Διζαγυγή ζηην πληποθοπική
|
|
- Κύμα Παπάγος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διζαγυγή ζηην πληποθοπική Δνόηηηα 10: Βαζηθέο Δληνιέο Βξάλα Βαζηιηθή Σκήκα Γηνίθεζεο Δπηρεηξήζεσλ
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χρήςησ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ, που υπόκειται ςε άλλου τφπου άδειασ χρήςησ, η άδεια χρήςησ αναφζρεται ρητώσ. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό ζχει αναπτυχθεί ςτα πλαίςια του εκπαιδευτικοφ ζργου του διδάςκοντα. Το ζργο «Ανοικτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Κεντρικήσ Μακεδονίασ» ζχει χρηματοδοτήςει μόνο τη αναδιαμόρφωςη του εκπαιδευτικοφ υλικοφ. Το ζργο υλοποιείται ςτο πλαίςιο του Επιχειρηςιακοφ Προγράμματοσ «Εκπαίδευςη και Δια Βίου Μάθηςη» και ςυγχρηματοδοτείται από την Ευρωπαϊκή Ζνωςη (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικοφσ πόρουσ. 3
4 Δνηολή Διζόδος και Δνηολή Δξόδος (1) Γηα ηελ εηζαγσγή ησλ δεδνκέλσλ θαη ηελ εμαγσγή ησλ απνηειεζκάησλ ρξεζηκνπνηνύληαη δύν εληνιέο: Η εληνιή ΓΙΑΒΑΔ θαη ε εληνιή ΓΡΑΨΔ ΑΛΓΟΡΙΘΜΟ ΠΡ_ΔΞ ΜΔΣΑΒΛΗΣΔ a, b: ΑΚΔΡΑΙΔ x: ΠΡΑΓΜΑΣΙΚΔ ΑΡΧΗ ΓΙΑΒΑΔ a ΓΙΑΒΑΔ b x -b/a ΓΡΑΨΔ x ΣΔΛΟ ΠΡ_ΔΞ
5 Δνηολή Διζόδος και Δνηολή Δξόδος (2) ΓΙΑΒΑΔ ιίζηα_κεηαβιεηώλ (όπου η λίζηα μεηαβληηών αποηελείηαι από ένα ή περιζζόηερα ονόμαηα μεηαβληηών χωριζμένα με κόμμα) ΓΡΑΨΔ ιίζηα_νξηζκάησλ
6 Δνηολή Δκσώπηζηρ μεηαβληηή έκθραζη Η ιεηηνπξγία ηεο αθνινπζεί ηελ αθόινπζε πνξεία: Πξώηα ζεσξνύκε ην δεμί κέινο Από ην δεμί κέινο ππνινγίδεηαη κία θαη κνλαδηθή ηηκή Η ηηκή ηνπ 2 νπ βήκαηνο εθρσξείηαη ζηε ζέζε κλήκεο πνπ αληηζηνηρεί ζην αξηζηεξό κέινο.
7 Σελεζηέρ και Σελεζηαίοι Σν ζύκβνιν ηεο πξάμεο ιέγεηαη ηελεζηήρ (operator), ελώ νη κεηαβιεηέο ή νη ηηκέο πνπ ζπκκεηέρνπλ ζε απηή ηελ πξάμε ιέγνληαη ηελεζηαίοι (operand). Μία έκθπαζη (expression) είλαη κία αθνινπζία από ηειεζηαίνπο, ηειεζηέο, ζηαζεξέο ηηκέο, παξελζέζεηο αιιά θαη άιιεο εθθξάζεηο
8 Απιθμηηικοί Σελεζηέρ Ππάξη Τελεστήρ Πξόζζεζε + Αθαίξεζε - Πνιιαπιαζηαζκόο * Γηαίξεζε / Αθέξαηα Γηαίξεζε div Τπόινηπν Αθέξαηαο mod Γηαίξεζεο
9 Πποηεπαιόηηηα απιθμηηικών ηελεζηών (1) Η πξνηεξαηόηεηα ησλ αξηζκεηηθώλ ηειεζηώλ ζηηο πεξηζζόηεξεο γιώζζεο πξνγξακκαηηζκνύ, ζπκθσλεί κε ηνπο θαλόλεο ηεο γλσζηήο άιγεβξαο, δειαδή, πξώηα εθηεινύληαη νη πνιιαπιαζηαζκνί θαη νη δηαηξέζεηο θαη ζηε ζπλέρεηα εθηεινύληαη νη πξνζζέζεηο θαη νη αθαηξέζεηο. Η ζεηξά απηή κπνξεί λα αιιάμεη κόλν κε ηε ρξήζε ησλ παξελζέζεσλ, νη νπνίεο θαζνξίδνπλ πάληα ηε κέγηζηε πξνηεξαηόηεηα.
10 Πποηεπαιόηηηα απιθμηηικών ηελεζηών (2) Όηαλ ζε κία έθθξαζε ζπκκεηέρνπλ πεξηζζόηεξνη από έλαο ηειεζηέο κε ηελ ίδηα πξνηεξαηόηεηα, ηόηε ε ζεηξά κε ηελ νπνία ζα εθηειεζηνύλ νη πξάμεηο είλαη «από αξηζηεξά πξνο ηα δεμηά»
11 ςγκπιηικοί Σελεζηέρ Τελεστήρ Σημασία > κεγαιύηεξν από < κηθξόηεξν από >= κεγαιύηεξν ή ίζν από <= κηθξόηεξν ή ίζν από = Ίζν <> Γηάθνξν
12 Δκθπάζειρ με ζςγκπιηικούρ ηελεζηέρ Οη εθθξάζεηο πνπ πεξηιακβάλνπλ ζπγθξηηηθνύο ηειεζηέο δεν είλαη βέβαηα αξηζκεηηθέο εθθξάζεηο, θαζώο δεν ππνινγίδνπλ κία αξηζκεηηθή ηηκή. Ο ηύπνο ηεο ηηκήο πνπ ππνινγίδνπλ είλαη λογικόρ. Πξάγκαηη κία έθθξαζε όπσο ε a>b ζα ππνινγηζηεί σο true (εάλ ε ηηκή ηεο a είλαη κεγαιύηεξε ηεο b) ή σο false (αλ ε ηηκή ηεο b είλαη κεγαιύηεξε ή ίζε ηεο a). Έηζη, νη εθθξάζεηο απηέο αλήθνπλ ζηελ θαηεγνξία ησλ λογικών εκθπάζευν. Έηζη, κηα εληνιή όπσο ε a b>c ζα έρεη λόεκα κόλν αλ ε κεηαβιεηή a έρεη νξηζηεί σο ινγηθή κεηαβιεηή, θαζώο ζα ιάβεη ηελ ηηκή true ή false.
13 Λογικοί Σελεζηέρ Λογική τιμή Α Λογική τιμή Β Α and B A or B not A false false false false true false true false true true true false false true false true true true true false
14 Πποηεπαιόηηηα ηελεζηών Έλα παξάδεηγκα εθρώξεζεο κε κηθηή έθθξαζε ζα κπνξνύζε λα είλαη ε: K a>b+3*y and x div z/y or not(a<b) ε ηέηνηεο κηθηέο εθθξάζεηο, ε πξνηεξαηόηεηα ησλ ηύπσλ ησλ ηειεζηώλ είλαη ε εμήο: Αξηζκεηηθνί ηειεζηέο πγθξηηηθνί ηειεζηέο Λνγηθνί ηειεζηέο
15 Δνηολή Απλήρ Γιακλάδυζηρ (1) ΑΝ <ζπλζήθε> ΣΟΣΔ <εληνιή> Πξώηα ειέγρεηαη ε ζπλζήθε (ε ινγηθή έθθξαζε). Δάλ ε ζπλζήθε είλαη αιεζήο (true) ηόηε ε επόκελε εληνιή εθηειείηαη θαλνληθά. Δάλ ε ζπλζήθε είλαη ςεπδήο (false), ηόηε ε επόκελε εληνιή δελ εθηειείηαη αιιά παξαθάκπηεηαη. ηε δεύηεξε απηή πεξίπησζε, ε ζεηξά εθηέιεζεο ησλ εληνιώλ ζπλερίδεη κε ηελ κεζεπόκελε εληνιή.
16 Δνηολή Απλήρ Γιακλάδυζηρ (2) ΑΝ <ζπλζήθε> ΣΟΣΔ <Ομάδα ενηολών> Πξώηα ειέγρεηαη ε ζπλζήθε (ε ινγηθή έθθξαζε). Δάλ ε ζπλζήθε είλαη αιεζήο (true) ηόηε εθηειείηαη ε νκάδα εληνιώλ πνπ αθνινπζεί Δάλ ε ζπλζήθε είλαη ςεπδήο (false), ηόηε ε επόκελε νκάδα εληνιώλ δελ εθηειείηαη αιιά παξαθάκπηεηαη.
17 Δνηολή ύνθεηηρ Γιακλάδυζηρ ΑΝ <ζπλζήθε> ΣΟΣΔ <Ομάδα ενηολών 1> ΑΛΛΙΩ <Ομάδα ενηολών 2> Η ιεηηνπξγία ηεο εληνιήο ζύλζεηεο δηαθιάδσζεο είλαη ε αθόινπζε: ειέγρεηαη ε ζπλζήθε θαη εάλ είλαη αιεζήο ηόηε εθηειείηαη κόλν ε <ομάδα_ενηολών 1>. Δάλ ε ζπλζήθε είλαη ςεπδήο, ηόηε ειέγρεηαη κόλν ε <ομάδα_ενηολών 2>
18 Δπανάλητη γνυζηού πλήθοςρ ΓΙΑ <κεηξεηήο> <α_η> ΜΔΧΡΙ <η_η> [ΒΗΜΑ <β>] <Ομάδα ενηολών> Σν ηκήκα ηεο εληνιήο πνπ ζεκεηώλεηαη κέζα ζε αγθύιεο είλαη πξνεξαηηηθό Η ιεηηνπξγία ηεο εληνιήο απηήο, ζε θπζηθή γιώζζα, όηαλ ε ηηκή ηεο <β> είλαη ζεηηθή, είλαη ε εμήο: αξρηθά ε κεηαβιεηή <κεηξεηήο> παίξλεη ηελ ηηκή ηεο <α_η> (αξρηθήο ηηκήο). ηε ζπλέρεηα, ειέγρεηαη εάλ ν κεηξεηήο είλαη κηθξόηεξνο ή ίζνο κε ηελ ηηκή ηεο <η_η> (ηειηθήο ηηκήο). Δάλ ν έιεγρνο είλαη αιεζήο, ηόηε εθηειείηαη ε <ομάδα ενηολών>, ν κεηξεηήο απμάλεηαη θαηά <β> (βήκα) κνλάδεο θαη εθηειείηαη πάιη ε ζύγθξηζε κε ηελ ηειηθή ηηκή. Δάλ είλαη αιεζήο, ηόηε ε <νκάδα εληνιώλ> επαλαιακβάλεηαη θ.ν.θ. Όηαλ ε ηηκή ηεο <β> είλαη αξλεηηθή, ηόηε ν έιεγρνο πξνζαξκόδεηαη αλάινγα θαη ν κεηξεηήο κεηώλεηαη αληί λα απμάλεηαη.
19 Δπανάλητη αγνώζηος πλήθοςρ (1) ΟΟ <ζπλζήθε> <Ομάδα ενηολών> Αξρηθά ειέγρεηαη ε ζπλζήθε θαη εθόζνλ είλαη αιεζήο εθηειείηαη ε νκάδα εληνιώλ. Ακέζσο κεηά ειέγρεηαη θαη πάιη ε ζπλζήθε θαη εθόζνλ είλαη αιεζήο εθηειείηαη ε νκάδα εληνιώλ θ.ν.θ. Η επαλάιεςε ηεξκαηίδεηαη όηαλ ε ζπλζήθε γίλεη ςεπδήο
20 Δπανάλητη αγνώζηος πλήθοςρ (2) ΔΠΑΝΑΛΑΒΔ <Ομάδα ενηολών> ΟΟ <ζυνθήκη> Δθηειείηαη ε νκάδα εληνιώλ θαη ακέζσο κεηά ειέγρεηαη ε ζπλζήθε. Δάλ είλαη αιεζήο εθηειείηαη θαη πάιη ε νκάδα εληνιώλ θαη ειέγρεηαη ε ζπλζήθε, θ.ν.θ. Η επαλάιεςε ηεξκαηίδεηαη όηαλ ε ζπλζήθε γίλεη ςεπδήο.
21 Δπανάλητη αγνώζηος πλήθοςρ (3) ΠΑΝΑΛΑΒΔ <Ομάδα ενηολών> ΜΔΧΡΙ <ζυνθήκη> Δθηειείηαη ε νκάδα εληνιώλ θαη ακέζσο κεηά ειέγρεηαη ε ζπλζήθε. Δάλ είλαη ςεπδήο εθηειείηαη θαη πάιη ε νκάδα εληνιώλ θαη ειέγρεηαη ε ζπλζήθε, θ.ν.θ. Η επαλάιεςε ηεξκαηίδεηαη όηαλ ε ζπλζήθε γίλεη αιεζήο.
22 Τζλος Ενότητας 22
2.4 Βαζικές ζσνιζηώζες/ ενηολές ενός αλγορίθμοσ
2.4 Βαζικές ζσνιζηώζες/ ενηολές ενός αλγορίθμοσ 1 Τι καλείηαι ως «ηύπος δεδομένων»; ια ηα δεδνκέλα πνπ επεμεξγάδνληαη νη ππνινγηζηέο δελ είλαη ίδηα. Γηα λα κπνξέζεη ν ππνινγηζηήο λα ηα επεμεξγαζηεί, ηα
ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΛΗΡΟΦΟΡΙΚΗ & ΑΛΓΟΡΙΘΜΟΙ
ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΛΗΡΟΦΟΡΙΚΗ & ΑΛΓΟΡΙΘΜΟΙ Ενότητα # (5): Αλγοριθμική - Δπαναλήυεις Κύδρος Γημήηρης Σμήμα Λογιζηικής και Υρημαηοοικονομικής Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται
Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.
Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...
Αιγόξηζκνη Δνκή επηινγήο. Απιή Επηινγή ύλζεηε Επηινγή. Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress.
Αιγόξηζκνη 2.2.7.3 Δνκή επηινγήο Απιή Επηινγή ύλζεηε Επηινγή Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ 1 Επηινγή ηελ πξάμε πνιύ ιίγα πξνβιήκαηα κπνξνύλ λα επηιπζνύλ κε ηνλ πξνεγνύκελν ηξόπν ηεο ζεηξηαθήο/αθνινπζηαθήο
Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ
Αιγόξηζκνη 2.2.7.4 Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Υ 1 Άζθεζε 34 ζει 53 Έλα ςεθηαθό θσηνγξαθηθό άικπνπκ έρεη απνζεθεπηηθό ρώξν N Mbytes. Να αλαπηύμεηε
Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.
Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,
ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.
ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε
ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΛΗΡΟΦΟΡΙΚΗ & ΑΛΓΟΡΙΘΜΟΙ
ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΛΗΡΟΦΟΡΙΚΗ & ΑΛΓΟΡΙΘΜΟΙ Ενότητα # (4): Δηζαγσγή ζηελ Αιγνξηζκηθή Κύδξνο Γεκήηξεο Σμήμα Λνγηζηηθήο θαη Υξεκαηννηθνλνκηθήο Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται
Αιγόξηζκνη Δθρώξεζε, Δίζνδνο θαη Έμνδνο ηηκώλ Γνκή αθνινπζίαο. Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Υ
Αιγόξηζκνη 2.2.7.1 Δθρώξεζε, Δίζνδνο θαη Έμνδνο ηηκώλ 2.2.7.2 Γνκή αθνινπζίαο Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Υ 1 Δληνιή Δθρώξεζεο Η γεληθή κνξθή ηεο εληνιήο εθρώξεζεο είλαη: Μεηαβιεηή Έθθξαζε
Σειεζηέο, Δθθξάζεηο Πξνηάζεηο, Δληνιέο Διέγρνπ Ρνήο
Σειεζηέο, Δθθξάζεηο Πξνηάζεηο, Δληνιέο Διέγρνπ Ρνήο 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η 3 Σειεζηέο Έλαο ηελεζηήρ (operator) είναι ένα ζύμβολο ή μία λέξη ηηρ γλώζζαρ ππογπαμκαηηζκνύ, πνπ αλαπαξηζηά
ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών
τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ
Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο:
Πίνακες Σσμβόλων Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Εηζαγσγή ελόο ζηνηρείνπ Αλαδήηεζε ζηνηρείνπ κε δεδνκέλν θιεηδί Άιιεο ρξήζηκεο ιεηηνπξγίεο είλαη: Δηαγξαθή ελόο θαζνξηζκέλνπ ζηνηρείνπ
Αιγόξηζκνη Δληνιέο θαη δνκέο αιγνξίζκνπ. Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress.com. Αζαλάζηνο Ι.
Αιγόξηζκνη 2.2.7 Δληνιέο θαη δνκέο αιγνξίζκνπ Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Τ 1 Η δηαηύπσζε ελόο αιγνξίζκνπ ζηελ Φεπδνγιώζζα είλαη: Αλγόριθμος όνομα_αλγορίθμοσ Εντολές Τέλος όνομα_αλγορίθμοσ
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;
Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016
Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε
Παλαιοσλαβική Γλώσσα. Ενότητα 11: Μορφολογία Τα Ονόματα/Αντωνυμίες. Αλεξάνδρα Ιωαννίδου. Τμήμα Σλαβικών Σπουδών
Παλαιοσλαβική Γλώσσα Ενότητα 11: Μορφολογία Τα Ονόματα/Αντωνυμίες Αλεξάνδρα Ιωαννίδου Τμήμα Σλαβικών Σπουδών Γ1.2. ΟΗ ΑΝΣΧΝΤΜΗΔ ηελ παιαηά εθθιεζηαζηηθή ζιαβηθή, νη αλησλπκίεο δηαθξίλνληαλ ζε δπν κεγάιεο
Ενδεικτικά Θέματα Στατιστικής ΙΙ
Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε
Παλαιοσλαβική Γλώσσα. Ενότητα 13: Μορφολογία Τα ρήματα. Αλεξάνδρα Ιωαννίδου. Τμήμα Σλαβικών Σπουδών
Παλαιοσλαβική Γλώσσα Ενότητα 13: Μορφολογία Τα ρήματα Αλεξάνδρα Ιωαννίδου Τμήμα Σλαβικών Σπουδών Αλεξάνδπα Ιωαννίδου :Ειζαγωγή ζηην Παλαιά Εκκληζιαζηική Σλαβική Γ2. ΣΑ ΡΖΜΑΣΑ Γ2.1. Ζ ΣΤΠΟΛΟΓΗΑ ΣΧΝ ΡΖΜΑΣΧΝ
Σχεδίαση Γλωσσών & Μεταγλωττιστζς
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Σχεδίαση Γλωσσών & Μεταγλωττιστζς Ενότητα 16: Παραγωγή Κώδικα για Εντολζσ Ελζγχου Ροήσ Επ. Καθ. Π. Κατςαρόσ Σμήμα Πληροφορικήσ Άδειεσ Χρήςησ
Δομή επανάλητηρ Ενηολή Όζο
Αιγόξηζκνη 2.2.7.4 Δομή επανάλητηρ Ενηολή Όζο Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Υ 1 Λίγνη αιγόξηζκνη ρξεζηκνπνηνύλ κόλν ηηο δνκέο αθνινπζίαο θαη επηινγήο. Σηα ξεαιηζηηθά πξνβιήκαηα ρξεηάδεηαη ζπλήζσο
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ
Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Εθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr
Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Εθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr Η λέα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά
ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ
ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή
Αγορές Χρήματος & Κεφαλαίου
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Αγορές Χρήματος & Κεφαλαίου Ενότητα 9: ΑΜΟΙΒΑΙΑ ΚΕΦΑΛΑΙΑ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.
Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Εισαγωγή στη C++ Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Αριθμοί κινητής υποδιαστολής (float) στη C++ (1)
ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΛΤΔΙ ΓΙΑΓΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2
ΑΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΙΑ ΛΤΔΙ ΙΑΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2 1: Λάζος (είλαη ηζνζθειήο ππεξβνιή) Α2: Λάζος (ην ζεηηθό πξόζεκν ζεκαίλεη όηη ε Πνζνζηηαία Μεηαβνιή Δηζνδήκαηνο θαη ε Πνζνζηηαία Μεηαβνιή Πνζόηεηαο ήηαλ
ΗΥ-100 Ειζαγωγή ζηην Επιζηήμη Υπολογιζηών
Πανεπιζηήμιο Κπήηηρ Τμήμα Επιζηήμηρ Υπολογιζηών www.csd.uoc.gr Επγαζηήπιο Υπηπεζιών Μεηαζσημαηιζμού www.tsl.gr ΗΥ-100 Ειζαγωγή ζηην Επιζηήμη Υπολογιζηών http://efront.tsl.gr Τέηαπηη Διάλεξη Python: εκυράσεις,
iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:
Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr
Τν εθπαηδεπηηθό πιηθό ηεο Φξνηηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαέκεηαη δωξεά απνθιεηζηηθά από ην ψεθηαθό ηόπν ηνπ schooltime.gr Η έα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ )α.
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη
Διζαγυγή ζηην πληποθοπική
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διζαγυγή ζηην πληποθοπική Δνόηηηα 4: Λνγηθέο πξάμεηο Χεθηαθά θπθιώκαηα Βξάλα Βαζηιηθή Τκήκα Γηνίθεζεο Δπηρεηξήζεσλ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ
ΘΔΜΑ 1 ο Μονάδες 5,10,10
ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη Μάθημα 11 Τμήμα Μάπκεηινγκ και Διοίκηζηρ Λειηοςπγιών Τα δηαγξάκκαηα θαηάζηαζεο (state diagrams) ρξεζηκνπνηνύληαη γηα λα βνεζήζνπλ ηνλ πξνγξακκαηηζηή λα θαηαιάβεη
Ανάπηςξη Δθαπμογών ζε Ππογπαμμαηιζηικό Πεπιβάλλον
Μάθημα 10 ( 2.4.2, 8.1, 8.1.1) Ανάπηςξη Δθαπμογών ζε Ππογπαμμαηιζηικό Πεπιβάλλον Δπγαζία 9 Α. Να βπεθεί η ηιμή πος θα έσει η μεηαβληηή Φ μεηά ηην εκηέλεζη καθεμιάρ από ηιρ παπακάηυ ενηολέρ εκσώπηζηρ. Οι
Constructors and Destructors in C++
Constructors and Destructors in C++ Σύνθεζη Πνιύ ζπρλά ζηε C++ κία θιάζε κπνξεί λα πεξηέρεη ζαλ κέιεδεδνκέλα αληηθείκελα άιισλ θιάζεσλ. Πνηα είλαη ε ζεηξά κε ηελ νπνία δεκηνπξγνύληαη θαη θαηαζηξέθνληαη
x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12
ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ
www.algorithmos.eu Κεθάλαιο 2
Κεθάλαιο 2 1. Ο αιγόξηζκνο είλαη απαξαίηεηνο κόλν γηα ηελ επίιπζε πξνβιεκάησλ Πιεξνθνξηθήο 2. Ο αιγόξηζκνο απνηειείηαη από έλα πεπεξαζκέλν ζύλνιν εληνιώλ 3. Ο αιγόξηζκνο κπνξεί λα πεξηιακβάλεη θαη εληνιέο
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ. 3. Έλαο θαηαρσξεηήο SISO ησλ 4 bits έρεη: α) Μία είζνδν, β) Δύν εηζόδνπο, γ) Σέζζεξεηο εηζόδνπο.
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ση είλαη έλαο θαηαρσξεηήο; O θαηαρσξεηήο είλαη κηα νκάδα από flip-flop πνπ κπνξεί λα απνζεθεύζεη πξνζσξηλά ςεθηαθή πιεξνθνξία. Μπνξεί λα δηαηεξήζεη ηα δεδνκέλα ηνπ
Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:
1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.
Η γλώζζα προγραμμαηιζμού Ciscal
Προγραμμαηιζηική άζκηζη: Η γλώζζα προγραμμαηιζμού Ciscal Η Ciscal είλαη κηα κηθξή γιώζζα πξνγξακκαηηζκνύ. Παξόιν πνπ νη πξνγξακκαηηζηηθέο ηεο ηθαλόηεηεο είλαη κηθξέο, ε εθπαηδεπηηθή απηή γιώζζα πεξηέρεη
ΠΛΖΡΟΦΟΡΗΚΖ & ΑΛΓΟΡΗΘΜΟΗ
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΛΖΡΟΦΟΡΗΚΖ & ΑΛΓΟΡΗΘΜΟΗ Ενότητα # (3): Αξρέο ςεθηαθήο ζρεδίαζεο Κύδξνο Γεκήηξεο Λνγηζηηθήο θαη Φξεκαηννηθνλνκηθήο Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ
Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ
Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage
ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα
ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα Ολνκαηεπώλπκν: ΘΕΜΑ 1 A. Nα αλαθέξεηε ηα θξηηήξηα πνπ πξέπεη λα πιεξεί έλαο αιγόξηζκνο (νλνκαζηηθά) B. Με πνην ηξόπν κπνξεί λα πάξεη ηηκή κηα κεηαβιεηή; (Μονάδες 2) Γ. Να
5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη
5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη Σηα πιαίζηα ηεο πέκπηεο εξγαζηεξηαθήο άζθεζεο ζα ρξεζηκνπνηεζεί απνθιεηζηηθά ην πεξηβάιινλ αλάπηπμεο νινθιεξσκέλσλ θπθισκάησλ IDL-800 Digital
ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)
. Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.
ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΑΒΒΑΣΟ 23 MAΪΟΤ ΑΔΠΠ
ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΑΒΒΑΣΟ 23 MAΪΟΤ 2009 - ΑΔΠΠ ΘΔΜΑ 1ο Α. Να ραξαθηεξίζεηε θάζε κία από ηηο πξνηάζεηο πνπ αθνινπζνύλ γξάθνληαο ζην ηεηξάδηό ζαο, δίπια από ηνλ αξηζκό θάζε
Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ
Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 4: Συμπίεςη χωρίσ Απώλειεσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.
ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΠΟΛΤΣΗΡΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΠΑΡΑΚΕΤΗ 4 ΙΟΤΛΙΟΤ ΑΕΠΠ
ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΠΟΛΤΣΗΡΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΠΑΡΑΚΕΤΗ 4 ΙΟΤΛΙΟΤ 2003 - ΑΕΠΠ ΘΕΜΑ 1ο Α. Γίλεηαη ε παξαθάησ αιιεινπρία εληνιώλ: Διάβαζε α, β Αν α > β ηόηε c α / (β - 2) Εκηύπφζε c α. Να
Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14
.1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε
Αντισταθμιστική ανάλυση
Θεσξήζηε έλαλ αιγόξηζκν Α πνπ ρξεζηκνπνηεί κηα δνκή δεδνκέλσλ Γ : Καηά ηε δηάξθεηα εθηέιεζεο ηνπ Α ε Γ πξαγκαηνπνηεί κία αθνινπζία από πξάμεηο. Παξάδεηγκα: Θπκεζείηε ην πξόβιεκα ηεο εύξεζεο-έλσζεο Δίρακε
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.
Άσκηση 1 - Μοπυοποίηση Κειμένου
Άσκηση 1 - Μοπυοποίηση Κειμένου Σηηο παξαθάησ γξακκέο εθαξκόζηε ηε κνξθνπνίεζε πνπ πεξηγξάθνπλ Γξακκή κε έληνλε γξαθή Γξακκή κε πιάγηα γξαθή Γξακκή κε ππνγξακκηζκέλε γξαθή Γξακκή κε Arial Font κεγέζνπο
Σχεδίαση Γλωσσών & Μεταγλωττιστζς
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Σχεδίαση Γλωσσών & Μεταγλωττιστζς Ενότητα 5: Καθοδική Συντακτική Ανάλυςη Αλγόριθμοσ LL(1) Επ. Καθ. Π. Κατςαρόσ Τμήμα Πληροφορικήσ Άδειεσ Χρήςησ
Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr
Τν εθπαηδεπηηθό πιηθό ηεο Φξνηηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαέκεηαη δσξεά απνθιεηζηηθά από ην ςεθηαθό ηόπν ηνπ schooltime.gr Η έα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ )α.
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π Α ο υ ι ς ε κ ς ξ μ ι κ ή ρ ύ μ θ ε ρ η 6 Τ ξ μ έ α π ΘΘΘ, X ώ ο ξ π κ α ι Δ π ι κ ξ ι μ χ μ ί α Η έ μ α : Διδάρκξμςεπ: Τξ εύοξπ ςξσ ξοίξσ Ιεοαμεικόπ
Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό
Βάρειπ Δεδξμέμωμ. Εξγαζηήξην ΙΙI. Τκήκα Πιεξνθνξηθήο ΑΠΘ
Βάρειπ Δεδξμέμωμ Εξγαζηήξην ΙΙI Τκήκα Πιεξνθνξηθήο ΑΠΘ 2016-2017 2 Σκξπόπ ςξσ 3 ξσ εογαρςηοίξσ Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε εξωηεκάηωλ επηινγήο, πξνβνιήο θαη απιώλ ζπλδέζεωλ ζε δύν ή πεξηζζόηεξεο
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα
Να ζρεδηάζεηο ηξόπνπο ζύλδεζεο κηαο κπαηαξίαο θαη ελόο ιακπηήξα ώζηε ν ιακπηήξαο λα θσηνβνιεί.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Απλό ηλεκτπικό κύκλυμα Η δηδαζθαιία ηνπ απινύ ειεθηξηθνύ θπθιώκαηνο ππάξρεη ζην κάζεκα «Φπζηθά» ηεο Ε ηάμεο ηνπ δεκνηηθνύ θαη επαλαιακβάλεηαη ζην κάζεκα ηεο Φπζηθήο ζηε Γ ηάμε ηνπ Γπκλαζίνπ.
Δσζμενές διαηαρατές και Ονομαζηικό-πραγμαηικό επιηόκιο
Δσζμενές διαηαρατές και Ονομαζηικό-πραγμαηικό επιηόκιο Copyright 2009 Pearson Education, Inc. Publishing as Prentice Hall Macroeconomics, 5/e Olivier Blanchard 1 of 43 IS-LM: Μηχανισμός προσαρμογής μετά
Κεθάιαην 20. Ελαχιστοποίηση του κόστους
Κεθάιαην 0 Ελαχιστοποίηση του κόστους Ειαρηζηνπνίεζε ηνπ θόζηνπο Μηα επηρείξεζε ειαρηζηνπνηεί ην θόζηνο ηεο αλ παξάγεη νπνηνδήπνηε δεδνκέλν επίπεδν πξντόληνο y 0 ζην κηθξόηεξν δπλαηό ζπλνιηθό θόζηνο. Τν
f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 Δημιουργία σελίδων και βιβλίων Έλα θαηλνύξην βηβιίν πεξηέρεη κία άδεηα ζειίδα κε έλα άδεην background. Δελ κπνξνύκε λα μερσξίζνπκε
Εξγαζηήξην Πιεξνθνξηθήο
Εξγαζηήξην Πιεξνθνξηθήο «Λογικές παραστάσεις (Boolean expressions)» Τμήμα Εκπαιδεςηικών Πολιηικών Δομικών Έπγυν (Α4) Ραούλησ Δημήτριοσ Αθήνα, 16 Ιανουαρίου 2013 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΝΟΤΗΤΑ 5... 2 Λογικζσ παραςτάςεισ
Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2
ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.
(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ
B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.
B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30
Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ
Κεθάλαιο 7 Πξνζθνξά ηνπ θιάδνπ 1 Προζθορά ανηαγωνιζηικού κλάδοσ Πώο πξέπεη λα ζπλδπαζηνύλ νη απνθάζεηο πξνζθνξάο ησλ πνιιώλ επηκέξνπο επηρεηξήζεσλ ελόο αληαγσληζηηθνύ θιάδνπ γηα λα βξνύκε ηελ θακπύιε πξνζθνξάο
ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου
ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ
ΡΤΘΜΙΕΙ ΔΙΚΣΤΟΤ ΣΑ WINDOWS
ηότοι εργαζηηρίοσ ΡΤΘΜΙΕΙ ΔΙΚΣΤΟΤ ΣΑ WINDOWS ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηεί ε δηαδηθαζία ηωλ ξπζκίζεωλ δηθηύνπ ζε ιεηηνπξγηθό ζύζηεκα Windows XP. Η δηαδηθαζία ζε γεληθέο γξακκέο
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ (Δλδεηθηηθέο Απαληήζεηο) ΘΔΜΑ Α Α1. α. Σωζηό β. Λάζνο
ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x
Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε
Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή. Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε.
Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε. Παξάκεηξνη πξνο αμηνιόγεζε Ννκνζεηηθή ζσξάθηζε Κνηλόο Σύιινγνο Ακνηβή Καηαγγειία/Λύζε
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ Άδειεσ Χρήςησ -Το παρόν εκπαιδευτικό υλικό υπόκειται ςτην άδεια χρήςησ Creative Commons και ειδικότερα Αναφορά - Μη εμπορική
ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ
ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ ΝΚΑΓΑ Α ΔΡΩΣΖΔΗ ΩΣΟΤ- ΙΑΘΟΤ 1. Γηα έλα αγαζό όηαλ ε ζηαζεξά γ είλαη ίζε κε ην κεδέλ ηόηε ε θακπύιε πξνζθνξάο δηέξρεηαη από ηελ αξρή ηωλ αμόλωλ.
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Βρόχοι και απλές πράξεις (1/2) Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Βρόχος do while στη C++ Η βρόγτος
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ
(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη
4) Να γξάςεηε δηαδηθαζία (πξόγξακκα) ζηε Logo κε όλνκα θύθινο πνπ ζα ζρεδηάδεη έλα θύθιν. Λύζε Γηα θύθινο ζηθ επαλάιαβε 360 [κπ 1 δε 1] ηέινο
Λσμένες αζκήζεις ζηη Logo Στεδίαζη ζτημάηων με ηη τελώνα 1) Να γξάςεηε δηαδηθαζία (πξόγξακκα) ζηε Logo κε όλνκα ηεηξάγσλν πνπ ζα ζρεδηάδεη έλα ηεηξάγσλν κε πιεπξά 120. Γηα ηεηξάγσλν επαλάιαβε 4 [κπ 120
ΑΠΟΛΤΣΖΡΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΠΑΡΑΚΔΤΖ 1 ΗΟΤΝΗΟΤ ΑΔΠΠ
ΑΠΟΛΤΣΖΡΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΠΑΡΑΚΔΤΖ ΗΟΤΝΗΟΤ 007 - ΑΔΠΠ ΘΔΜΑ ο Α.. Ση είλαη νη ηειεζηέο θαη πνηεο είλαη νη θαηεγνξίεο ησλ ηειεζηώλ; Μνλάδεο 4 Α.. Παράγραθος.4., ζελίδα 3 αλλά και
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα
ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ
ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ
ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017
α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,
Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ
Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό
ΓΗΜΟΙΑ ΟΙΚΟΝΟΜΙΚΗ ΣΟΜΟ Γ
1 ΓΗΜΟΙΑ ΟΙΚΟΝΟΜΙΚΗ ΣΟΜΟ Γ Μάθημα 19: Φόροι ΦΟΡΟΛΟΓΙΚΑ ΤΣΗΜΑΣΑ: Προοδεσηικό, Αναλογικά και ανηίζηροθα προοδεσηικό θορολογικό ζύζηημα Μέζος και οριακός θορολογικός ζσνηελεζηής Ο κέζνο θνξνινγηθόο ζπληειεζηήο
x x x x tan(2 x) x 2 2x x 1
ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ
ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ. β. Η θαηάιπζε είλαη εηεξνγελήο, αθνύ ν θαηαιύηεο είλαη ζηεξεόο ελώ ηα αληηδξώληα αέξηα (βξίζθνληαη ζε δηαθνξεηηθή θάζε).
ΔΗΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΣΔΚΝΩΝ ΔΛΛΖΝΩΝ ΔΞΩΣΔΡΗΚΟΤ ΚΑΗ ΣΔΚΝΩΝ ΔΛΛΖΝΩΝ ΤΠΑΛΛΖΛΩΝ ΠΟΤ ΤΠΖΡΔΣΟΤΝ ΣΟ ΔΞΩΣΔΡΗΚΟ ΑΒΒΑΣΟ 8 ΔΠΣΔΜΒΡΗΟΤ 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΥΖΜΔΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΘΔΜΑ Α Α1. α Α2.