αντιστρέφοντας τα δώδεκα δυαδικά ψηφία και προσθέτοντας μονάδα στο λιγότερο σημαντικό ψηφίο. Έτσι για το 247 ισχύει ότι: αντιστροφη ψηφιων + συμπληρωμα του 2 Με αντίστοιχο τρόπο, για την δεκαεξαδική αναπαράσταση προκύπτει ότι: F7 (5 )(5 5)(5 7) = (5) ( )( 8) = F8 + F9 συμπληρωμα του 6 Σελίδα 2 από 73

13 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Αριθμός Δεκαδική Δυαδική Συμπληρώματος Δεκαεξαδικό Συμπλήρωμα α 247 F9 β 352 EΑ γ 46 E34 δ F9B Πίνακας ΙΙ: Δυαδική και Δεκαεξαδική Αναπαράσταση των Αντιθέτων. Άλλος τρόπος υπολογισμού του συμπληρώματος ως προς 2 του αριθμού Α, είναι με τη χρήση του τύπου 2 n A, ως εξής: Όπως προκύπει από το ερώτημα (α), το 247 αναπαριστάται με δώδεκα δυαδικά ψηφία, και η αναπαράσταση του είναι. Άρα η δεκαδική αναπαράσταση του συμπληρώματος του 2 2 του 247 είναι = Μετατρέποντας το 3849 σε δυαδική μορφή, προκύπτει ότι το συμπλήρωμα ως προς 2 του 247 είναι το 2 το οποίο συμφωνεί με το αποτέλεσμα του πρώτου τρόπου υπολογισμού του συμπληρώματος, ανά ψηφίο. Ομοίως εφαρμόζεται η διαδικασία για τους άλλους αριθμούς. Ερώτημα (γ) Το άθροισμα α + β υπολογίζεται ως εξής: (Κρατούμενα) + (Άθροισμα) Το άθροισμα β + γ υπολογίζεται ως εξής (Κρατούμενα) + (Άθροισμα) Η διαφορά α γ υπολογίζεται αθροίζοντας το α με το συμπλήρωμα του γ ως προς 2. (Κρατούμενα) + (Άθροισμα) Το άθροισμα α + δ υπολογίζεται ως εξής. (κρατούμενα) + (άθροισμα) Στο δεκαεξαδικό σύστημα, τα αθροίσματα υπολογίζονται ως εξής: F C C 3 2 C F 7 + E 3 4 F 2 B F C Σελίδα 3 από 73

14 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 5 Δίνονται οι δεκαεξαδικοί αριθμοί 85FA 6, 453A 6, FFFF 6, 6, 6. Να γραφούν σε δυαδική, οκταδική και δεκαδική μορφή. Να περιγραφεί αναλυτικά ο τρόπος μετατροπής. Λύση: α) Mετατροπή σε δυαδική μορφή. 3 2 ( ) ( ) ( ) ( ) FA 6 = = = = ( ) ( ) ( ) ( ) ( ) ( ) ( ) 453A = = = = FFFF = ( 3 2 ) ( 4 ) ( 3 2 ) ( 4 ) ( 3 2 ) 4 ( 3 2 ) = = = 2. 4 = 2 + = ( ) 2 = 2 = 2 = β) Μετατροπή σε οκταδικό. Χρησιμοποιούμε τις δυαδικές αναπαραστάσεις: FA6 = = ( ) ( ) ( ) ( ) ( )( ) = = = A6 = = FFFF ( ) ( ) ( ) = = = = = K ( ) ( )( ) ( )( ) ( )( ) ( )( ) = = = = 2 + = 2 2 = 2 8 = ( ) ( ) = = = = = = Σελίδα 4 από 73

15 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ γ) Mετατροπή σε δεκαδική μορφή FA6 = F 6 + A = = A6 = A = = FFFF6 = F 6 + F 6 + F 6 + F = = = 6 + = 6. 2 = = Άλλος τρόπος Για μετατροπή σε δυαδικό, αντιστοιχίζουμε δυαδικά ψηφία σε κάθε δεκαεξαδικό. 8{ 5{ { F { A Άρα το αποτέλεσμα είναι. Για μετατροπή σε οκταδικό, ξεκινώντας από τη δυαδική αναπαράσταση, προχωρούμε σε ορισμό τριάδων δυαδικών ψηφίων και αντιστοιχίζουμε σε κάθε τριάδα ένα οκταδικό ψηφίο.. Άρα σε οκταδική αναπαράσταση το αποτέλεσμα είναι {{{{{{ ΑΣΚΗΣΗ 6 Δίνονται οι δεκαεξαδικοί αριθμοί 8D4E 6, 34A2 6, FFFF 6, 2 6, 2 6. Να γραφούν σε δυαδική, οκταδική και δεκαδική μορφή. Να περιγραφεί αναλυτικά ο τρόπος μετατροπής. Λύση: α) Mετατροπή σε δυαδική μορφή D4E = ( ) ( ) ( ) ( ) = = = ( ) ( ) ( ) ( ) ( ) ( ) 34A 2 = = = = FFFF = ( 3 2 ) ( 4 ) ( 3 2 ) ( 4 ) ( 3 2 ) 4 ( 3 2 ) = = = = = ( ) 2 2 = 2 2 = 2 2 = 2 = β) Μετατροπή σε οκταδικό. Χρησιμοποιούμε τις δυαδικές αναπαραστάσεις: Σελίδα 5 από 73

16 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ D4E6 = = ( ) ( ) ( ) ( ) ( ) ( )( ) = = = A26 = = FFFF ( )( ) ( ) ( ) = = = = = K ( ) ( )( ) ( )( ) ( )( ) ( )( ) = = = = = 2 2 = 4 8 = ( ) ( ) = = = = = = γ) Mετατροπή σε δεκαδική μορφή D4E6 = D E = = A26 = A = = FFFF6 = F 6 + F 6 + F 6 + F = = = = = = Άλλος τρόπος 7 Για μετατροπή δεκαεξαδικού σε δυαδικό, αντιστοιχίζουμε τέσσερα δυαδικά ψηφία σε κάθε δεκαεξαδικό ψηφίο. 8{ { D 4{ E { Άρα το αποτέλεσμα είναι. Για μετατροπή δεκαεξαδικού σε οκταδικό, ξεκινώντας από τη δυαδική αναπαράσταση, προχωρούμε σε ορισμό τριάδων δυαδικών ψηφίων και αντιστοιχίζουμε σε κάθε τριάδα ένα οκταδικό ψηφίο.. Άρα σε οκταδική αναπαράσταση το αποτέλεσμα είναι {{{{{{ Σελίδα 6 από 73

17 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 7 Δίνονται οι αριθμοί: χ = και ψ = σε δεκαδική αναπαράσταση. Α. Να μετατραπούν σε δυαδική αναπαράσταση (χ 2, ψ 2 ) με 8 ψηφία για το ακέραιο μέρος και 4 ψηφία για το κλασματικό μέρος καθώς και σε δεκαεξαδική αναπαράσταση (χ 6, ψ 6 ) με 2 ψηφία για το ακέραιο μέρος και ψηφίο για το κλασματικό μέρος. Η μετατροπή να εξηγηθεί αναλυτικά μόνο για τον αριθμό χ. Β. Να μετατραπούν πάλι σε δεκαδική αναπαράσταση οι αριθμοί (χ 2, ψ 2 και χ 6, ψ 6 ) που προέκυψαν από το ερώτημα Α. Σχολιάστε τις διαφορές που παρατηρείτε ανάμεσα στις δεκαδικές αναπαραστάσεις που υπολογίσατε στο ερώτημα Β και στις αρχικές. (Υπόδειξη: Συμβουλευτείτε το Παράρτημα Α του Β τόμου Αρχιτεκτονική Υπολογιστών Ι ). Λύση A. Για να μετατρέψουμε τον αριθμό χ = σε δυαδική μορφή αντιμετωπίζουμε ξεχωριστά το ακέραιο (24) από το κλασματικό (.625) μέρος. Για τη μετατροπή του ακεραίου μέρους από δεκαδική σε δυαδική μορφή, εκτελούμε τη διαδικασία των διαδοχικών διαιρέσεων, ως εξής: ΛΣΨ ακεραίου μέρους ΠΣΨ ακεραίου μέρους όπου διαιρούμε το πηλίκο κάθε διαίρεσης με τη βάση στην οποία θέλουμε να μετατρέψουμε την αρχική αναπαράσταση, δηλ. με το δύο, μέχρις ότου το πηλίκο να μηδενιστεί. Τότε, το τελικό αποτέλεσμα σχηματίζεται από τα υπόλοιπα των διαιρέσεων, με το περισσότερο σημαντικό ψηφίο να είναι το υπόλοιπο το οποίο προέκυψε τελευταίο. Άρα η δυαδική έκφραση του ακεραίου μέρους είναι 2. Επειδή ζητείται η έκφραση με οκτώ δυαδικά ψηφία ακεραίων ενώ αρκούν πέντε, έχουν προστεθεί τρία μηδενικά στις τρεις περισσότερο σημαντικές θέσεις. Για το κλασματικό μέρος, δηλ. το.625, εφαρμόζουμε τη μέθοδο των διαδοχικών πολλαπλασιασμών, ως εξής: =.25 = =.5 = =. = +. 2 =. = + ΛΣΨ κλασματικού μέρους όπου πολλαπλασιάζουμε διαδοχικά με τη βάση, δηλ. το 2, το κλασματικό μέρος του αποτελέσματος του προηγούμενου πολλαπλασιασμού. Η διαδικασία τερματίζεται όταν το κλασματικό μέρος απομείνει μηδέν ή όταν εξαντληθούν τα διαθέσιμα για την αναπαράσταση δυαδικά ψηφία. Στην άσκηση αυτή ζητείται η έκφραση του κλασματικού μέρους με τέσσερα ψηφία. Το αποτέλεσμα προκύπτει από τις τιμές των ακεραίων μερών των γινομένων, με λιγότερο σημαντικό το ψηφίο που υπολογίστηκε τελευταίο. Άρα το κλασματικό μέρος εκφράζεται σε δυαδική αναπαράσταση ως. 2. Συνεπώς η τελική έκφραση του χ η οποία περιλαμβάνει ακέραιο και κλασματικό μέρος είναι χ 2 =. 2 Για τη μετατροπή στο δεκαεξαδικό, αντιστοιχίζουμε ένα δεκαεξαδικό ψηφίο σε κάθε τέσσερα δυαδικά. Έτσι:. {{{ 8 A άρα η δεκαεξαδική αναπαράσταση είναι χ 6 = 8.Α 6 Σελίδα 7 από 73

18 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Ομοίως για το , προκύπτει ότι η δυαδική έκφραση είναι ψ 2 =. 2. Η μετατροπή στο δεκαεξαδικό γίνεται ως εξής:. {{ {, δηλ. η δεκαεξαδική έκφραση είναι ψ 6 = Β. Η έκφραση χ 2 μετατρέπεται σε δεκαδική πολλαπλασιάζοντας κάθε δυαδικό ψηφίο με το αντίστοιχο βάρος εκφρασμένο σε δεκαδική μορφή: = Αντίστοιχα, η δεκαεξαδική έκφραση χ 6 μετατρέπεται σε δεκαδική ως ακολούθως: A6 6 = = Παρατηρούμε ότι και στις δύο περιπτώσεις προκύπτει η αρχική έκφραση χ, ακριβώς. Αυτό συμβαίνει γιατί τα τέσσερα δυαδικά ψηφία είναι αρκετά για την ακριβή αναπαράσταση του συγκεκριμένου κλασματικού μέρους, μιας και το υπόλοιπο της διαδικασίας των διαδοχικών πολλαπλασιασμών για τη μετατροπή σε δυαδικό, είναι μηδέν. Επαναλαμβάνοντας τη διαδικασία για τα ψ 2 και ψ 6, προκύπτει ότι = και = = Παρατηρούμε ότι η ποσότητα που προκύπτει είναι κατά =.23 μικρότερη από την ψ. Αυτό οφείλεται στο ότι κατά τη μετατροπή της αναπαράστασης του κλασματικού μέρους σε δυαδική μορφή, με τους διαδοχικούς πολλαπλασιασμούς, έμεινε μη μηδενικό υπόλοιπο. Επίσης τα οκτώ δυαδικά ψηφία αρκούν για την αναπαράσταση του ακεραίου μέρους, μιας και το 35 είναι μικρότερο από το 255, ποσότητα η οποία είναι η μέγιστη αναπαραστάσιμη με 8 δυαδικά, όταν δεν έχουμε πρόσημο. ΑΣΚΗΣΗ 8 Δίνονται οι αριθμοί α=47, β=3276 και γ=37. Α. Να γραφούν οι αριθμοί α,β,γ σε δυαδική αναπαράσταση με 2 ψηφία και σε δεκαεξαδική αναπαράσταση με 3 ψηφία. Η μετατροπή να εξηγηθεί αναλυτικά μόνο για τον αριθμό α. Β. Να γραφούν οι αντίθετοί τους στο δυαδικό και στο δεκαεξαδικό σε μορφή συμπληρώματος του δύο και του δεκαέξι, διατηρώντας το μήκος λέξης των αριθμών σε κάθε περίπτωση, δηλ. 2 δυαδικά ψηφία και 3 δεκαεξαδικά ψηφία. Γ. Να γίνουν αναλυτικά οι πράξεις α + β και α γ στο δυαδικό και στο δεκαεξαδικό σύστημα χρησιμοποιώντας την αναπαράσταση του πρώτου ερωτήματος. Οι διαφορές (α γ) να υπολογιστούν χρησιμοποιώντας τα συμπληρώματα ως προς τις αντίστοιχες βάσεις από το ερώτημα Β. Λύση Α. Το πλήθος των απαιτούμενων δυαδικών ψηφίων είναι n = log X + 2, n 7 άρα απαιτούνται n = log 47 + = 8 2 δυαδικά ψηφία. Άρα διαιρούμε με 2 = 2 = 28 : Συνεπώς, από τα πηλίκα των ανωτέρω διαδοχικών διαιρέσεων και το υπόλοιπο της τελευταίας, προκύπτει ότι 47 =, 2 όπου απλώς προσθέτουμε τέσσερα μηδενικά στο περισσότερο σημαντικό μέρος, για να εκφραστεί ο αριθμός στη ζητούμενη μορφή των 2 δυαδικών ψηφίων. Υπάρχουν δύο τρόποι για τη μετατροπή στο δεκαεξαδικό σύστημα αναπαράστασης. Σελίδα 8 από 73

19 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Τρόπος ος Η διαδικασία μετατροπής σε βάση 2 επαναλαμβάνεται για βάση 6: n = log X 6 + = log 47 + = 2. 6 n Συνεπώς, απαιτούνται δύο δεκαεξαδικά ψηφία, άρα διαιρούμε με 6 = 6 = 6 : Άρα, το 47 γράφεται 47 = 936 = 936. Τρόπος 2ος Επίσης η μετατροπή στο δεκαεξαδικό μπορεί να γίνει μετατρέποντας τα ψηφία της δυαδικής αναπαράστασης ανά τέσσερα σε ένα δεκαεξαδικό ψηφίο. Ξεκινώντας από τα λιγότερο σημαντικά ψηφία προκύπτει ότι: 47 = 2 = {{{ = Ομοίως για τους άλλους αριθμούς. Τα αποτελέσματα δίνονται στον Πίνακα Ι. Αριθμός Αναπαράσταση Δεκαδική Δυαδική Δεκαεξαδική Α Β 3276 CCC Γ Πίνακας Ι: Δυαδική και Δεκαεξαδική Αναπαράσταση. Β. Το συμπλήρωμα ως προς δύο του 47 προκύπτει αντιστρέφοντας τα δώδεκα δυαδικά ψηφία και προσθέτοντας μονάδα στο λιγότερο σημαντικό ψηφίο. Έτσι για το 47 ισχύει ότι: αντιστροφη ψηφιων + συμπληρωμα του 2 Με αντίστοιχο τρόπο, για την δεκαεξαδική αναπαράσταση προκύπτει ότι: 93 (5 )(5 9)(5 3) = (5) ( 6)( 2) = F6C + F6D συμπληρωμα του 6 Αριθμός Δεκαδική Δυαδική Συμπληρώματος Δεκαεξαδικό Συμπλήρωμα α 47 F6D β * -* γ 37 ECD Πίνακας ΙΙ: Δυαδική και Δεκαεξαδική Αναπαράσταση των Αντιθέτων. * Ο αριθμός β=3276 και ο αντίθετός του δεν μπορούν να αναπαρασταθούν ως προσημασμένοι σε μορφή συμπληρώματος του δύο με 2 δυαδικά ψηφία καθώς η περιοχή των αριθμών που καλύπτεται με 2 δυαδικά ψηφία στο συμπλήρωμα ως προς 2 είναι από -2 =-248 ως 2 -=247. Θα μπορούσε να αναπαρασταθεί με περισσότερα από 2 δυαδικά ψηφία (π.χ. με 6 δυαδικά ψηφία θα είχαμε β=3276= =CCC και ο αντίθετος του β θα ήταν =F334. Άλλος τρόπος υπολογισμού του συμπληρώματος ως προς 2 του αριθμού Α, είναι με τη χρήση του τύπου 2 n A, ως εξής: Όπως προκύπει από το ερώτημα (α), το 47 αναπαριστάται με δώδεκα δυαδικά ψηφία, και η αναπαράσταση του είναι. Άρα η δεκαδική αναπαράσταση του συμπληρώματος του 2 2 του 47 είναι 2 47 = Μετατρέποντας το 3949 σε δυαδική μορφή, προκύπτει ότι το Σελίδα 9 από 73

20 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ συμπλήρωμα ως προς 2 του 47 είναι το 2 το οποίο συμφωνεί με το αποτέλεσμα του πρώτου τρόπου υπολογισμού του συμπληρώματος, ανά ψηφίο. Γ. Το άθροισμα α + β υπολογίζεται ως εξής: (Κρατούμενα) + (Άθροισμα) Η διαφορά α γ υπολογίζεται αθροίζοντας το α με το συμπλήρωμα του γ ως προς 2. (Κρατούμενα) + (Άθροισμα) Το αποτέλεσμα στο δεκαδικό σύστημα είναι ίσο με -6. Εύκολα μπορεί να αποδειχθεί ότι το -6 στο συμπλήρωμα ως προς 2 είναι το. Στο δεκαεξαδικό σύστημα, οι πράξεις υπολογίζονται ως εξής: C C C D 5 F E C D F 6 ΑΣΚΗΣΗ 9 Α. Δίνονται οι αριθμοί α= 2, σε δυαδική αναπαράσταση με 2 ψηφία και β=cd 6 σε δεκαεξαδική αναπαράσταση με 3 ψηφία. Να γίνουν οι απαραίτητες μετατροπές ώστε να συμπληρωθεί ο παρακάτω πίνακας. Αριθμός Αναπαράσταση Δεκαδική Δυαδική (2 ψηφία) Δεκαεξαδική (3 ψηφία) α β CD Πίνακας: Δεκαδική, Δυαδική και Δεκαεξαδική Αναπαράσταση. Β. Να γίνουν αναλυτικά οι πράξεις α + β και α β στο δυαδικό και στο δεκαεξαδικό σύστημα. Η διαφορά (α β) να υπολογιστεί χρησιμοποιώντας τα συμπληρώματα του αριθμού β ως προς 2 και 6 για το δυαδικό και το δεκαεξαδικό σύστημα αντίστοιχα. Επαληθεύστε τις πράξεις στο δεκαδικό. Γ. Δίνεται ο αριθμός: χ =24.65 σε δεκαδική αναπαράσταση. Να μετατραπεί σε δυαδική αναπαράσταση (χ 2 ) με 8 ψηφία για το ακέραιο μέρος και 4 ψηφία για το κλασματικό μέρος καθώς και σε δεκαεξαδική αναπαράσταση (χ 6 ) με 2 ψηφία για το ακέραιο μέρος και ψηφίο για το κλασματικό μέρος. Να μετατραπούν πάλι σε δεκαδική αναπαράσταση οι αριθμοί (χ 2 και χ 6 ) που προέκυψαν. Παρατηρείτε διαφορές ανάμεσα στις δεκαδικές αναπαραστάσεις που υπολογίσατε και στην αρχική; Σχολιάστε τις περιπτώσεις που θα εμφανιζόταν διαφορές. (Υπόδειξη: Συμβουλευτείτε το Παράρτημα Α του Β τόμου Αρχιτεκτονική Υπολογιστών Ι ). Λύση A. O αριθμός α= 2 μετατρέπεται σε δεκαδική μορφή πολλαπλασιάζοντας κάθε δυαδικό ψηφίο με το αντίστοιχο βάρος εκφρασμένο σε δεκαδική μορφή: = 24. Σελίδα 2 από 73

21 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Για τη μετατροπή στο δεκαεξαδικό, αντιστοιχίζουμε ένα δεκαεξαδικό ψηφίο σε κάθε τέσσερα δυαδικά. Έτσι: {{{ 4 B 4 άρα η δεκαεξαδική αναπαράσταση είναι α 6 = 4Β4 6. Η αντίστροφη μετατροπή δεκαεξαδικού σε δυαδικό γίνεται και πάλι με αντιστοίχιση τεσσάρων δυαδικών ψηφίων σε κάθε δεκαεξαδικό: { {{ C D Η μετατροπή του δεκαεξαδικού σε δεκαδικό γίνεται πολλαπλασιάζοντας κάθε δεκαεξαδικό ψηφίο με το αντίστοιχο βάρος εκφρασμένο σε δεκαδική μορφή: C6 6 + D6 6 = = 25 Με βάση τα παραπάνω συμπληρώνεται ο πίνακας. Αριθμός Αναπαράσταση Δεκαδική Δυαδική (2 ψηφία) Δεκαεξαδική (3 ψηφία) α 24 4Β4 β 25 CD Πίνακας: Δεκαδική, Δυαδική και Δεκαεξαδική Αναπαράσταση. Β. Το άθροισμα (α+β) υπολογίζεται ως εξής: (Κρατούμενα) + 2 (Άθροισμα) (Κρατούμενα) 4 Β 4 + C D (Άθροισμα) Στο δεκαδικό το άθροισμα γράφεται: = 49 ή = οπότε επαληθεύεται η πράξη και στο δεκαδικό: = 49 Το συμπλήρωμα ως προς δύο του β προκύπτει αντιστρέφοντας τα δώδεκα δυαδικά ψηφία και προσθέτοντας μονάδα στο λιγότερο σημαντικό ψηφίο. Έτσι για το 25 ισχύει ότι: αντιστροφη ψηφιων + συμπληρωμα του 2 Με αντίστοιχο τρόπο, για την δεκαεξαδική αναπαράσταση προκύπτει ότι: CD (5 )(5 2)(5 3) = (5) ( 3)( 2) = F32 + F33 συμπληρωμα του 6 Η διαφορά α β υπολογίζεται αθροίζοντας το α με το συμπλήρωμα του β ως προς την αντίστοιχη βάση (2 ή 6). (Κρατούμενα) Σελίδα 2 από 73

22 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ + (Διαφορά α-β) 4 Β 4 + F E 7 (Διαφορά α-β) Στο δεκαδικό η διαφορά γράφεται: = 999 ή E = = οπότε επαληθεύεται η πράξη και στο δεκαδικό: = 999 Γ. Για να μετατρέψουμε τον αριθμό χ =24.65 σε δυαδική μορφή αντιμετωπίζουμε ξεχωριστά το ακέραιο (24) από το κλασματικό (.65) μέρος. Για τη μετατροπή του ακεραίου μέρους από δεκαδική σε δυαδική μορφή, εκτελούμε τη διαδικασία των διαδοχικών διαιρέσεων, ως εξής: ΛΣΨ ακεραίο υ ΠΣΨ ακεραίου 2 μέρους όπου διαιρούμε το πηλίκο κάθε διαίρεσης με τη βάση στην οποία θέλουμε να μετατρέψουμε την αρχική αναπαράσταση, δηλ. με το δύο, μέχρις ότου το πηλίκο να μηδενιστεί. Τότε, το τελικό αποτέλεσμα σχηματίζεται από τα υπόλοιπα των διαιρέσεων, με το περισσότερο σημαντικό ψηφίο να είναι το υπόλοιπο το οποίο προέκυψε τελευταίο. Άρα η δυαδική έκφραση του ακεραίου μέρους είναι 2. Επειδή ζητείται η έκφραση με οκτώ δυαδικά ψηφία ακεραίων ενώ αρκούν επτά, έχει προστεθεί ένα μηδενικό στην περισσότερο σημαντική θέση. Για το κλασματικό μέρος, δηλ. το.65, εφαρμόζουμε τη μέθοδο των διαδοχικών πολλαπλασιασμών, ως εξής:.65 2 =.3 = =.6 = =.2 = =.4 = +.4 ΠΣΨ κλασματικού μέρους ΛΣΨ κλασματικού μέρους όπου πολλαπλασιάζουμε διαδοχικά με τη βάση, δηλ. το 2, το κλασματικό μέρος του αποτελέσματος του προηγούμενου πολλαπλασιασμού. Η διαδικασία τερματίζεται όταν το κλασματικό μέρος απομείνει μηδέν ή όταν εξαντληθούν τα διαθέσιμα για την αναπαράσταση δυαδικά ψηφία. Στην άσκηση αυτή ζητείται η έκφραση του κλασματικού μέρους με τέσσερα ψηφία. Το αποτέλεσμα προκύπτει από τις τιμές των ακεραίων μερών των γινομένων, με λιγότερο σημαντικό το ψηφίο που υπολογίστηκε τελευταίο. Άρα το κλασματικό μέρος εκφράζεται σε δυαδική αναπαράσταση ως Σελίδα 22 από 73

23 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ. 2. Συνεπώς η τελική έκφραση του χ η οποία περιλαμβάνει ακέραιο και κλασματικό μέρος είναι χ 2 =. 2 Για τη μετατροπή στο δεκαεξαδικό, αντιστοιχίζουμε ένα δεκαεξαδικό ψηφίο σε κάθε τέσσερα δυαδικά. Έτσι:. {{{ 7 C A άρα η δεκαεξαδική αναπαράσταση είναι χ 6 = 7C.Α 6 Στο ίδιο αποτέλεσμα καταλήγουμε αν εφαρμόσουμε για το ακέραιο μέρος τη μέθοδο των διαδοχικών διαιρέσεων με τη βάση (6) μέχρις ότου το πηλίκο να μηδενιστεί και για το κλασματικό μέρος τη μέθοδο των διαδοχικών πολλαπλασιασμών με τη βάση (6). Για την μετατροπή των χ 2 και χ 6 σε δεκαδική μορφή πολλαπλασιάζουμε κάθε ψηφίο με το αντίστοιχο βάρος στην αντίστοιχη βάση εκφρασμένο σε δεκαδική μορφή: = ή C 6 + A 6 = = Παρατηρούμε ότι η ποσότητα που προκύπτει είναι κατά =.25 μικρότερη από την χ. Αυτό οφείλεται στο ότι κατά τη μετατροπή της αναπαράστασης του κλασματικού μέρους σε δυαδική μορφή, με τους διαδοχικούς πολλαπλασιασμούς, έμεινε μη μηδενικό κλασματικό μέρος. Παρατηρούμε επίσης ότι τα οκτώ δυαδικά ψηφία αρκούν για την αναπαράσταση του ακεραίου μέρους, μιας και το 24 είναι μικρότερο από το 255, ποσότητα η οποία είναι η μέγιστη αναπαραστάσιμη με 8 δυαδικά, όταν δεν έχουμε πρόσημο. ΑΣΚΗΣΗ Α. Δίνεται ο αριθμός α= 2, σε δυαδική αναπαράσταση. Μετατρέψτε τον αριθμό στο δεκαδικό σύστημα. Μετακινήστε όλα τα ψηφία του δυαδικού κατά μία θέση δεξιά και συμπληρώσετε το περισσότερο σημαντικό ψηφίο με (σημειώστε ότι το λιγότερο σημαντικό ψηφίο που χάνεται είναι ). Μετατρέψτε πάλι τον αριθμό στο δεκαδικό σύστημα. Τι παρατηρείτε; Σχολιάστε τα αποτελέσματα. Β. Δίνεται ο αριθμός β= 2F 6 σε δεκαεξαδική αναπαράσταση. Μετατρέψτε τον αριθμό στο δεκαδικό σύστημα και στο δυαδικό σύστημα. Μετακινήστε όλα τα ψηφία του δυαδικού κατά μία θέση αριστερά και συμπληρώστε το λιγότερο σημαντικό ψηφίο με. Μετατρέψτε τον νέο αριθμό από το δυαδικό στο δεκαδικό σύστημα. Τι παρατηρείτε; Σχολιάστε τα αποτελέσματα. (Υπόδειξη: Μπορείτε να επαναλάβετε τις μετακινήσεις περισσότερες από μία φορές για να κατανοήσετε το αποτέλεσμα που προκαλούν). Γ. Συμπληρώστε στον παρακάτω πίνακα τον μέγιστο και τον ελάχιστο ακέραιο αριθμό (στο δεκαδικό και στο αντίστοιχο σύστημα) καθώς και το πλήθος των αριθμών που μπορεί να παρασταθεί με συνολικά 6 δυαδικά ψηφία στο δυαδικό σύστημα (Bin842), στο δυαδικό σύστημα με προσημασμένους αριθμούς και στο συμπλήρωμα ως προς 2. Εξηγείστε σύντομα την απάντησή σας. Λύση Αριθμός Μέγιστος Ελάχιστος Πλήθος Αναπαράσταση Δυαδική (Bin842) Δυαδική (προσημασμένοι αριθμοί) Δυαδική (συμπλήρωμα ως προς 2) Α. O αριθμός α= 2 μετατρέπεται σε δεκαδική μορφή πολλαπλασιάζοντας κάθε δυαδικό ψηφίο με το αντίστοιχο βάρος, εκφρασμένο σε δεκαδική μορφή: = 8 Σελίδα 23 από 73

24 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Μετακινώντας τα ψηφία του δυαδικού κατά μία θέση δεξιά προκύπτει ο αριθμός: 2 ο οποίος στο δεκαδικό γίνεται: = 9 Παρατηρούμε ότι η μετακίνηση των δυαδικών ψηφίων κατά μία θέση δεξιά ισοδυναμεί με διαίρεση του αριθμού με το 2. Στη διαδικασία αυτή βασίζεται η πράξη της διαίρεσης στην κεντρική μονάδα του υπολογιστή. Να σημειωθεί ότι, αν το λιγότερο σημαντικό ψηφίο που χάνεται είναι, τότε παραμένοντας σε ακέραια αναπαράσταση υπάρχει απώλεια πληροφορίας. Β. Η μετατροπή του δεκαεξαδικού σε δεκαδικό γίνεται πολλαπλασιάζοντας κάθε δεκαεξαδικό ψηφίο με το αντίστοιχο βάρος εκφρασμένο σε δεκαδική μορφή: F 6 6 = = 47 Η μετατροπή δεκαεξαδικού σε δυαδικό γίνεται με αντιστοίχιση τεσσάρων δυαδικών ψηφίων σε κάθε δεκαεξαδικό ψηφίο: { 2 { F οπότε ο αριθμός είναι β= 2 και, βέβαια, ισχύει: = 47 Μετακινώντας τα ψηφία του δυαδικού κατά μία θέση αριστερά προκύπτει ο αριθμός: 2 ο οποίος στο δεκαδικό γίνεται: = 94 Παρατηρούμε ότι η μετακίνηση των δυαδικών ψηφίων κατά μία θέση αριστερά ισοδυναμεί με πολλαπλασιασμό του αριθμού με το 2. Στη διαδικασία αυτή βασίζεται η πράξη του πολλαπλασιασμού στην κεντρική μονάδα του υπολογιστή. Γ. Η μεγαλύτερη τιμή που μπορεί να παρασταθεί από έναν δυαδικό αριθμό μήκους 6 ψηφίων είναι: 2 6 -=63 και η μικρότερη. Στους προσημασμένους δυαδικούς αριθμούς το πρώτο ψηφίο εκφράζει το πρόσημο και έτσι με τα υπόλοιπα 5 ψηφία η μεγαλύτερη τιμή που μπορεί να παρασταθεί είναι: =3 και προφανώς η μικρότερη είναι το -3. Τέλος στο συμπλήρωμα ως προς 2 η περιοχή αριθμών που καλύπτεται με 6 ψηφία είναι: από = -32 ως =3. Στους προσημασμένους δυαδικούς αριθμούς το μηδέν παριστάνεται είτε ως ή ως, οπότε το πλήθος των αριθμών που μπορούν να παρασταθούν είναι κατά μικρότερο. Έτσι προκύπτει ο ακόλουθος πίνακας: Αριθμός Αναπαράσταση Δυαδική (Bin842) Δυαδική (προσημασμένοι αριθμοί) Δυαδική (συμπλήρωμα ως προς 2) Μέγιστος 63 () +3 () +3 () Ελάχιστος () -3 () -32 () Πλήθος ΑΣΚΗΣΗ Α. Δίνονται οι αριθμοί α= 2, σε δυαδική αναπαράσταση με 2 ψηφία και β=d4 6 σε δεκαεξαδική αναπαράσταση με 3 ψηφία. Να γίνουν οι απαραίτητες μετατροπές ώστε να συμπληρωθεί ο παρακάτω πίνακας. Πίνακας: Δεκαδική, Δυαδική και Δεκαεξαδική Αναπαράσταση. Αριθμός Αναπαράσταση Δεκαδική Δυαδική (2 ψηφία) Δεκαεξαδική (3 ψηφία) α β D4 Σελίδα 24 από 73

25 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Β. Να γίνουν αναλυτικά οι πράξεις α + β και α β στο δυαδικό και στο δεκαεξαδικό σύστημα. Οι διαφορά (α β) να υπολογιστεί χρησιμοποιώντας τα συμπληρώματα του αριθμού β ως προς 2 και 6 για το δυαδικό και το δεκαεξαδικό σύστημα αντίστοιχα. Επαληθεύστε τις πράξεις στο δεκαδικό. Γ. Μετακινήστε όλα τα ψηφία του δυαδικού αριθμού α κατά τέσσερις θέσεις αριστερά και συμπληρώστε τα λιγότερο σημαντικά ψηφία με. Μετατρέψτε τον νέο αριθμό από το δυαδικό στο δεκαδικό σύστημα και το δεκαεξαδικό σύστημα. Τι παρατηρείτε; Σχολιάστε τα αποτελέσματα. (Θεωρούμε αναπαράσταση μη προσημασμένου αριθμού) Λύση A. O αριθμός α= 2 μετατρέπεται σε δεκαδική μορφή πολλαπλασιάζοντας κάθε δυαδικό ψηφίο με το αντίστοιχο βάρος εκφρασμένο σε δεκαδική μορφή: = 49. Για τη μετατροπή στο δεκαεξαδικό, αντιστοιχίζουμε ένα δεκαεξαδικό ψηφίο σε κάθε τέσσερα δυαδικά. Έτσι: {{{ 9 5 άρα η δεκαεξαδική αναπαράσταση είναι α 6 = Η αντίστροφη μετατροπή δεκαεξαδικού σε δυαδικό γίνεται και πάλι με αντιστοίχιση τεσσάρων δυαδικών ψηφίων σε κάθε δεκαεξαδικό: { { D { 4 Η μετατροπή του δεκαεξαδικού σε δεκαδικό γίνεται πολλαπλασιάζοντας κάθε δεκαεξαδικό ψηφίο με το αντίστοιχο βάρος εκφρασμένο σε δεκαδική μορφή: D = = 22 Με βάση τα παραπάνω συμπληρώνεται ο πίνακας. Πίνακας: Δεκαδική, Δυαδική και Δεκαεξαδική Αναπαράσταση. Αριθμός Αναπαράσταση Δεκαδική Δυαδική (2 ψηφία) Δεκαεξαδική (3 ψηφία) α β 22 D4 Β. Το άθροισμα (α+β) υπολογίζεται ως εξής: (Κρατούμενα) + 2 (Άθροισμα) (Κρατούμενα) D (Άθροισμα) Στο δεκαδικό το άθροισμα γράφεται: = 36 ή = Σελίδα 25 από 73

26 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ οπότε επαληθεύεται η πράξη και στο δεκαδικό: = 36 Η αναπαράσταση του β σε κώδικα συμπληρώματος ως προς δύο προκύπτει αντιστρέφοντας τα δώδεκα δυαδικά ψηφία και προσθέτοντας μονάδα στο λιγότερο σημαντικό ψηφίο. Έτσι για το β ισχύει ότι: αντιστροφη ψηφιων + συμπληρωμα του 2 Με αντίστοιχο τρόπο, για την αναπαράσταση σε συμπλήρωμα ως προς 6 προκύπτει ότι: D4 (5 )(5 3)(5 4) = (5) ( 2)( ) = F2B + F2C συμπληρωμα του 6 Η διαφορά α β υπολογίζεται αθροίζοντας το α με το β σε κώδικα συμπληρώματος ως προς 2 ή 6, αντίστοιχα. (Κρατούμενα) + (Διαφορά α-β) F 2 C F C (Διαφορά α-β) Εφόσον το πρώτο ψηφίο στο δυαδικό είναι (και στο δεκαεξαδικό F), το αποτέλεσμα είναι αρνητικός αριθμός. Αντιστρέφοντας όλα τα ψηφία της δυαδικής αναπαράστασης (αφαιρώντας όλα τα ψηφία από το FFF στη δεκαεξαδική αναπαράσταση) και προσθέτοντας βρίσκουμε ότι η αναπαράσταση του μέτρου του αριθμού είναι (3F) = 63. Άρα το αποτέλεσμα είναι 63, οπότε επαληθεύεται η πράξη και στο δεκαδικό: = 63. Γ. Μετακινώντας τα ψηφία του δυαδικού κατά 4 θέσεις αριστερά προκύπτει ο αριθμός: 2 ο οποίος στο δεκαδικό (αναπαράσταση μη προσημασμένου αριθμού) γίνεται: = 2384 ( = 49 6) Παρατηρούμε ότι η μετακίνηση των δυαδικών ψηφίων κατά 4 θέσεις αριστερά ισοδυναμεί με πολλαπλασιασμό του αριθμού με το 2 4 =6. Για τη μετατροπή στο δεκαεξαδικό, αντιστοιχίζουμε ένα δεκαεξαδικό ψηφίο σε κάθε τέσσερα δυαδικά. Έτσι: {{{ 9 5 άρα η δεκαεξαδική αναπαράσταση είναι α 6 = Παρατηρούμε ότι η μετακίνηση των δυαδικών ψηφίων κατά 4 θέσεις αριστερά ισοδυναμεί με μετακίνηση των δεκαεξαδικών ψηφίων κατά μία θέση αριστερά. Στη διαδικασία αυτή βασίζεται γενικά η πράξη του πολλαπλασιασμού στην κεντρική μονάδα του υπολογιστή. Να σημειωθεί ότι, αν κάποιο από τα περισσότερο σημαντικά ψηφία που χάνονται είναι, τότε παραμένοντας σε αναπαράσταση 2 ψηφίων, υπάρχει απώλεια πληροφορίας και δεν θα ισχύει ο πολλαπλασιασμός του αριθμού με το 6 (λάθος αποτέλεσμα ). Σελίδα 26 από 73

27 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 2 II. Κώδικες Αναπαράστασης Δεδομένων Α. Να γραφούν σε κώδικα BCD οι δεκαδικοί αριθμοί 6, 25, 38 και 479 και να υπολογιστεί η τιμή του ψηφίου άρτιας ισοτιμίας για κάθε έναν αριθμό. Β. Αν οι κώδικες BCD των δεκαδικών αριθμών 6 και 25 θεωρηθούν δύο πηγαίες λέξεις να κατασκευαστεί για την καθεμία ο κώδικας Ηamming τεσσάρων ψηφίων περιττής ισοτιμίας. Λύση: Α. Ο κώδικας BCD κωδικοποιεί κάθε ψηφίο ενός αριθμού εκφρασμένου σε δεκαδική αναπαράσταση, με μία τετράδα δυαδικών ψηφίων, που είναι η αναπαράσταση του δεκαδικού ψηφίου σε δυαδική μορφή. Έτσι, εφαρμόζοντας τον ορισμό, προκύπτει ότι: Άρα στον κώδικ α BCD ο αριθμός 6 αντιστοιχίζεται στη λέξη. Η λέξη έχει τρία ψηφία με τιμή, άρα ο αριθμός μονάδων είναι περιττός. Συνεπώς, το ψηφίο άρτιας ισοτιμίας είναι. Ομοίως υπολογίζονται τα ψηφία άρτιας ισοτιμίας για τους υπόλοιπους αριθμούς. Τα αποτελέσματα φαίνονται στον παρακάτω πίνακα: Δεκαδικός BCD Ψηφίο άρτιας ισοτιμίας Β. Έχουμε κωδικοποίηση τεσσάρων ψηφίων περιττής ισοτιμίας. Η πηγαία λέξη για τον αριθμό 6 είναι mmmmmmmm = 2. Οι τιμές των δυαδικών ψηφίων mi, i 7, απεικονίζονται στον πίνακα m m m2 m3 m4 m5 m6 m7 Τα ψηφία περιττής ισοτιμίας υπολογίζονται ως εξής: c3 = : p3m4m5m6m7 = p3 p3 = c2 = : p2mm 2m3m7 = p2 p2 = c = : pmmmmm = p p = c = : pmmm 3m4m6 = p p =. Άρα, αντικαθιστώντας τις τιμές των ψηφίων ισοτιμίας στη λέξη ppmpmmmpmmmm = pp p2 p3 =. Ομοίως για την περίπτωση του 25, σχηματίζουμε τον πίνακα m m m2 m3 m4 m5 m6 m7 Τα ψηφία περιττής ισοτιμίας υπολογίζονται ως εξής: Σελίδα 27 από 73

28 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ c = : p m m m m = p p = c = : p mm m m = p p = c = : pm m m m m = p p = c = : p m mm m m = p p = Άρα η κωδικοποίηση κατά Hamming θα είναι: p pmpmmmpmmmm pp p p =. 2 3 = ΑΣΚΗΣΗ 3 α. Από τι είδους λάθη προστατεύει o κώδικας Hamming, και με ποιό τρόπο; β. Δίνεται η δυαδική λέξη 2. Να κωδικοποιηθεί σε κώδικα Ηamming. γ. Είναι δυνατόν η λέξη 2 να είναι κωδικοποιημένη σε κώδικα Ηamming των τεσσάρων ψηφίων αρτιας ισοτιμίας; Αν ναι, ποια είναι η λέξη πληροφορίας; Λύση: Ερώτημα (α) Ο κώδικας Hamming μπορεί να χρησιμοποιηθεί για να διορθώσει λάθη μετατροπής ενός ψηφίου ή να χρησιμοποιηθεί για να ανιχνεύσει μέχρι και λάθη μετατροπής δύο ψηφίων. Ερώτημα (β) Έστω κωδικοποίηση τεσσάρων ψηφίων άρτιας ισοτιμίας. Ο πηγαίος κώδικας είναι mmmmmmmm = Τα ψηφία άρτιας ισοτιμίας υπολογίζονται ως εξής: c3 = : p3m4m5m6m7 = p3 p3 = c2 = : p2mm 2m3m7 = p2 p2 = c = : pm m2m3m5m6 = p p = c = : p m mm m m = p p = Άρα, αντικαθιστώντας τις τιμές των ψηφίων ισοτιμίας στη λέξη ppmpmmmpmmmm = pp p2p3 = Ερώτημα (γ) Η λέξη έχει τέσσερα ψηφία ισοτιμίας, και συνολικό μήκος 2, άρα η πηγαία λέξη θα είναι μήκους 8 δυαδικών ψηφίων. Η οργάνωση της θα είναι όπως στο προηγούμενο ερώτημα. Έτσι, αντιστοιχίζοντας τις θέσεις της προηγούμενης αναπαράσταση με τη δοθείσα λέξη και θεωρώντας άρτια ισοτιμία, προκύπτουν οι τιμές των δυαδικών ψηφίων: ppmpmmmpmmmm = p3 : p3m4m5m6m7 = c3 =, σωστο p2 : p2mm 2m3m7 = c2 =, λαθος p: pm m2m3m5m6 = c = p : p m mm m m = c = Σελίδα 28 από 73

29 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ Άρα υπάρχει ένα λάθος, το οποίο καταδεικνύεται από τον αριθμό θέσης δηλαδή 4. Συνεπώς, το σφάλμα είναι στο ψηφίο p 2 της αρχικής λέξης. Η λέξη πληροφορίας είναι. ΑΣΚΗΣΗ 4 α. Δίνεται η δυαδική λέξη 2. Να κωδικοποιηθεί σε κώδικα Ηamming τεσσάρων ψηφίων περιττής ισοτιμίας. β. Είναι δυνατόν η λέξη 2 να είναι κωδικοποιημένη σε κώδικα Ηamming των τεσσάρων ψηφίων περιττής ισοτιμίας; Αν ναι, ποια είναι η λέξη πληροφορίας; Λύση: Ερώτημα (α) Έστω κωδικοποίηση τεσσάρων ψηφίων περιττής ισοτιμίας. Ο πηγαίος κώδικας είναι mmmmmmmm = Τα ψηφία περιττής ισοτιμίας υπολογίζονται ως εξής: c3 = : p3m4m5m6m7 = p3 p3 = c2 = : p2mm 2m3m7 = p2 p2 = c = : pm m2m3m5m6 = p p = c = : p m mm m m = p p = Άρα, αντικαθιστώντας τις τιμές των ψηφίων ισοτιμίας στη λέξη ppmpmmmpmmmm = ppp p = 2 3 Ερώτημα (β) Η λέξη έχει τέσσερα ψηφία περιττής ισοτιμίας, και συνολικό μήκος 2, άρα η πηγαία λέξη θα είναι μήκους 8 δυαδικών ψηφίων. Η οργάνωση της θα είναι όπως στο προηγούμενο ερώτημα. Έτσι, αντιστοιχίζοντας τις θέσεις της προηγούμενης αναπαράστασης με τη δοθείσα λέξη προκύπτουν οι τιμές των δυαδικών ψηφίων: ppmpmmmpmmmm = p3 : p3m4m5m6m7 = c3 =, p2 : p2mm 2m3m7 = c2 =, λαθος λαθος p: pmmmmm = c =, σωστο p : p m mm m m = c =, σωστο Άρα υπάρχει ένα λάθος, το οποίο καταδεικνύεται από τον αριθμό θέσης cccc 3 2 = 2 = 2. Συνεπώς, το σφάλμα είναι στο ψηφίο m7 της ληφθείσας λέξης, η ορθή τιμή του οποίου είναι και όχι το. Άρα η ορθή λέξη πληροφορίας προκύπτει από τις τιμές των mmmmmmmm αντιστρέφοντας το m7 και είναι. Σελίδα 29 από 73

30 ΠΛΗ-2: ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ - ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 5 α. Να υπολογίσετε την τιμή ψηφίου άρτιας και περιττής ισοτιμίας για τις ακόλουθες περιπτώσεις: 2, 2, 2. β. Σχεδιάστε ένα κύκλωμα που να υπολογίζει το ψηφίο άρτιας ισοτιμίας μίας λέξης δύο δυαδικών ψηφίων. γ. Σχεδιάστε ένα κύκλωμα που να υπολογίζει το ψηφίο περιττής ισοτιμίας μίας λέξης δύο δυαδικών ψηφίων. Λύση: Ερώτημα (α) Η λέξη έχει πέντε ψηφία με τιμή, άρα ο αριθμός μονάδων είναι περιττός. Συνεπώς, το ψηφίο άρτιας ισοτιμίας είναι και το ψηφίο περιττής ισοτιμίας. Ομοίως, για την, το ψηφίο άρτιας ισοτιμίας είναι και το περιττής είναι, γιατί η λέξη έχει άρτιο (2) αριθμό ψηφίων με τιμή. Τέλος, η έχει τέσσερα ψηφία με τιμή και ψηφίο περιττής ισοτιμίας, ψηφίο άρτιας ισοτιμίας. Ερώτημα (β) Ο πίνακας αληθείας είναι ο εξής: x y Πλήθος Ψηφίων τιμής Άρτια ισοτιμία Περιττή ισοτιμία 2 Παρατηρούμε ότι πρόκειται για τον πίνακα αλήθειας της ΧΟR. Άρα το ψηφίο ισοτιμίας μπορεί να υπολογιστεί από μία πύλη XOR. Ερώτημα (γ) Αντίστοιχα, παρατηρούμε ότι για την περιττή ισοτιμία, έχουμε τον πίνακα αλήθειας της ΧΝΟR. Άρα το ψηφίο ισοτιμίας μπορεί να υπολογιστεί από μία πύλη XΝOR, η αναπαράσταση της οποίας δίνεται στο ακόλουθο σχήμα. x p y XNOR ΑΣΚΗΣΗ 6 Α. Δίνεται η δυαδική λέξη 2. Να κωδικοποιηθεί σε κώδικα Ηamming τριών ψηφίων άρτιας ισοτιμίας. Β. Αν στον προορισμό φθάσει η δυαδική λέξη 2 κωδικοποιημένη σε κώδικα Ηamming των τριών ψηφίων άρτιας ισοτιμίας, βρείτε ποια είναι η σωστή δυαδική λέξη πληροφορίας που μεταδόθηκε από την πηγή. Λύση: Α. Έχουμε κωδικοποίηση τριών ψηφίων άρτιας ισοτιμίας. Η πηγαία λέξη αποτελείται από τέσσερα δυαδικά ψηφία και είναι mmmm 2 3 = 2. Οι τιμές των δυαδικών ψηφίων mi, i 7, απεικονίζονται στον πίνακα m m m2 m3 Τα ψηφία άρτιας ισοτιμίας υπολογίζονται ως εξής: Σελίδα 3 από 73

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) Για να λύνετε εύκολα ασκήσεις στα συστήματα αρίθμησης θα πρέπει να απομνημονεύσετε τα πρώτα 17 βάρη του δυαδικού συστήματος από 2 0 μέχρι 2

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Μεταπτυχιακή Εξειδίκευση στα Πληροφοριακά Συστήματα Θεματική Ενότητα ΠΛΣ-5 ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ - ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΑΛΙΑΣ - Δρ. Λάμπρος Μπισδούνης Σύμβουλος Καθηγητής

Διαβάστε περισσότερα

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα

Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα 2 κεφάλαιο Aριθμητικά συστήματα και κώδικες Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα τα οποία επεξεργάζονται δυαδικά ψηφία 0 και 1, όμως στην πράξη πολύ λίγα πραγματικά προβλήματα βασίζονται

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΠΜΣ στις Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών Διδάσκων : Παρασκευάς Κίτσος Επίκουρος Καθηγητής pkitsos@teimes.gr 1 Τμήμα των διαλέξεων

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2 ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Ο κύκλος της πληροφορίας Η σηµασία της πληροφορίας Ο υπολογιστής (επεξεργασία-αποθήκευση) 2 Παράσταση δεδοµένων Αριθµητικά συστήµατα εκαδικό σύστηµα 3 υαδικό

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Δραστηριότητα 8 ης εβδομάδας ΟΜΑΔΑΣ Α: Γ. Πολυμέρης, Χ. Ηλιούδη, Ν. Μαλλιαρός και Δ. Θεοτόκης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Περιγραφή Η συγκεκριμένη δραστηριότητα αποτελεί μια πρόταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία Τεχνικών Σχολών

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές

Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές ΚΕΦΑΛΑΙΟ 1 Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές Σελίδες 3-21, 24-26 ΚΕΦΑΛΑΙΟ 1 Περιεχόµενα 1.1 ΨΗΦΙΑΚΗ ΥΠΟΛΟΓΙΣΤΕΣ 1.2 Αναπαράσταση Αριθµών 1.3 Αριθµητικές Λειτουργίες 1.4 εκαδικοί Κώδικες

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Εισαγωγή στα Ψηφιακά Συστήματα

Εισαγωγή στα Ψηφιακά Συστήματα Εισαγωγή στα Ψηφιακά Συστήματα Ασημόπουλος Νικόλαος Πατουλίδης Γεώργιος Παλιανόπουλος Ιωάννης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών

Αρχιτεκτονική Υπολογιστών Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 4: Πολλαπλασιασμός (MUL,IMUL). Διαίρεση (DIV,IDIV). Εμφάνιση αλφαριθμητικού. Εμφάνιση χαρακτήρα.

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

Εισαγωγή. Πληροφορική

Εισαγωγή. Πληροφορική Πληροφορική Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa.gr/~organosi/ Η δομή του μαθήματος Εισαγωγή στην Επιστήμη

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Παράσταση αριθμών «κινητής υποδιαστολής» floating point

Παράσταση αριθμών «κινητής υποδιαστολής» floating point Παράσταση αριθμών «κινητής υποδιαστολής» floating point Με n bits μπορούμε να παραστήσουμε 2 n διαφορετικούς αριθμούς π.χ. με n=32 μπορούμε να παραστήσουμε τους αριθμούς από έως 2 32 -= 4,294,967,295 4

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No 05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Τι θα μάθουμε σήμερα: Να αναφέρουμε τον τρόπο αναπαράστασης των δεδομένων (δυαδικό σύστημα) Να αναγνωρίζουμε πώς γράμματα και σύμβολα από

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012) Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Παράσταση ενός φυσικού αριθμού 1 1.2 Δεκαδικό σύστημα 1 1.3 Δυαδικό σύστημα 2 1.4 Οκταδικό σύστηνα 2 1.5 Δεκαεξαδικό σύστημα 2 1.6 Μετατροπές από ένα

Διαβάστε περισσότερα