Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο:
|
|
- Φώτις Δραγούμης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Πίνακες Σσμβόλων Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Εηζαγσγή ελόο ζηνηρείνπ Αλαδήηεζε ζηνηρείνπ κε δεδνκέλν θιεηδί Άιιεο ρξήζηκεο ιεηηνπξγίεο είλαη: Δηαγξαθή ελόο θαζνξηζκέλνπ ζηνηρείνπ Επηινγή ηνπ k-νζηνύ κηθξόηεξνπ ζηνηρείνπ Ταμηλόκεζε ηνπ πίλαθα ζπκβόισλ (δηαηεηαγκέλε επίζθεςε ησλ ζηνηρείσλ ζύκθσλα κε ηα θιεηδηά ηνπο) Έλσζε δύν πηλάθσλ ζπκβόισλ
2 Πίνακες Σσμβόλων ρεηξόηεξε πεξίπησζε κέζε πεξίπησζε εηζαγσγή αλαδήηεζε εηζαγσγή αλαδήηεζε δηαηεηαγκέλνο πίλαθαο δηαηεηαγκέλε ιίζηα κε δηαηεηαγκέλνο πίλαθαο κε δηαηεηαγκέλε ιίζηα δέλδξν δπαδηθήο αλαδήηεζεο ηπραηνπνηεκέλν δέλδξν δέλδξν θόθθηλνπ-καύξνπ θαηαθεξκαηηζκόο (*) Σπκβαίλεη κε εμαηξεηηθά κηθξή πηζαλόηεηα
3 Πίνακες Σσμβόλων ρεηξόηεξε πεξίπησζε κέζε πεξίπησζε εηζαγσγή αλαδήηεζε εηζαγσγή αλαδήηεζε δηαηεηαγκέλνο πίλαθαο δηαηεηαγκέλε ιίζηα κε δηαηεηαγκέλνο πίλαθαο κε δηαηεηαγκέλε ιίζηα δέλδξν δπαδηθήο αλαδήηεζεο ηπραηνπνηεκέλν δέλδξν δέλδξν θόθθηλνπ-καύξνπ θαηαθεξκαηηζκόο (*) Σπκβαίλεη κε εμαηξεηηθά κηθξή πηζαλόηεηα Με δπαδηθή αλαδήηεζε
4 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ
5 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ <17 Αλαδήηεζε
6 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ. 15> Αλαδήηεζε
7 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ. 17 Αλαδήηεζε <
8 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ. 17 Αλαδήηεζε =
9 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ. 13<17 17 Εηζαγσγή
10 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ. 13< Εηζαγσγή
11 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ. 17 Εηζαγσγή 13 13>
12 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ. 17 Εηζαγσγή >
13 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ. 17 Εηζαγσγή
14 Δένδρα Δσαδικής Αναζήηηζης Δένδρο δσαδικής αναδήτεσες (binar search tree) : Τν θιεηδί νπνηνπδήπνηε εζσηεξηθνύ θόκβνπ είλαη κεγαιύηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ αξηζηεξνύ ππνδέλδξνπ θαη κηθξόηεξν (ή ίζν) από όια ηα θιεηδηά ηνπ δεμηνύ ππνδέλδξνπ. 17 Εηζαγσγή
15 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10 10
16 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10,
17 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10, 8,
18 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10, 8, 6,
19 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10, 8, 6, 17,
20 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10, 8, 6, 17, 12,
21 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10, 8, 6, 17, 12, 13,
22 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10, 8, 6, 17, 12, 13, 4,
23 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10, 8, 6, 17, 12, 13, 4, 7,
24 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 10, 8, 6, 17, 12, 13, 4, 7, 15,
25 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 14, 8, 17, 6, 12, 15, 21, 4, 7, 10,
26 Δένδρα Δσαδικής Αναζήηηζης Εισαγωγή 4 4, 6, 7, 8, 10, 12, 13, 14, 15, 17,
27 Περιζηροθές αξηζηεξή πεξηζηξνθή από ην α β γ δεμηά πεξηζηξνθή από ην α β γ link rotl(link ) { link = ->r; ->r = ->l; ->l = ; return ; } αξηζηεξή πεξηζηξνθή Η πεξηζηξνθή παίξλεη ρξόλν Ο(1) link rotr(link ) { link = ->l; ->l = ->r; ->r = ; return ; } δεμηά πεξηζηξνθή
28 Περιζηροθές δεμηά πεξηζηξνθή από ην
29 Ιζορροπημένα Δένδρα Μπνξνύκε λα επηηύρνπκε γηα θάζε ιεηηνπξγία; ρξόλν εθηέιεζεο Ιζνξξνπεκέλν δέλδξν : Δηαηεξεί ύςνο θάζε εηζαγσγή ή δηαγξαθή κεηά από
30 Ιζορροπημένα Δένδρα Μεξηθνί ηύπνη ηζνξξνπεκέλσλ δέλδξσλ Τπραηνπνηεκέλα δέλδξα Αξζξσηά δέλδξα (spla trees) Δέλδξα θόθθηλνπ-καύξνπ, δέλδξα VL, θ.α. Λίζηεο παξάιεηςεο (skip lists)
31 Αρθρωηά δένδρα (spla trees) Εθηειεί όιεο ηηο πξάμεηο ζηε ξίδα ηνπ δέλδξνπ. Χξεζηκνπνηεί δεύγε πεξηζηξνθώλ θαζώο κεηαθηλεί έλα θιεηδί ζηε ξίδα (ιεηηνπξγία spla) γηα λα θέξεη ην δέλδξν ζε κεγαιύηεξε ηζνξξνπία. DEMO :
32 Αρθρωηά δένδρα (spla trees) Εηζαγσγή 1,2,3,4,5,6,7,
33 Αρθρωηά δένδρα (spla trees) spla(1)
34 Αρθρωηά δένδρα (spla trees) spla(1) (ζπλέρεηα)
35 Αρθρωηά δένδρα (spla trees) spla(1) (ζπλέρεηα)
36 Αρθρωηά δένδρα (spla trees) Εθηειεί όιεο ηηο πξάμεηο ζηε ξίδα ηνπ δέλδξνπ. Χξεζηκνπνηεί δεύγε πεξηζηξνθώλ θαζώο κεηαθηλεί έλα θιεηδί ζηε ξίδα (ιεηηνπξγία spla) γηα λα θέξεη ην δέλδξν ζε κεγαιύηεξε ηζνξξνπία. spla() Πεξίπησζε zig-zig: από ηνλ παππνύ ηνπ αθνινπζνύκε δύν αξηζηεξνύο ή δύν δεμηνύο ζπλδέζκνπο γηα λα πάκε ζην z D z D
37 Αρθρωηά δένδρα (spla trees) Εθηειεί όιεο ηηο πξάμεηο ζηε ξίδα ηνπ δέλδξνπ. Χξεζηκνπνηεί δεύγε πεξηζηξνθώλ θαζώο κεηαθηλεί έλα θιεηδί ζηε ξίδα (ιεηηνπξγία spla) γηα λα θέξεη ην δέλδξν ζε κεγαιύηεξε ηζνξξνπία. spla() Πεξίπησζε zig-zig: από ηνλ παππνύ ηνπ αθνινπζνύκε δύν αξηζηεξνύο ή δύν δεμηνύο ζπλδέζκνπο γηα λα πάκε ζην. Πξνζνρή ζηε ζεηξά ησλ πεξηζηξνθώλ! 1 z 2 D z D z D
38 Αρθρωηά δένδρα (spla trees) Εθηειεί όιεο ηηο πξάμεηο ζηε ξίδα ηνπ δέλδξνπ. Χξεζηκνπνηεί δεύγε πεξηζηξνθώλ θαζώο κεηαθηλεί έλα θιεηδί ζηε ξίδα (ιεηηνπξγία spla) γηα λα θέξεη ην δέλδξν ζε κεγαιύηεξε ηζνξξνπία. spla() Πεξίπησζε zig-zag: από ηνλ παππνύ ηνπ αθνινπζνύκε πξώηα έλαλ αξηζηεξό θαη κεηά έλα δεμηό ζύλδεζκν ή πξώηα έλαλ δεμηό θαη κεηά έλα αξηζηεξό ζύλδεζκν γηα λα πάκε ζην z D z D
39 Αρθρωηά δένδρα (spla trees) Εθηειεί όιεο ηηο πξάμεηο ζηε ξίδα ηνπ δέλδξνπ. Χξεζηκνπνηεί δεύγε πεξηζηξνθώλ θαζώο κεηαθηλεί έλα θιεηδί ζηε ξίδα (ιεηηνπξγία spla) γηα λα θέξεη ην δέλδξν ζε κεγαιύηεξε ηζνξξνπία. spla() Πεξίπησζε zig-zag: από ηνλ παππνύ ηνπ αθνινπζνύκε πξώηα έλαλ αξηζηεξό θαη κεηά έλα δεμηό ζύλδεζκν ή πξώηα έλαλ δεμηό θαη κεηά έλα αξηζηεξό ζύλδεζκν γηα λα πάκε ζην z 2 z 1 D D z D
40 Αρθρωηά δένδρα (spla trees) Εθηειεί όιεο ηηο πξάμεηο ζηε ξίδα ηνπ δέλδξνπ. Χξεζηκνπνηεί δεύγε πεξηζηξνθώλ θαζώο κεηαθηλεί έλα θιεηδί ζηε ξίδα (ιεηηνπξγία spla) γηα λα θέξεη ην δέλδξν ζε κεγαιύηεξε ηζνξξνπία. spla() Αλ ν παηέξαο ηνπ είλαη ε ξίδα ηόηε εθηεινύκε κηα απιή πεξηζηξνθή
41 Αρθρωηά δένδρα (spla trees) Εθηειεί όιεο ηηο πξάμεηο ζηε ξίδα ηνπ δέλδξνπ. Χξεζηκνπνηεί δεύγε πεξηζηξνθώλ θαζώο κεηαθηλεί έλα θιεηδί ζηε ξίδα (ιεηηνπξγία spla) γηα λα θέξεη ην δέλδξν ζε κεγαιύηεξε ηζνξξνπία. Ιδιότετα: Έλα αξζξσηό δέλδξν κε αληηζηαζκηζηηθό ρξόλν θόκβνπο εθηειεί νπνηαδήπνηε ιεηηνπξγία ζε
42 Αρθρωηά δένδρα (spla trees) Εθηειεί όιεο ηηο πξάμεηο ζηε ξίδα ηνπ δέλδξνπ. Χξεζηκνπνηεί δεύγε πεξηζηξνθώλ θαζώο κεηαθηλεί έλα θιεηδί ζηε ξίδα (ιεηηνπξγία spla) γηα λα θέξεη ην δέλδξν ζε κεγαιύηεξε ηζνξξνπία. Ιδιότετα: Έλα αξζξσηό δέλδξν κε αληηζηαζκηζηηθό ρξόλν θόκβνπο εθηειεί νπνηαδήπνηε ιεηηνπξγία ζε Εδώ ζα δείμνπκε κόλν όηη ε ιεηηνπξγία spla εθηειείηαη ζε ρξόλν αληηζηαζκηζηηθό
43 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε αληηζηαζκηζηηθό ρξόλν θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε
44 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε αληηζηαζκηζηηθό ρξόλν θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε Θα ρξεζηκνπνηήζνπκε ηελ ελεξγεηαθή κέζνδν. Έζησ απνγόλσλ ηνπ θόκβνπ ζην αξζξσηό δέλδξν. ην πιήζνο ησλ Οξίδνπκε ηελ «ηάμε» ηνπ σο e d i b f j a c g h
45 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε αληηζηαζκηζηηθό ρξόλν θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε Θα ρξεζηκνπνηήζνπκε ηελ ελεξγεηαθή κέζνδν. Έζησ απνγόλσλ ηνπ θόκβνπ ζην αξζξσηό δέλδξν. ην πιήζνο ησλ Οξίδνπκε ηελ «ηάμε» ηνπ σο e 3 2 d i 2 1 b 1 f j 0 0 a c 0 g 1 h 0
46 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε αληηζηαζκηζηηθό ρξόλν θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε Θα ρξεζηκνπνηήζνπκε ηελ ελεξγεηαθή κέζνδν. Έζησ απνγόλσλ ηνπ θόκβνπ ζην αξζξσηό δέλδξν. ην πιήζνο ησλ Οξίδνπκε ηελ «ηάμε» ηνπ σο Δπλακηθό δέλδξνπ e 3 2 d i 2 1 b 1 f j 0 0 a c 0 g 1 h 0
47 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε αληηζηαζκηζηηθό ρξόλν θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε Θα ρξεζηκνπνηήζνπκε ηελ ελεξγεηαθή κέζνδν. Έζησ απνγόλσλ ηνπ θόκβνπ ζην αξζξσηό δέλδξν. ην πιήζνο ησλ Οξίδνπκε ηελ «ηάμε» ηνπ σο Δπλακηθό δέλδξνπ : Αλαιύνπκε ηελ επίδξαζε ηνπ θάζε βήκαηνο πεξηζηξνθώλ ζην δπλακηθό ηνπ δέλδξνπ Παξαηεξνύκε όηη ζε θάζε πεξίπησζε αιιάδεη ε ηάμε δύν ή ηξηώλ θόκβσλ ( θαη ) z z D D
48 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε αληηζηαζκηζηηθό ρξόλν θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε Θα ρξεζηκνπνηήζνπκε ηελ ελεξγεηαθή κέζνδν. Έζησ απνγόλσλ ηνπ θόκβνπ ζην αξζξσηό δέλδξν. ην πιήζνο ησλ Οξίδνπκε ηελ «ηάμε» ηνπ σο Δπλακηθό δέλδξνπ : Αο αλαιύζνπκε ηελ πεξίπησζε zig-zig z D z D Έζησ θαη νη ηηκέο κεηά ηε δηπιή πεξηζηξνθή Ιζρύνπλ θαη
49 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε αληηζηαζκηζηηθό ρξόλν Αο αλαιύζνπκε ηελ πεξίπησζε zig-zig z D z D Ιζρύνπλ θαη
50 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε αληηζηαζκηζηηθό ρξόλν Αο αλαιύζνπκε ηελ πεξίπησζε zig-zig z D z D Ιζρύνπλ θαη Επηπιένλ
51 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε αληηζηαζκηζηηθό ρξόλν Αο αλαιύζνπκε ηελ πεξίπησζε zig-zig z D z D Ιζρύνπλ θαη Επηπιένλ
52 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε αληηζηαζκηζηηθό ρξόλν Αο αλαιύζνπκε ηελ πεξίπησζε zig-zig z D z D Ιζρύνπλ θαη
53 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε αληηζηαζκηζηηθό ρξόλν Αο αλαιύζνπκε ηελ πεξίπησζε zig-zig z D z D Άξα Πξαγκαηηθό θόζηνο πεξηζηξνθώλ Αληηζηαζκηζηηθό θόζηνο πεξηζηξνθώλ
54 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε αληηζηαζκηζηηθό ρξόλν z Οκνίσο αλαιύεηαη ε πεξίπησζε zig-zag D z D Άξα Πξαγκαηηθό θόζηνο πεξηζηξνθώλ Αληηζηαζκηζηηθό θόζηνο πεξηζηξνθώλ
55 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε αληηζηαζκηζηηθό ρξόλν Τεξκαηηθή πεξίπησζε Ιζρύνπλ θαη
56 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε αληηζηαζκηζηηθό ρξόλν Τεξκαηηθή πεξίπησζε Ιζρύνπλ θαη
57 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε αληηζηαζκηζηηθό ρξόλν Τεξκαηηθή πεξίπησζε Άξα Πξαγκαηηθό θόζηνο πεξηζηξνθώλ Αληηζηαζκηζηηθό θόζηνο πεξηζηξνθώλ
58 Αρθρωηά δένδρα (spla trees) Ιδιότετα: Σε έλα αξζξσηό δέλδξν κε αληηζηαζκηζηηθό ρξόλν θόκβνπο ε ιεηηνπξγία spla εθηειείηαη ζε Έζησ ινηπόλ όηη ε ιεηηνπξγηά spla πξαγκαηνπνηείηαη ζε βήκαηα Έζησ θαη νη ηηκέο κεηά ηo i-νζηό βήκα Τν ζπλνιηθό αληηζηαζκηζηηθό θόζηνο είλαη
B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.
B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30
Δυναμικοί πίνακες. Πνιιέο δνκέο δεδνκέλσλ πινπνηνύληαη κε ρξήζε πηλάθσλ. π.ρ. Σηνίβεο. α β γ δ. tail. head % N. Οπξέο Ν-1. θάησ όξην.
Πνιιέο δνκέο δεδνκέλσλ πινπνηνύληαη κε ρξήζε πηλάθσλ π.ρ. Σηνίβεο θάησ όξην α β γ δ ηξέρνπζα θνξπθή άλσ όξην Οπξέο 5 Ν- tail 2 head % N 4 3 Πνιιέο δνκέο δεδνκέλσλ πινπνηνύληαη κε ρξήζε πηλάθσλ π.ρ. Οπξέο
Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)
Έρνπκε απνζεθεύζεη κηα ζπιινγή αξρείσλ ζε κηα ζπλδεδεκέλε ιίζηα, όπνπ θάζε αξρείν έρεη κηα εηηθέηα ηαπηνπνίεζεο. Μηα εθαξκνγή παξάγεη κηα αθνινπζία από αηηήκαηα πξόζβαζεο ζηα αξρεία ηεο ιίζηαο. Γηα λα
Αντισταθμιστική ανάλυση
Θεσξήζηε έλαλ αιγόξηζκν Α πνπ ρξεζηκνπνηεί κηα δνκή δεδνκέλσλ Γ : Καηά ηε δηάξθεηα εθηέιεζεο ηνπ Α ε Γ πξαγκαηνπνηεί κία αθνινπζία από πξάμεηο. Παξάδεηγκα: Θπκεζείηε ην πξόβιεκα ηεο εύξεζεο-έλσζεο Δίρακε
Οσρά Προτεραιότητας (priority queue)
Οσρά Προτεραιότητας (priority queue) Γνκή δεδνκέλσλ πνπ ππνζηεξίδεη ηηο αθόινπζεο ιεηηνπξγίεο εηζαγσγή ζηνηρείνπ επηζηξνθή ηνπ ζηνηρείνπ κε ην κεγαιύηεξν θιεηδί (ή ειάρηζην θιεηδί) θαη δηαγξαθή ηνπ από
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ
ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ
ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή
Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14
.1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε
ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ
ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί
ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε
ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε To πξόβιεκα ηεο Αλαδήηεζεο Γνζέληνο δεδνκέλσλ, ι.ρ. ζε Πίλαθα (P) Χάρλσ λα βξσ θάπνην ζπγθεθξηκέλν ζηνηρείν (key) Αλ ν πίλαθαο δελ είλαη ηαμηλνκεκέλνο Γξακκηθή
Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr
Τν εθπαηδεπηηθό πιηθό ηεο Φξνηηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαέκεηαη δωξεά απνθιεηζηηθά από ην ψεθηαθό ηόπν ηνπ schooltime.gr Η έα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ )α.
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;
Να ζρεδηάζεηο ηξόπνπο ζύλδεζεο κηαο κπαηαξίαο θαη ελόο ιακπηήξα ώζηε ν ιακπηήξαο λα θσηνβνιεί.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Απλό ηλεκτπικό κύκλυμα Η δηδαζθαιία ηνπ απινύ ειεθηξηθνύ θπθιώκαηνο ππάξρεη ζην κάζεκα «Φπζηθά» ηεο Ε ηάμεο ηνπ δεκνηηθνύ θαη επαλαιακβάλεηαη ζην κάζεκα ηεο Φπζηθήο ζηε Γ ηάμε ηνπ Γπκλαζίνπ.
Γηάιεμε 17: Γπαδηθά Γέληξα
Γηάιεμε 7: Γπαδηθά Γέληξα Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Δςαδικά Δένδπα Δςαδικά Δένδπα Αναζήηηζηρ Ππάξειρ Ειζαγωγήρ, Εύπεζηρ Σηοισείος, Διαγπαθήρ Μικπόηεπος Σηοισείος ηδάζθσλ:
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x
Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5
Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.
Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,
Ππογπαμμαηιζμόρ Ι (ΗΥ120)
Ππογπαμμαηιζμόρ Ι (ΗΥ120) Δηάιεμε 10: Ταμηλόκεζε Πίλαθα Αλαδήηεζε ζε Ταμηλνκεκέλν Πίλαθα Ππόβλεμα Δίλεηαη πίλαθαο t από Ν αθεξαίνπο. Ζεηνύκελν: λα ηαμηλνκεζνύλ ηα πεξηερόκελα ηνπ πίλαθα ζε αύμνπζα αξηζκεηηθή
(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ
Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016
Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε
ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017
α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη
5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη
5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη Σηα πιαίζηα ηεο πέκπηεο εξγαζηεξηαθήο άζθεζεο ζα ρξεζηκνπνηεζεί απνθιεηζηηθά ην πεξηβάιινλ αλάπηπμεο νινθιεξσκέλσλ θπθισκάησλ IDL-800 Digital
ΘΔΜΑ 1 ο Μονάδες 5,10,10
ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο
x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12
ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα
ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. καινούργιο σχολ. σελ 35 / παλιό σχολ. 53 Α. Ψευδής, σελ.99 / παλιό σχολ. σελ. 7 αντιπαράδειγμά, f ( ) Α3. σελ 73, παλιό σχολ. σελ. 9 Α. α) Λάθος β)
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Κοιμωμικά δίκτυα (multiplex network) Έρεηε ινγαξηαζκό ζην Facebook? Έρεηε ινγαξηαζκό ζην LinkedIn? Έρεηε ινγαξηαζκό ζην Twitter? Αεροπορικές γραμμές της Ευρώπης(multiplex
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη
Άσκηση 1 - Μοπυοποίηση Κειμένου
Άσκηση 1 - Μοπυοποίηση Κειμένου Σηηο παξαθάησ γξακκέο εθαξκόζηε ηε κνξθνπνίεζε πνπ πεξηγξάθνπλ Γξακκή κε έληνλε γξαθή Γξακκή κε πιάγηα γξαθή Γξακκή κε ππνγξακκηζκέλε γξαθή Γξακκή κε Arial Font κεγέζνπο
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ
ηδάζθσλ: εµήηξεο Εετλαιηπνύξ
ηάιεμε 4: ιάρηζηα ελλεηνξηθά έλδξα Αιγόξηζκνο Kruskal Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Ο αλγόριθμος ηοσ Kruskal για εύρεζη ζε γράθοσς Παράδειγμα κηέλεζης ηδάζθσλ: εµήηξεο ετλαιηπνύξ
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα
Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2
ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ
ΠΛΗ36. Άσκηση 1. Άσκηση 2. Οη δηεπζύλζεηο ησλ 4 σλ ππνδηθηύσλ είλαη νη αθόινπζεο. Υπνδίθηπν Α: 10.101.1.64/27 Υπνδίθηπν Β: 10.101.1.
Άσκηση 1 ΠΛΗ36 1. Η κόλε πεξίπησζε λα έρνπκε ζύγθξνπζε κεηαμύ παθέησλ ησλ δύν θόκβσλ είλαη λα ζηείιεη ν δεύηεξνο πξηλ πξνιάβεη λα πιεξνθνξεζεί γηα ηελ θαηάιεςε ηνπ δηάπινπ από ηνλ άιιν. Από ηε ζηηγκή πνπ
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 Δημιουργία σελίδων και βιβλίων Έλα θαηλνύξην βηβιίν πεξηέρεη κία άδεηα ζειίδα κε έλα άδεην background. Δελ κπνξνύκε λα μερσξίζνπκε
ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών
τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ
iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:
x x x x tan(2 x) x 2 2x x 1
ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.
Ενδεικτικά Θέματα Στατιστικής ΙΙ
Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε
Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.
Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...
Δνκέο Επαλάιεςεο - Άιπηεο αζθήζεηο. 1. Να ζρεκαηίζεηε ηνλ πίλαθα ηηκώλ γηα ηα παξαθάησ ηκήκαηα αιγνξίζκσλ. Τί ζα εθηππσζεί ηειηθά;
Δνκέο Επαλάιεςεο - Άιπηεο αζθήζεηο 1. Να ζρεκαηίζεηε ηνλ πίλαθα ηηκώλ γηα ηα παξαθάησ ηκήκαηα αιγνξίζκσλ. Τί ζα εθηππσζεί β -5 Όζν β
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη
ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.
ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε
Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο
Φςζική Πποζαναηολιζμού Γ Λςκείος Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Επιμέλεια: Αγκανάκηρ Α. Παναγιώηηρ Επωηήζειρ Σωζηό- Λάθορ Να χαπακηηπίζεηε ηιρ παπακάηω πποηάζειρ ωρ ζωζηέρ ή λάθορ: 1. Η ηαιάλησζε είλαη
Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:
1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη
α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο
Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν
Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf
Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,
Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ
Αιγόξηζκνη 2.2.7.4 Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Υ 1 Άζθεζε 34 ζει 53 Έλα ςεθηαθό θσηνγξαθηθό άικπνπκ έρεη απνζεθεπηηθό ρώξν N Mbytes. Να αλαπηύμεηε
Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.
Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.
(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία
ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις
ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις Ο Δηζνδεκαηίαο Σην ηειεπαηρλίδη «Ο Δηζνδεκαηίαο» ν Αξλανύηνγινπ γηα πξώηε θνξά δίλεη δύν επηινγέο: Να πάξεηο 50.000 Δπξώ θάζε ρξόλν
ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ. β. Η θαηάιπζε είλαη εηεξνγελήο, αθνύ ν θαηαιύηεο είλαη ζηεξεόο ελώ ηα αληηδξώληα αέξηα (βξίζθνληαη ζε δηαθνξεηηθή θάζε).
ΔΗΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΣΔΚΝΩΝ ΔΛΛΖΝΩΝ ΔΞΩΣΔΡΗΚΟΤ ΚΑΗ ΣΔΚΝΩΝ ΔΛΛΖΝΩΝ ΤΠΑΛΛΖΛΩΝ ΠΟΤ ΤΠΖΡΔΣΟΤΝ ΣΟ ΔΞΩΣΔΡΗΚΟ ΑΒΒΑΣΟ 8 ΔΠΣΔΜΒΡΗΟΤ 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΥΖΜΔΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΘΔΜΑ Α Α1. α Α2.
Κεθάιαην 20. Ελαχιστοποίηση του κόστους
Κεθάιαην 0 Ελαχιστοποίηση του κόστους Ειαρηζηνπνίεζε ηνπ θόζηνπο Μηα επηρείξεζε ειαρηζηνπνηεί ην θόζηνο ηεο αλ παξάγεη νπνηνδήπνηε δεδνκέλν επίπεδν πξντόληνο y 0 ζην κηθξόηεξν δπλαηό ζπλνιηθό θόζηνο. Τν
ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)
. Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:
Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!
Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα
f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη
Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο. Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ;
Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ; Αιγόξηζκνο Γεκηνπξγία_Πίλαθα Γηα i από 1 κέρξη 5 Α[i] i Γηα i από 2
Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ
Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά
Hellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67)
Hellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67) Γηα λα επαλαθέξεηε ην FritzBox Fon WLAN 7140 ζηηο πξνεπηιεγκέλεο ηνπ ξπζκίζεηο
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.
Πνηα λνκίδεηο όηη ζα είλαη ε ζπλνιηθή αληίζηαζε κηαο ζπλδεζκνινγίαο δύν αληηζηαηώλ ζπλδεδεκέλεο ζε ζεηξά; Γηαηί;...
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Ιζοδύναμη ανηίζηαζη ζύνδεζηρ ανηιζηαηών Η δηδαζθαιία ηεο ηζνδύλακεο αληίζηαζεο γηα ζύλδεζε αληηζηαηώλ ζε ζεηξά θαη παξάιιεια ππάξρεη ζην Αλαιπηηθό Πξόγξακκα Σπνπδώλ ζηα καζήκαηα Φπζηθήο
ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =
ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3
Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή
Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΩΝ ΠΡΩΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 10 ε : ΜΗΥΑΝΙΚΗ ΜΔΡΟ Β ΠΙΔΗ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Καξέθια θαθίξε Όξγαλα Τιηθά Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ.
ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:
ΓΙΑΙΡΔΣΟΣΗΣΑ Οπιζμόρ 1: Έζηω,. Λέκε όηη ν δηαηξεί ηνλ (ζπκβνιηζκόο: ) αλ ππάξρεη c ηέηνην ώζηε c. Θεώπημα : Γηα,,m,α,b ηζρύνπλ: i), (άξα ) ii) 1, 1 iii) 0 iv) 0 0 v) m m m vi) α bm vii) α (άξα ) viii)
ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Μ.Κ.Γ. ΦΤΙΚΏΝ ΑΡΙΘΜΏΝ
ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Γηαηξέηεο ελόο θπζηθνύ αξηζκνύ α είλαη νη θπζηθνί αξηζκνί πνπ όηαλ δηαηξεζνύλ κε ην α δίλνπλ αθέξαην πειίθν θαη ππόινηπν 0. Οη παξάγνληεο ελόο αξηζκνύ είλαη θαη δηαηξέηεο ηνπ. Ππώηοι
Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό
Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα.
Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Φαθόο κε ζσιήλα Γηαθξάγκαηα Δξγαιεία Καηαζθεπέο 2 Η θαηαζθεπή πεξηγξάθεηαη ζηελ αληίζηνηρε ελόηεηα
Ο γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2.
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΚΑΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΓΔΤΣΔΡΑ 5 ΜΑΪΟΤ 5 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ:ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΖ & ΣΔΥΝΟΛΟΓΗΚΖ ΚΑΣΔΤΘΤΝΖ ΑΠΑΝΣΖΔΗ ΘΔΜΑ Α Α. Σρνιηθό βηβιίν
Constructors and Destructors in C++
Constructors and Destructors in C++ Σύνθεζη Πνιύ ζπρλά ζηε C++ κία θιάζε κπνξεί λα πεξηέρεη ζαλ κέιεδεδνκέλα αληηθείκελα άιισλ θιάζεσλ. Πνηα είλαη ε ζεηξά κε ηελ νπνία δεκηνπξγνύληαη θαη θαηαζηξέθνληαη
ΥΡΙΣΟΤΓΔΝΝΙΑΣΙΚΔ ΚΑΣΑΚΔΤΔ
ΥΡΙΣΟΤΓΔΝΝΙΑΣΙΚΔ ΚΑΣΑΚΔΤΔ 1) Υξηζηνπγελληάηηθα ειαηάθηα θάξηα ή θαδξάθη θάξηα ή θαδξάθη Τιηθά πνπ ζα ρξεηαζηνύκε: Υαξηί θάλζνλ καύξν γηα ην θόλην, πξάζηλν γηα ηα ειαηάθηα, θόθθηλν γηα ηα αζηεξάθηα Απιό
x x 15 7 x 22. ΘΔΜΑ Α 3x 2 9x 4 3 3x 18x x 5 y 9x 4 Α1. i. . Η ιύζε είλαη y y x 3y y x 3 2x 6y y x x y 6 x 2y 1 y 6
ΑΠΑΝΣΗΔΙ ΜΑΘΗΜΑ ΑΛΓΔΒΡΑ Β ΛΤΚΔΙΟΤ ΗΜ/ΝΙΑ 4 ΟΚΣΩΒΡΙΟΤ 08 ΓΙΑΡΚΔΙΑ ΩΡΔ ΘΔΜΑ Α Α i 9 4 8 8 5 5 9 4 9 4 9 4 9 4 9 4 4 Η ύζε είλαη,, 6 6 6 5 7 0 5 Γηα 5 ε εμίζωζε 7 Η ύζε είλαη,, 5 γίλεηαη : 5 7 5 7 i 4 4 4
Διάρηζηα Δπηθαιύπηνληα Γέλδξα
Διάρηζηα Δπηθαιύπηνληα Γέλδξα Οξηζκόο Δύξεζε Δπηθαιύπηνληνο Γέλδξνπ κε Διάρηζην Βάξνο, δειαδή ειάρηζην άζξνηζκα βαξώλ αθκώλ Αιγόξηζκνη Prim, Kruskal, Baruvka Βαζίδνληαη ζηελ ηερληθή ηεο Απιεζηίαο Η νξζόηεηα
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.
ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων
ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων Είμαζηε ηυχεροί που είμαζηε δάζκαλοι 58 Β Λςκείος Γεν. Παιδείαρ 9-11-2014 Θέμα 1 ο : 1. Γύν ζεηηθά θνξηία πνπ βξίζθνληαη ζε απόζηαζε
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε
Γηζδηάζηαηνη Πίλαθεο
Γηζδηάζηαηνη Πίλαθεο Άζθεζε 1. Να αλαπηύμεηε αιγόξηζκν ν νπνίνο κε δεδνκέλα ηα ζηνηρεία δπν δηζδηάζηαησλ πηλάθσλ αξηζκώλ ηδίσλ δηαζηάζεσλ ζα εμεηάδεη αλ νη πίλαθεο είλαη ίζνη, ελώ ζηελ πεξίπησζε πνπ δελ
Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Εθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr
Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Εθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr Η λέα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα
Κεθάλαιο 10 Ολιγοπώλιο
Κεθάλαιο 10 Ολιγοπώλιο 1 Ολιγοπώλιο Έλα κνλνπώιην είλαη κηα αγνξά πνπ απνηειείηαη από κηα θαη κόλν επηρείξεζε. Έλα δπνπώιην είλαη κηα αγνξά πνπ απνηειείηαη από δπν επηρεηξήζεηο. Έλα νιηγνπώιην είλαη κηα
ΑΣΚΛΗΠΙΟΣ ΚΑΠ , 14 ΜΑΙΟΥ, 2017 ΛΑΓΚΑΔΑΣ, ΘΕΣΣΑΛΟΝΙΚΗΣ
ΣΤΑΔΙΟ 1 Μηθξό ζηάδην Σηόρνη IPSC Χάξηηλνη ζηόρνη 2 IPSC Mίλη Φάξτηλνη στόρνη 1 IPSC Mίλη στόρνη πνηλήο 1 IPSC Mίλη Πόπεξ 3 8-14 m Βαζκνινγίζεκεο βνιέο 9 Μέγηζηνη πόληνη 45 Θέζε εθθίλεζεο: Οξζηνο ραιαξόο,
IV Ο ΕΛΛΗΝΙΜΟ ΣΗ ΔΤΗ,ΠΟΛΙΣΙΜΟΙ Δ.ΜΕΟΓΕΙΟΤ ΚΑΙ ΡΩΜΗ
IV Ο ΕΛΛΗΝΙΜΟ ΣΗ ΔΤΗ,ΠΟΛΙΣΙΜΟΙ Δ.ΜΕΟΓΕΙΟΤ ΚΑΙ ΡΩΜΗ Να σαπακηηπίζεηε ηιρ πποηάζειρ, πος ακολοςθούν, υρ ππορ ηην οπθόηηηά ηοςρ, με ηην ένδειξη Σωστό ή Λάθος 1. ηελ αξραία Ρώκε νη πιεβείνη δελ είραλ αξρηθά
Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ
Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη Μάθημα 11 Τμήμα Μάπκεηινγκ και Διοίκηζηρ Λειηοςπγιών Τα δηαγξάκκαηα θαηάζηαζεο (state diagrams) ρξεζηκνπνηνύληαη γηα λα βνεζήζνπλ ηνλ πξνγξακκαηηζηή λα θαηαιάβεη
Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84
Διαηιμήζεις για Αιολικά Πάρκα Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Οη Διαηιμήζεις για Αιολικά Πάρκα εθαξκόδνληαη γηα ηελ απνξξνθνύκελε ελέξγεηα από Αηνιηθά Πάξθα πνπ είλαη ζπλδεδεκέλα ζην
Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο.
. Σρεδίαζε Καηεπζπλόκελωλ Γξαθεκάηωλ (.8.) Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο. Κνξπθέο 0 0 0 0 0 0 0 0. Σρεδίαζε(.8.5) Να ζρεδηαζηεί ην παξαθάηω γξάθεκα
Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:
Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε
ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου
ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 1. ρεδίαζε πλδπαζηηθνύ Κπθιώκαηνο Έλα ζπλδπαζηηθό θύθισκα (Κ) έρεη ηξεηο εηζόδνπο A, B θαη C θαη κία έμνδν Y Y=A B+AC Να θαηαζθεπάζεηε ην ράξηε Karnaugh. B 0
3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα
wwwaskisopolisgr 3ο Δπνληπηικό διγώνιζμ ζη Μθημηικά κηεύθσνζης ηης Γ Λσκείοσ 17-18 Θέμ A Α1 Έζησ κη ζπλερήο ζπλάξηεζε ζ έλ δηάζηεκ β λ πνδείμεηε όηη: t dt G β G Α Πόηε κη ζπλάξηεζε ιέγεηη 1-1; Α3 Πόηε
Ασκήσεις Οπτική και Κύματα
Παλεπηζηήκην Κξήηεο Τκήκα Επηζηήκεο θαη Τερλνινγίαο Υιηθώλ Ασκήσεις Οπτική και Κύματα Δηδάζθσλ: Δεκήηξεο Παπάδνγινπ Email: dpapa@materials.uc.gr Άλυτες Ασκήσεις: 1. Να πξνζδηνξίζεηε αλ νη αθόινπζεο ζπλαξηήζεηο