ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ
|
|
- Μένθη Αθανασίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 0 ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι Καθηγητής: Σ Πνευματικός Μάθημα ο ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Η Κλασική Μηχανική, ως ορθολογική θεωρία, θεμελιώνεται σε αξιώματα που δεν διαψεύδονται από τα πειραματικά δεδομένα της φυσικής πραγματικότητας και τα δυο θεμελιώδη αξιώματά της είναι η Γαλιλαϊκή Αρχή της Σχετικότητας και η Νευτώνεια Αρχή του Ντετερμινισμού Η Αρχή του Ντετερμινισμού πρωτοεμφανίστηκε με τη μορφή της θεμελιώδους εξίσωσης της κίνησης στο βιβλίο του Νεύτωνα Μαθηματικές Αρχές της Φυσικής Φιλοσοφίας Εκεί δηλώνεται ότι η θέση και η ταχύτητα ενός σώματος σε μια χρονική στιγμή ορίζουν μονοσήμαντα τη μελλοντική και παρελθούσα εξέλιξή του Η αντίληψη αυτή υπάγεται στο γενικό σχήμα του επιστημονικού ντετερμινισμού που, βασισμένο στη σχέση αιτίας και αποτελέσματος, αποδέχεται την επικράτηση της προδιαγεγραμμένης τάξης Όταν αναφερόμαστε στην κίνηση ενός υλικού σημείου στον τρισδιάστατο ευκλείδειο χώρο τότε η αξιωματική αυτή αρχή διασφαλίζει την ύπαρξη μιας συνάρτησης ορισμένης στο καρτεσιανό γινόμενο του χώρου των θέσεων, του χώρου των ταχυτήτων και του χρονικού άξονα, με τιμές στο χώρο των θέσεων: f : που, για κάθε δεδομένη αρχική θέση xt ( ) και αρχική ταχύτητα xt ( ) του υλικού σημείου, ορίζει την κίνηση του στο χώρο ως λύση της θεμελιώδους εξίσωσης: d x f ( xxt,, ) Isaac Newtn, Philsphiæ Naturalis Principia Mathematica, 687
2 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Η αξιωματική εισαγωγή της θεμελιώδους εξίσωσης, ως διαφορικής εξίσωσης ης τάξης, καθορίζει την ορθολογική βάση ανάπτυξης μιας μαθηματικής θεωρίας της κίνησης ανταποκρινόμενης στα πειραματικά δεδομένα της φυσικής πραγματικότητας Η συνάρτηση που υπεισέρχεται στη θεμελιώδη εξίσωση καθορίζεται από τα φυσικά δεδομένα και, εφόσον πληροί τις προϋποθέσεις του θεωρήματος ύπαρξης και μοναδικότητας των λύσεων των διαφορικών εξισώσεων, ορίζει μονοσήμαντα την κίνηση, για κάθε δεδομένη αρχική θέση και ταχύτητα, σε ένα διάστημα του χρονικού άξονα Οι νόμοι της φύσης παραμένουν αναλλοίωτοι στο πέρασμα του χρόνου και αυτό δηλώνεται μαθηματικά με το ότι οι γαλιλαϊκοί μετασχηματισμοί χρονικής μεταφοράς διασφαλίζουν ότι αν η θεμελιώδης εξίσωση αποδέχεται ως λύση την x () t, θα αποδέχεται επίσης ως λύση την x ( t t ), για κάθε t Αυτό σημαίνει ότι η συνάρτηση που ορίζει τη θεμελιώδη εξίσωση δεν εξαρτάται ά μεσα από το χρόνο, οπότε, με την προϋπόθεση ότι η κίνηση είναι αυτόνομη, χωρίς να επηρεάζεται από εξωτερικούς παράγοντες, ο χρόνος υπεισέρχεται στη θεμελιώδη εξίσωση ως παράμετρος και όχι ως ανεξάρτητη μεταβλητή Όταν η κίνηση ενός συστήματος υλικών σημείων επηρεάζεται από εξωτερικούς παράγοντες, η επίδραση αυτή υποκαθίσταται από μια χρονική μεταβολή των παραμέτρων που επηρεάζουν τη θεμελιώδη εξίσωση και τότε ο χρόνος μπορεί να εμφανιστεί ως ανεξάρτητη μεταβλητή Συνεπώς, στις αυτόνομες κινήσεις, η συνάρτηση αυτή ορίζεται στο καρτεσιανό γινόμενο του χώρου των θέσεων και των ταχυτήτων και η θεμελιώδης εξίσωση διατυπώνεται ως εξής: d x f ( xx, ) Η θεμελιώδης εξίσωση της κίνησης ενός υλικού σημείου αποσυντίθεται σε τρεις εξισώσεις που διατυπώνονται ως εξής: d xi f (, ) i xx i, (, ) (, ), (, ), (, ),,, f xx f xx f xx f xx Θέτοντας x y, η θεμελιώδης εξίσωση της κίνησης ενός υλικού σημείου εκφράζεται στο καρτεσιανό γινόμενο του χώρου των θέσεων και ταχυτήτων ως σύστημα διαφορικών εξισώσεων ης τάξης: dx dy y, f( x, y), και αποσυντίθεται σε έξι διαφορικές εξισώσεις που διατυπώνονται ως εξής: dxi dyi yi, f( x, y), i,, ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ
3 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Ο θεσεογραφικός χώρος ενός υλικού σημείου είναι το σύνολο των θέσεων που έχει τη δυνατότητα να καταλάβει στον ευκλείδειο χώρο Αν το υλικό σημείο δεν υπόκειται σε περιορισμούς τότε ο θεσεογραφικός του χώρος είναι ολόκληρος ο ευκλείδειος χώρος και σε κάθε σημείο οι αντίστοιχες ενδεχόμενες ταχύτητες σχηματίζουν ένα χώρο ισόμορφο προς τον πραγματικό διανυσματικό χώρο Αν εξωτερικοί παράγοντες περιορίσουν τις θέσεις προσβασιμότητας του υλικού σημείου τότε ο θεσεογραφικός του χώρος περιορίζεται σε ένα υποσύνολο του ευκλείδειου χώρου Ας θεωρήσουμε ως παράδειγμα το απλό επίπεδο εκκρεμές που εκτελεί την κίνησή του υπό την επίδραση του πεδίου βαρύτητας Αν m είναι η μάζα του και l το μήκος του, τότε κάθε χρονική στιγμή η θέση του ορίζεται με ένα σημείο στον κύκλο ακτίνας l που είναι επικεντρωμένος στο σημείο πρόσδεσης και περιέχεται στο επίπεδο κίνησης Τα σημεία αυτού του κύκλου εκφράζουν όλες τις ενδεχόμενες θέσεις του εκκρεμούς και ορίζουν το θεσεογραφικό του χώρο με γεωμετρικό πρό τυπο το μοναδιαίο κύκλο Σε κάθε σημείο του θεσεογραφικού χώρου η ενδεχόμενη ταχύτητα του εκκρεμούς έχει ως φορέα την αντίστοιχη εφαπτόμενη ευθεία και η γωνιακή του ταχύτητα ορίζει ένα σημείο της πραγματικής ευθείας Ο χώρος των θέσεων και ταχυτήτων του εκκρεμούς, δηλαδή το σύνολο όλων των ενδεχόμενων θέσεων και αντίστοιχων ενδεχόμενων ταχυτήτων του, έχει ως γεωμετρικό πρότυπο την κυλινδρική επιφάνεια που ορίζεται από το τοπολογικό γινόμενο Σαφέ στερα, συμβολίζοντας T x την εφαπτόμενη ευθεία στο σημείο ορίζεται ως το εφαπτόμενο ινώδες του θεσεογραφικού του χώρου: T x { x} T x x, το γεωμετρικό αυτό πρότυπο Ο χώρος των θέσεων και ταχυτήτων του απλού επίπεδου εκκρεμούς είναι το τοπολογικό γινόμενο ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ
4 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Όταν το εκκρεμές εκτελεί την κίνησή του χωρίς τριβές, δηλαδή χωρίς απώλεια ενέργειας, η τελικά ασκούμενη δύναμη που προκύπτει από το πεδίο βαρύτητας οδηγεί στην εξίσωση του Νεύτωνα: x sin x, g / l Απλό επίπεδο εκκρεμές που εκτελεί την κίνησή του υπό την επίδραση της βαρύτητας Η εξίσωση που διέπει την κίνηση του εκκρεμούς διατυπώνεται στο χώρο θέσεων και ταχυτήτων ως σύστημα διαφορικών εξισώσεων: x y y sin x και εκφράζεται γεωμετρικά ως διανυσματικό πεδίο εφαπτόμενο στην κυλινδρική επιφάνεια: : T( ), ( x, y) y, sinx Το διανυσματικό πεδίο του απλού επίπεδου εκκρεμούς στο χώρο των θέσεων και ταχυτήτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ 4
5 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Η συνάρτηση ενέργειας προσμετρά σε κάθε σημείο του χώρου των θέσεων και ταχυτήτων το άθροισμα της δυναμικής και της κινητικής ενέργειας του εκκρεμούς και με προσέγγιση του διαστατικού παράγοντα ml εκφράζεται ως εξής: :, x,y csx y / Η συνάρτηση αυτή δεν εξαρτάται άμεσα από το χρόνο και χάρη στην περιοδικότητά της ως προς x ορίζεται στηn κυλινδρική επιφάνεια, η οποία με εκδίπλωσή της αποτυπώνει τις ισοενεργειακές καμπύλες στο ευκλείδειο επίπεδο Η αρχή διατήρησης της ενέργειας δηλώνει ότι κάθε τροχιά ενεργειακής τιμής E περιέχεται στην ισοενεργειακή καμπύλη που ορίζεται από την εξίσωση: x y / / ml cs E Αποτύπωση του διανυσματικού πεδίου του απλού επίπεδου εκκρεμούς στο ευκλείδειο επίπεδο Αποτύπωση των ισοενεργειακών καμπύλων και των τροχιών του απλού επίπεδου εκκρεμούς στο ευκλείδειο επίπεδο Η προβολή των σημείων κάθε τροχιάς στον άξονα των θέσεων ή των ταχυτήτων δίνει την αντίστοιχη θέση και ταχύτητα του εκκρεμούς σε κάθε δεδομένη χρονική στιγμή ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ 5
6 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Μια ενδιαφέρουσα γεωμετρική αναπαράσταση του χώρου των θέσεων και ταχυτήτων του εκκρεμούς προκύπτει όταν, λαμβάνοντας υπόψη την έκφραση της συνάρτησης ενέργειας, μετασχηματί σουμε τον κύλινδρο S μέσα στον ευκλείδειο χώρο ως εξής: S, xx x x x x (, ) (sin,, (cs ) /) Κάθε ενεργειακή τιμή ορίζει στην η διάσταση ένα οριζόντιο επίπεδο το οποίο τέμνοντας τη μετασχηματισμένη επιφάνεια του κυλίνδρου αποδίδει τις αντίστοιχες τροχιές Οι καταστάσεις ισορροπίας του εκκρεμούς ορίζονται από τα κρίσιμα σημεία της συνάρτησης ενέργειας, δηλαδή τα σημεία μηδενισμού του διαφορικού της στο χώρο των θέσεων και ταχυτήτων: d ( x,y) sin x dx y dy και τα σημεία αυτά αντιστοιχούν στα ακρότατα της συνάρτησης δυναμικού: U cs x x Γράφημα της συνάρτησης δυναμικού και τροχιές στο επίπεδο θέσεων ταχυτήτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ 6
7 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Συγκεκριμένα, οι καταστάσεις ισορροπίας διακρίνονται ως εξής: Οι καταστάσεις ευσταθούς ισορροπίας ( x n, x 0), n : Στα σημεία αυτά η ενεργειακή τιμή είναι E 0 και η συνάρτηση δυναμικού ελαχιστοποιείται: ( x ) 0 U ( x ) 0 U και Στην περιοχή της κατάστασης ευσταθούς ισορροπίας οι ισοενεργειακές καμπύλες είναι ομοθετικές ελλείψεις και ταυτίζονται με τις τροχιές του εκκρεμούς στο χώρο θέσεων και ταχυτήτων μέχρι την ενεργειακή τιμή E gml Οι καταστάσεις ασταθούς ισορροπίας x (n), x 0, n : Στα σημεία αυτά η ενεργειακή τιμή είναι E gml και η συνάρτηση δυναμικού μεγιστοποιείται: U ( x ) 0 και U ( x ) 0 Η ενεργειακή αυτή τιμή ορίζει μια κλειστή ισοενεργειακή καμπύλη που περιέχει τέσσερις τροχιές από τις οποίες οι δυο διαχωριστικές τροχιές καταλήγουν σε άπειρο χρόνο στις αντίστοιχες σημειακές καταστάσεις ασταθούς ισορροπίας Πέρα από αυτή την ενεργειακή τιμή το εκκρεμές εκτελεί περιστροφική κίνηση και οι ισοενεργειακές καμπύλες, αλλάζοντας τοπολογική φύση, δεν είναι πλέον κλειστές και ταυτίζονται με τις τροχιές στο χώρο των θέσεων και ταχυτήτων Το απλό επίπεδο εκκρεμές ανήκει στην κατηγορία των συστημάτων ενός βαθμού ελευθερίας, δηλαδή των συστημάτων που η κίνησή τους διέπεται από μια μονοδιάστατη εξίσωση: d x m F( x), x Τα συστήματα ενός βαθμού ελευθερίας διαθέτουν συνάρτηση δυναμικού που ορίζεται ως εξής: x U ( x) F( udu ) και η συνάρτηση ενέργειας ορίζεται στο επίπεδο των θέσεων και ταχυτήτων ως εξής: :, ( x, x) U ( x) mx Κατά τη διάρκεια της κίνησης η συνάρτηση ενέργειας διατηρεί σταθερή τιμή: U x ( x() t ) mx() t E, E, και η τιμή αυτή ορίζεται από τις αρχικές συνθήκες x xt ( ) και v x ( t) : E = U ( x) mv ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ 7
8 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Οι τροχιές που αντιστοιχούν στη δεδομένη ενεργειακή τιμή περιέχονται στην ισοενεργειακή καμπύλη που ορίζεται στο επίπεδο των θέσεων και ταχυτήτων από την εξίσωση: U ( x) mx E και εξελίσσονται στο χωρίο επιτρεπτής κίνησης που ορίζεται από την ανισοτική σχέση: U ( x) E Γράφημα συνάρτησης δυναμικού και περιοχές επιτρεπτής κίνησης με δεδομένη ενεργειακή τιμή Ο προσδιορισμός των τροχιών ανάγεται στον υπολογισμό ενός ολοκληρώματος: / m x x E dx ( ) t t U x Οι ισοενεργειακές καμπύλες, σύμφωνα με το θεώρημα των πεπλεγμένων συναρτήσεων, είναι λείες στην περιοχή κάθε σημείου τους στο οποίο δεν μηδενίζεται η δύναμη Οι καμπύλες αυτές ίσως εμφανίζουν αυτοτομές, όμως το θεώρημα ύπαρξης και μοναδικότητας των λύσεων των διαφορικών εξισώσεων δηλώνει ότι από κάθε σημείο του επιπέδου των θέσεων και ταχυτήτων διέρχεται μόνο μια τροχιά Συνεπώς, κάθε ισοενεργειακή καμπύλη αποτελείται από μια ή ενδεχομένως περισσότερες τροχιές ίδιας ενεργειακής τιμής Οι σημειακές τροχιές ορίζουν τις καταστάσεις ισορροπίας: xt () x, xt () 0 Στις θέσεις όπου έχουμε κατάσταση ισορροπίας μηδενίζεται η δύναμη, άρα εκεί η συνάρτηση δυναμικού παρουσιάζει ακρότατες τιμές ή σημείο καμπής: ( ) 0 U x και U( x ) 0 ή U( x ) 0 ή U( x ) 0 Οι θέσεις ελαχιστοποίησης της συνάρτησης δυναμικού ορίζουν τις καταστάσεις ευσταθούς ισορροπίας και αυτό σημαίνει ότι οι αρχικές συνθήκες που είναι αρκετά γειτονικές σε αυτή την κατάσταση ισορροπίας ορίζουν τροχιές που εξελίσσονται στην περιοχή του Οι θέσεις μεγιστοποίησης της συνάρτησης δυναμικού ορίζουν τις καταστάσεις ασταθούς ισορροπίας και αυτό σημαίνει ότι οι αρχικές συνθήκες που είναι αρκετά γειτονικές σε αυτή την κατάσταση ισορροπίας ορίζουν τροχιές που ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ 8
9 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ απομακρύνονται από την περιοχή του Στην περίπτωση σημείου καμπής εμφανίζεται μια κατάσταση ιδιάζουσας ισορροπίας και αυτό σημαίνει ότι οι αρχικές συνθήκες που είναι αρκετά γειτονικές σε αυτή την κατάσταση ορίζουν τροχιές που άλλες απομακρύνονται και άλλες εξελίσσονται στην περιοχή του Έτσι, η ποιοτική συμπεριφορά των τροχιών κοντά στις καταστάσεις ισορροπίας γίνεται α μέσως αντιληπτή από το γράφημα της συνάρτησης δυναμικού και επιπλέον, όπως θα διαπιστώσουμε, η ποιοτική μελέτη μπορεί να αναχθεί σε συγκεκριμένα τοπικά τετραγωνικά πρότυπα Η συμπεριφορά των τροχιών κοντά στις καταστάσεις ισορροπίας στο επίπεδο των θέσεων και ταχυτήτων των συστημάτων ενός βαθμού ελευθερίας γίνεται αντιληπτή από το γράφημα της συνάρτησης δυναμικού Λήμμα του Mrse Κάθε συνάρτηση μιας πραγματικής μεταβλητής που είναι τουλάχιστο δυο φορές παραγωγίσιμη, σε κατάλληλες τοπικές συντεταγμένες επικεντρωμένες στα σημεία ελαχιστοποίησης ή μεγιστοποίησής της, αποκτά την αντίστοιχη τετραγωνική έκφραση: ( x) x U Απόδειξη Με μια μετατόπιση των αξόνων μπορούμε να θεωρήσουμε ότι η συνάρτηση αποκτά το τοπικό ακρότατό της στην αρχή των αξόνων: U (0) 0 και εφαρμόζουμε το θεμελιώδες θεώρημα του ολοκληρωτικού λογισμού: x x U( x) du U( ) dx U ( tx) xa( x) Η συνθήκη U (0) 0 υπαγορεύει ότι A(0) 0 και εφαρμόζοντας, σε αυτή τη συνάρτηση, το θεμελιώδες θεώρημα του ολοκληρωτικού λογισμού προκύπτει: U ()= x x B() x ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ 9
10 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Η συνθήκη U (0) 0 υπαγορεύει ότι B(0) 0 και έτσι εξασφαλίζεται η αμφιδιαφορισιμότητα του τοπικού μετασχηματισμού που ορίζει τις τοπικές καμπυλόγραμμες συντεταγμένες: :,,, / x ( x) x B( x) Σε αυτό το σύστημα τοπικών συντεταγμένων η συνάρτηση αποκτά τετραγωνική έκφραση: U ( x ) x Έτσι, στην περιοχή της ευσταθούς και της ασταθούς ισορροπίας προκύπτουν τα αντίστοιχα τετραγωνικά τοπικά πρότυπα της συνάρτησης δυναμικού και στα πρότυπα αυτά αντιστοιχούν οι εξής τοπικές εκφράσεις της εξίσωσης της κίνησης στην περιοχή της ευσταθούς και ασταθούς ισορροπίας: dx m F( x) dx du 0 m dx dx x 0 m K xt ( ) Τα τοπικά τετραγωνικά πρότυπα των συναρτήσεων δυναμικού ενός βαθμού ελευθερίας και η αντίστοιχη συμπεριφορά των τροχιών στο επίπεδο θέσεων και ταχυτήτων στην περιοχή των σημείων ευσταθούς και ασταθούς ισορροπίας Για παράδειγμα, η συνάρτηση δυναμικού του απλού επίπεδου εκκρεμούς: U ( x) cs παίρνει τις ακρότατες τιμές της στα σημεία x =k, x k Στα σημεία αυτά μηδενίζεται η η παράγωγος χωρίς να μηδενίζεται η η παράγωγός της και ακριβώς εκεί έχει εφαρμογή το Λήμμα του Mrse Στην περιοχή του σημείου x= 0, η συνάρτηση δυναμικού αναλύεται σε δυναμοσειρά ως εξής: n n U () n () n ( x) x x x ( n)! ( n)! n n ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ 0
11 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Το Λήμμα του Mrse δηλώνει ότι, τοπικά, η δυναμοσειρά που προκύπτει από την παραγοντοποίηση απορροφάται στο νέο τοπικό σύστημα καμπυλόγραμμων συντεταγμένων και, μεταφερόμενοι στο επίπεδο θέσεων και ταχυτήτων, η συνάρτηση ενέργειας εκφράζεται τοπικά ως εξής: ( x, y) x y m Στην περιοχή του σημείου x =, η συνάρτηση δυναμικού αναλύεται σε δυναμοσειρά ως εξής: n n () n () n U ( x) ( x) ( x) ( x) ( n)! ( n)! n0 n Το Λήμμα του Mrse δηλώνει ότι, τοπικά, η δυναμοσειρά που προκύπτει από την παραγοντοποίηση απορροφάται στο νέο τοπικό σύστημα καμπυλόγραμμων συντεταγμένων και, μεταφερόμενοι στο επίπεδο θέσεων και ταχυτήτων, η συνάρτηση ενέργειας εκφράζεται τοπικά ως εξής: ( x, y) x y m ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ
12 ΜΑΘΗΜΑ Ο : ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ ΜΟΝΟΔΙΑΣΤΑΤΗ ΕΛΚΤΙΚΗ ΔΥΝΑΜΙΚΗ ΜΟΝΟΔΙΑΣΤΑΤΗ ΑΠΩΣΤΙΚΗ ΔΥΝΑΜΙΚΗ F( x) K x, 0 K F( x) K x, 0 K Ευσταθής ισορροπία Ασταθής ισορροπία U( x) K x ( x, x) K x m x U( x) K x ( x, x) K x m x Εξίσωση του Νεύτωνα m xt () K xt () 0 x() t C cst C sint =Asin( t ) Εξίσωση του Νεύτωνα m xt () K xt () 0 x() t C e e t C t () *() K / m K / m () Η μονοδιάστατη αυτή περιοδική κίνηση είναι αρμονική ταλάντωση της οποίας το πλάτος και η φάση καθορίζονται από τις αρχικές συνθήκες, ενώ η περίοδος και η συχνότητα είναι σταθερές Τα ισοενεργειακά της σύνολα είναι ελλείψεις που διαγράφονται γύρω από την κατάσταση ισορροπίας () Τα ισοενεργειακά σύνολα της μονοδιάστατης αυτής κίνησης είναι κλάδοι υπερβολών ενεργειακής τιμής EK CC, ενώ η μηδενική ενεργειακή τιμή ορίζει τις ασύμπτωτες τους ευθείες x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, Καθηγητής Σ ΠΝΕΥΜΑΤΙΚΟΣ
ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ
ΜΑΘΗΜΑ 5: ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί που δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η μαθηματική
Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ
ΜΑΘΗΜΑ 5: Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί όπου δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. Πνευματικός ΜΕΡΟΣ Β.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 0- ΜΑΘΗΜΑ: Καθηγητής: Σ. Πνευματικός ΜΕΡΟΣ Β ΠΕΔΙΑ ΔΥΝΑΜΕΩΝ ΣΤΗΝ Μάθημα ο Στην Κλασική Μηχανική, ένα πεδίο δυνάμεων ορίζεται στον τρισδιάστατο ευκλείδειο
n xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων:
ΜΑΘΗΜΑ 1: ΑΠΟ ΤΟ ΠΕΙΡΑΜΑ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟ ΠΡΟΤΥΠΟ Ας θεωρήσουμε ως παράδειγμα ένα σύστημα χημικών ουσιών που υπεισέρχονται σε μια χημική αντίδραση. Η στιγμιαία κατάσταση κάθε ουσίας χαρακτηρίζεται
ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Πρώτα απ όλα θέλουμε να βρούμε και να εξηγήσουμε έναν ορισμό που να ταιριάζει όσο το δυνατό καλύτερα στα φυσικά φαινόμενα Και η πεποίθησή μας θα ενισχυθεί
, ( x) = ( f ( x),..., f ( x)
ΜΑΘΗΜΑ : ΕΞΕΛΙΚΤΙΚΗ ΡΟΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ Οι Συνήθεις Διαφορικές Εξισώσεις προσφέρουν τη δυνατότητα μαθηματικής μοντελοποίησης ενός πλήθους φυσικών, χημικών, βιολογικών, οικολογικών, οικονομικών
ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος 010-11 Μάθημα: ΜΗΧΑΝΙΚΗ Καθηγητές: Σ Πνευματικός Α Μπούντης ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Α ΚΕΦΑΛΑΙΟΥ Τα φροντιστήρια γίνονται κάθε Δευτέρα 1100-100 και κάθε
Συνήθεις Διαφορικές Εξισώσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μεταπτυχιακό Μάθημα: Συνήθεις Διαφορικές Εξισώσεις Καθηγητές: Α Μπούντης - Σ Πνευματικός Ακαδημαϊκό έτος 11-1 ΕΞΕΤΑΣΗ ΙΟΥΝΙΟΥ ΤΟ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΤΥΠΟ ΤΩΝ LOKA-VOLERRA
ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ
ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ
,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:
ΜΑΘΗΜΑ 6 ο : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ (ΣΥΝΑΡΤΗΣΕΙΣ LYAPUNOV) O Aleksadr Lyapuv (857-98) έθεσε τις βάσεις της μαθηματικής θεωρίας της ευστάθειας που φέρει το όνομά του εμπνευσμένος από μια απλή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος Καθηγητές: Σ. Πνευματικός Α. Μπούντης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος 00- Μάθημα: ΜΗΧΑΝΙΚΗ Καθηγητές: Σ Πνευματικός Α Μπούντης Θέμα Μελέτης 5:η νευτώνεια διατύπωση των νόμων της κίνησης Σχόλια & Απαντήσεις & Προβληματισμοί
ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος 2010-11 * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ Ο όρος δυναμικό σύστημα δηλώνει κάθε σύστημα, φυσικό,
ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2.
ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητής: Σ ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 011) 1 Από τους ακόλουθους μετασχηματισμούς του αριθμητικού χωρο-χρόνου εντοπίστε
Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ
ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles
Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ
ΜΑΘΗΜΑ 2: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέματα και Λύσεις. Ox υπό την επίδραση του δυναμικού. x 01
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 1 Θέματα και Λύσεις ΘΕΜΑ 1 Υλικό σημείο κινείται στον άξονα x' Ox υπό την επίδραση του δυναμικού 3 ax x V ( x) a x, a 3 α) Βρείτε τα σημεία ισορροπίας και την ευστάθειά τους
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης
ΠΕ ΙΑ ΥΝΑΜΕΩΝ ΚΕΦΑΛΑΙΟ 2
ΚΕΦΑΛΑΙΟ ΠΕ ΙΑ ΥΝΑΜΕΩΝ «Όλο το µέληµα της φιλοσοφίας φαίνεται να συνίσταται στο εξής: από τα φαινόµενα των κινήσεων αναζητείστε τις δυνάµεις της φύσης και, κατόπιν, από τις δυνάµεις αποδείξτε τα άλλα φαινόµενα».
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή
Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Μία ειδική κατηγορία διδιάστατων δυναμικών συστημάτων είναι τα λεγόμενα συντηρητικά συστήματα. Ο όρος προέρχεται από την μηχανική, όπου για υλικό σημείο που δέχεται δύναμη
Κεφάλαιο 6. Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό και Πεδίο Συντηρητικών Δυνάμεων}
Κεφάλαιο 6 ΕΡΓΟ ΚΑΙ ΕΝΕΡΓΕΙΑ Εννοια του Εργου { Εργο και Κινητική Ενέργεια, Εργο Μεταβλητής Δύναμης, Ισχύς} Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό
v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται
ΔΙΑΤΗΡΗΣΗ ΚΑΙ ΑΠΩΛΕΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΜΑΘΗΜΑ 9 ο ΔΙΑΤΗΡΗΣΗ ΚΑΙ ΑΠΩΛΕΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Τίποτα δεν χάνεται, τίποτα δεν δηµιουργείται, όλα µετασχηµατίζονται. Αναξαγόρας (5 ος αιώνας π.χ.) Η έννοια της µμηχανικής ενέργειας, ως φυσικού
mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός
Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί.
Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες Στο δωδέκατο μάθημα (24/10/2018)
14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.
14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό
Λύσεις στο επαναληπτικό διαγώνισμα 3
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή
ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 3ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ
ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί
Κλασική Μηχανική 1 ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ
Κλασική Μηχανική 1 Διδάσκων: Κώστας Τάσσης, Πανεπιστήμιο Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εβδομάδα 1: Νόμοι Νεύτωνα 1.1: Θεμελίωση θεωρίας Νόμοι Νεύτωνα V1.1.1 Ορισμός και όρια της Κλασικής Μηχανικής V1.1.2
Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»
Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2012-13. Καθηγητής: Σ. Πνευματικός. Μάθημα 3 ο ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΔΥΝΑΜΙΚΗ
ΠΑΝΕΠΙΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟ 0- ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΙΚΗ Ι Καθηγητής: Πνευματικός Μάθημα ο ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΤΗΝ ΚΛΑΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΠΕΔΙΑ ΔΥΝΑΜΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μεταπτυχιακό Μάθημα Ακαδημαϊκό έτος 2012-13 Καθηγητής: Σ. Πνευματικός Ο όρος δυναμικό σύστημα δηλώνει κάθε σύστημα, φυσικό, χημικό, βιολογικό, οικονομικό,
ΠΑΡΑΔΕΙΓΜΑ 1. Η μονοδιάστατη γραμμική δυναμική. *
ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 9 Ι. ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΔΥΝΑΜΙΚΗΣ Τα παραδείγματα που ακολουθούν αφορούν μονοδιάστατους χώρους καταστάσεων όπου ο νόμος της εξέλιξης εκφράζεται
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου
A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
και αναζητούμε τις λύσεις του:
ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 3. ΔΙΣΔΙΑΣΤΑΤΗ ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ Η γραμμική δυναμική που ορίζεται στο ευκλείδειο επίπεδο εκφράζεται με ένα σύστημα γραμμικών διαφορικών εξισώσεων με
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000
Τµήµα Π Ιωάννου & Θ Αποστολάτου 2/2000 Μηχανική ΙI Λογισµός των µεταβολών Προκειµένου να αντιµετωπίσουµε προβλήµατα µεγιστοποίησης (ελαχιστοποίησης) όπως τα παραπάνω, όπου η ποσότητα που θέλουµε να µεγιστοποιήσουµε
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.
ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα
ΟΡΜΗ, ΣΤΡΟΦΟΡΜΗ, ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ
ΜΑΘΗΜΑ 7: ΟΡΜΗ, ΣΤΡΟΦΟΡΜΗ, ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ Sagredo: Δεν υπάρχει αμφιβολία ότι η ορμή ενός σώματος σε πτώση διπλασιάζεται όταν αυτό πέφτει από διπλάσιο ύψος Salvat: Είναι πολύ παρήγορο που είχα τέτοιο
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
ΜΑΘΗΜΑ 7: ΟΡΜΗ ΚΑΙ ΣΤΡΟΦΟΡΜΗ
ΜΑΘΗΜΑ 7: ΟΡΜΗ ΚΑΙ ΣΤΡΟΦΟΡΜΗ Sagredo: Δεν υπάρχει αμφιβολία ότι η ορμή ενός σώματος σε πτώση διπλασιάζεται όταν αυτό πέφτει από διπλάσιο ύψος Salvat: Είναι πολύ παρήγορο που είχα τέτοιο σύντροφο στην πλάνη,
) z ) r 3. sin cos θ,
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 4-5 Ν. Βλαχάκης. Σώμα μάζας m κινείται στο πεδίο δύναμης της πρώτης άσκησης της τέταρτης εργασίας με λ, αλλά επιπλέον είναι υποχρεωμένο να κινείται μόνο στην ευθεία
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
x (t) u (t) = x 0 u 0 e 2t,
Κεφάλαιο 7 Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Η ευαισθησία της λύσης μιας ΔΕ σε μεταβολές της αρχικής τιμής είναι έ- να θεμελιώδες ζήτημα στη θεωρία αλλά και στις εφαρμογές των διαφορικών εξισώσεων. Παράδειγμα 7.0.3.
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ)
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ) 1. (α) Περιγράψτε συνοπτικά το πείραμα των Michelson και Morley (όχι απόδειξη σχέσεων). Ποιό ήταν το βασικό αποτέλεσμα του πειράματος; (β)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα
ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1
ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΜΑΘΗΜΑ : ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Θεωρούμε ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές εκφρασμένο στις καρτεσιανές συντεταγμένες
F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται
6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση
2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
Ημερολόγιο μαθήματος
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤPΙΑ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Τμήμα Α Διδάσκων: Kαθηγητής Στυλιανός Σταματάκης Website URL: http://stamata.webpages.auth.gr/geometry/ Ημερολόγιο
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-16 ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ 18/9/2014 ΕΙΣΑΓΩΓΗ_ΚΕΦ. 1 1 ΠΛΗΡΟΦΟΡΙΕΣ Διδάσκων Γεράσιμος Κουρούκλης Καθηγητής (Τμήμα Χημικών Μηχανικών). (gak@auth.gr,
Hamiltonian Δυναμική - Παράδειγμα
Hamiltonian Δυναμική - Παράδειγμα ΦΥΣ 211 - Διαλ.12 1 Μάζα m κινείται στο εσωτερικό επιφάνειας κατακόρυφου κώνου ρ=cz. Το σώμα κινείται μέσα σε ομοιόμορφο βαρυτικό πεδίο με g προς τα κάτω. Χρησιμοποιήστε
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους
ẋ = f(x), x = x 0 όταν t = t 0,
Κεφάλαιο 2 ΤΟ ΘΕΩΡΗΜΑ ΥΠΑΡΞΗΣ ΚΑΙ ΜΟΝΑΔΙΚΟΤΗΤΑΣ 2.1 Πρόβλημα αρχικών τιμών Στο κεφάλαιο αυτό θα δούμε ότι το πρόβλημα αρχικών τιμών (ΑΤ) ẋ = f(x), x = x 0 όταν t = t 0, έχει λύση και μάλιστα μοναδική για
Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου Ερώτηµα 2
Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου 2000 Ερώτηµα 1 Βα), και, Οι εξισώσεις κίνησης είναι, Έχουµε δύο ασύζευκτους αρµονικούς ταλαντωτές συχνότητας Η Χαµιλτονιανή αυτή θα µπορούσε να περιγράφει µικρές
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις
Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του έβδομου φυλλαδίου ασκήσεων. 1. Λύστε την παρακάτω δ.ε. με τη δοσμένη αρχική συνθήκη. Σχεδιάστε τις χαρακτηριστικές καθώς και το γράφημα της λύσης
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.
Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε
Κλασικη ιαφορικη Γεωµετρια
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003, Λευκωσία Τηλ. 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ημερομηνία:
Το ελαστικο κωνικο εκκρεμε ς
Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,
dx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών
Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr
VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ
ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ ΔΥΝΑΜΙΚΗ ΤΩΝ ΣΤΕΡΩΝ ΣΩΜΑΤΩΝ
ΚΛΑΙΚΗ ΜΗΧΑΝΙΚΗ ΚΕΦΑΛΑΙΟ Γ ΔΥΝΑΜΙΚΗ ΤΩΝ ΤΕΡΩΝ ΩΜΑΤΩΝ Τα στερεά σώματα χαρακτηρίζονται από το ότι τα συστατικά τους στοιχεία διατηρούν σταθερές τις μεταξύ τους αποστάσεις κατά τις κινήσεις τους στο χώρο
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ
Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )
Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =
ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ
στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα
T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4
ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 29 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Σηµειακό αντικείµενο εκτελεί απλή αρµονική ταλάντωση. Η αποµάκρυνση χ από τη θέση ισορροπίας του είναι: α. ανάλογη του χρόνου. β. αρµονική συνάρτηση
Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ
Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ. Γενικές αρχές. Η αντιληπτική μας ικανότητα του Φυσικού Χώρου, μας οδηγεί στον προσδιορισμό των σημείων του, μέσω τριών ανεξαρτήτων παραμέτρων. Είναι, λοιπόν, αποδεκτή η απεικόνισή
Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες
Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε
Βιβλιογραφία Λ.Τσίτσα -Εφαρμοσμένος Απειροστικός Λογισμός
ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ANAΛΥΣΗ Ι 1) Πραγματικοί και φυσικοί αριθμοί -Αξιώματα του συνόλου R των πραγματικών αριθμών -Τέλεια Επαγωγή 2) Ακολουθίες -Ορια ακολουθιών -Κριτήρια σύγκλισης -Ακολουθίες Cauchy
Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες
Μικρό σώμα μάζας m κινείται μέσα σε βαρυτικό πεδίο με σταθερά g και επιπλέον κάτω από την επίδραση μιας δύναμης με συνιστώσες F x = 2κm και F y = 12λmt 2 όπου κ και λ είναι θετικές σταθερές σε κατάλληλες
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα
Κεφάλαιο 1: Κινηματική των Ταλαντώσεων
Κεφάλαιο : Κινηματική των Ταλαντώσεων Κεφάλαιο : Κινηματική των Ταλαντώσεων. Φαινομενολογικός ορισμός ταλαντώσεων Μεταβολές σε φυσικά φαινόμενα που χαρακτηρίζονται από μια κανονική επανάληψη κατά ορισμένα
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της
Λύσεις στο Επαναληπτικό Διαγώνισμα 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου
4.3 Δραστηριότητα: Θεώρημα Fermat
4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών
7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας
7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.
Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο
Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Το πρόβλημά μας είναι να προσδιορίσουμε την περίοδο των ταλαντώσεων του εκκρεμούς στο πρόβλημα που απεικονίζεται στο παραπάνω σχήμα υπό την προϋπόθεση ότι η δύναμη
ΚΕΦΑΛΑΙΟ 1 ΤΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ 1 ΤΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ Βασικές έννοιες: Στερεά σώματα του φυσικού κόσμου - Ευκλείδειος χώρος - Σωματίδιο - Ελεύθερο σωματίδιο - Άκαμπτο σώμα - Σχετικές θέσεις σωματιδίων - Αδρανειακό
ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ
Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές
ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ
ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η
α) f(x(t), y(t)) = 0,
Ρητές καμπύλες Μια επίπεδη αλγεβρική καμπύλη V (f) είναι το σύνολο όλων των σημείων του επιπέδου K 2 που μηδενίζουν κάποιο συγκεκριμένο ανάγωγο πολυώνυμο f K[x, y], δηλαδή V (f) = {(x 0, y 0 ) K 2 f(x