Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής."

Transcript

1 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές: x = ax + bx x = ax+ bx. Το σύστημα αυτό έχει διατυπωθεί στις καρτεσιανές συντεταγμένες του ευκλείδειου επιπέδου, αλλά όπως διαπιστώσαμε, υπάρχουν κατάλληλες γραμμικές συντεταγμένες όπου αποκτά απλούστερη έκφραση με δυνατότητα άμεσης επίλυσής του. Αυτές οι συντεταγμένες καθορίζονται από ιδιοδιευθύνσεις ή κατάλληλες διευθύνσεις που εμφανίζονται στο ευκλείδειο επίπεδο ανάλογα με τη φύση των ιδιοτιμών της δυναμικής και οδηγούν στις κανονικές μορφές του συστήματος των εξισώσεων: = λ y = λ y = λ y = λ y =λ y + y = λ y =αy ωy =ω y +αy. Όταν η γραμμική δυναμική έχει δυο πραγματικές διακριτές ιδιοτιμές τότε στο ευκλείδειο επίπεδο εμφανίζονται δυο ανεξάρτητες ιδιοδιευθύνσεις και έτσι συγκροτείται ένα σύστημα ιδιοαξόνων στο οποίο προκύπτει η κανονική μορφή των εξισώσεων: = λ y = λ y y() = ce y() = ce λ λ. Για το σχεδιασμό των τροχιών είναι προτιμότερο να εργαστούμε στις συντεταγμένες του συστήματος των ιδιοαξόνων παρά στις καρτεσιανές συντεταγμένες. Πράγματι, η κανονική αυτή μορφή των εξισώσεων διατηρείται αναλλοίωτη κατά την αλλαγή: y y και y y. Συνεπώς, οι τροχιές οφείλουν να εμφανίζουν αξονική συμμετρία ως προς κάθε ιδιοάξονα παράλληλα προς τον άλλον. Αν κάποια από τις ιδιοτιμές είναι μηδενική τότε κάθε σημείο του αντίστοιχου ιδιοάξονα αποτελεί κατάσταση ισορροπίας και όλες οι άλλες τροχιές είναι ευθύγραμμες και εξελίσσονται κατά ζεύγη, ελκτικά ή απωστικά, εκατέρωθεν της αντίστοιχης κατάστασης ισορροπίας. Αν δεν υπάρχει μηδενική ιδιοτιμή τότε η αρχή των αξόνων αποτελεί τη μοναδική κατάσταση ισορροπίας και τέσσερις ευθύγραμμες τροχιές, που έχουν φορέα τους αντίστοιχους ημιάξονες των ιδιοδιευθύνσεων, κατευθύνονται προς αυτήν ή απομακρύνονται προς το άπειρο ανάλογα με το πρόσημο της αντίστοιχης ιδιοτιμής. Για όλες τις άλλες τροχιές, η αξονική τους συμμετρία ως προς τους ιδιοάξονες, υποδεικνύει ότι αρκεί να κατασκευαστούν στο τεταρτημόριο: y > 0, y > 0 και εκεί διαπιστώνουμε ότι φορέας τους είναι τα γραφήματα των εκθετικών συναρτήσεων: y = cy λ λ, c > 0. / Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

2 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 56 Τροχιές της γραμμικής δυναμικής στην περίπτωση απλών πραγματικών μη μηδενικών ιδιοτιμών σε ορθοκανονικό σύστημα ιδιοαξόνων του ευκλείδειου επιπέδου. Όταν η γραμμική δυναμική έχει μια διπλή πραγματική ιδιοτιμή τότε, εκτός από τη μηδενική περίπτωση ή την περίπτωση ομοθεσίας, υπάρχει μόνο μια ιδιοδιεύθυνση. Έτσι, συγκροτείται ένα σύστημα αξόνων αποτελούμενο από ένα ιδιοάξονα και έναν κατάλληλα επιλεγμένο άξονα, όπως ήδη αναφέρθηκε, και σε αυτό το σύστημα γραμμικών συντεταγμένων προκύπτει η κανονική μορφή Jrdan των εξισώσεων: =λ y + y = λy y() = ( c + c) e λ y() = ce λ Η αρχή των αξόνων αποτελεί τη μοναδική κατάσταση ισορροπίας και δυο ευθύγραμμες τροχιές, που έχουν ως φορέα τους ημιάξονες της ιδιοδιεύθυνσης, κατευθύνονται προς αυτήν ή απομακρύνονται προς το άπειρο ανάλογα με το πρόσημο της ιδιοτιμής. Όλες οι άλλες τροχιές έχουν φορέα τα γραφήματα των συναρτήσεων: y = ( ln y + c) y λ όπου c = ln c + c/ c, c 0. λ Τροχιές της γραμμικής δυναμικής στην περίπτωση διπλής ιδιοτιμής σε ορθοκανονικό σύστημα αξόνων. Όταν η γραμμική δυναμική έχει μιγαδικές ιδιοτιμές: λ=α+ i ω, λ =α iω τότε στο ευκλείδειο επίπεδο δεν εμφανίζονται ιδιοδιευθύνσεις αλλά, όπως αναφέρθηκε, υπάρχει σύστημα γραμμικών συντεταγμένων στο οποίο προκύπτει η κανονική μορφή των εξισώσεων: =αy ωy =ω y +αy. α y ( ) = re cs( ω + θ) α y ( ) = re sin( ω + θ) Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

3 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 57 Η αρχή των αξόνων αποτελεί τη μοναδική κατάσταση ισορροπίας και ολόγυρά της εξελίσσονται ελλειπτικές ή σπειροειδείς τροχιές ανάλογα με το αν οι ιδιοτιμές είναι καθαρά φανταστικές ή όχι. Οι σπειροειδείς τροχιές πλησιάζουν απεριόριστα την κατάσταση ισορροπίας ή απομακρύνονται στο άπειρο ανάλογα με το αν το πραγματικό μέρος των συζυγών ιδιοτιμών είναι αρνητικό ή θετικό. α< 0, ω> 0 α= 0, ω> 0 α> 0, ω> 0 α< 0, ω< 0 α= 0, ω< 0 α> 0, ω< 0 Τροχιές της γραμμικής δυναμικής στην περίπτωση μιγαδικών ιδιοτιμών στο ευκλείδειο επίπεδο. Άσκηση 8. Σχεδιάστε τις τροχιές των δυναμικών συστημάτων που ορίζονται στο ευκλείδειο επίπεδο από τα ακόλουθα συστήματα διαφορικών εξισώσεων: [] x = x+ x = 4x x [] = 3x + x = 3x + x [3] = x 3x = 3x + 4x [4] = 3x 3x = 3x x Υπόδειξη. [] Ιδιοτιμές: λ = 3, λ =, Ιδιοδιανύσματα: ξ = (, 4), ξ = (, ). Προκύπτουν γραμμικές συντεταγμένες στις οποίες το σύστημα εκφράζεται ως εξής: = 3y = y y() = ce y() = ce 3 3 x() = ce + ce x() = 4ce + ce 3 [] Ιδιοτιμές: λ = /, λ = 3, Ιδιοδιανύσματα: ξ = (, ), ξ = (, 3). Προκύπτουν γραμμικές συντεταγμένες στις οποίες το σύστημα εκφράζεται ως εξής: = y / = 3 y y() = ce y() = ce / 3 / 3 x() = ce + ce x() = ce + 3ce / 3 Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

4 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 58 [3] Ιδιοτιμή: λ=, Ιδιοδιάνυσμα: ξ= (, ), Συμπληρωματικό διάνυσμα: ξ= ( / 3, 0). Προκύπτουν γραμμικές συντεταγμένες στις οποίες το σύστημα εκφράζεται ως εξής: = y + y = y y() = ( c+ c ) e y() = c e x( ) = ( c + c c / 3) e x( ) = ( c + c) e [4] Ιδιοτιμές: λ= + i 5, λ = i 5, Ιδιοδιανύσματα: ζ= ( + i 5, 3), ζ = ( i 5, 3). Τα διανύσματα ξ = (, 3), ξ = ( 5, 0) ορίζουν γραμμικές συντεταγμένες στις οποίες το σύστημα εκφράζεται ως εξής: = y 5y = 5y+ y Από το μετασχηματισμό y = r sin θ, y = r csθ προκύπτει: άρα r () = r () θ () = 5 y( ) = re cs( 5 + θ) y( ) = re sin( 5 + θ) r () = r e θ() = 5 + θ r = ce θ / 5 x ( ) = re ( cs( 5 + θ) 5 cs( 5 + θ) ) x( ) = re sin( 5 + θ) [] [] [3] [4] Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

5 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 59 Άσκηση 9. Στο επόμενο σχήμα δίνονται οι τροχιές τριών δισδιάστατων δυναμικών συστημάτων από τα οποία μόνο ένα είναι γραμμικό. Μπορείτε να το αναγνωρίσετε; Άσκηση 0. Σχεδιάστε τις τροχιές της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από τα ακόλουθα συστήματα γραμμικών εξισώσεων: = x + x = x + 3x = x = 3x+ x x = x+ x = x x = x+ x = x x Άσκηση. Οι γραμμικές δυναμικές στο ευκλείδειο επίπεδο με ίδιες ιδιοτιμές ορίζουν ίδιες τροχιές; Τεκμηριώστε την απάντησή σας. Άσκηση. Εντοπίστε τη διαφορά των τροχιών των δυναμικών συστημάτων που ορίζονται στο ευκλείδειο επίπεδο από τα συστήματα των γραμμικών εξισώσεων: [Ι] = x = x και = x = x [ΙΙ] = x = x και = x + x = x Άσκηση 3. Σχεδιάστε τις τροχιές της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από τα ακόλουθα συστήματα εξισώσεων και εντοπίστε τις διαφορές τους: [Ι] x = x = x+ x = x 9x = 8x+ 8x = x 9x = 0x+ 8x [ΙΙ] = x+ x = x+ x 0x = 0x+ 9x 0x = 9x+ 0x 0x = 0x+ x 0x = x+ 0x Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

6 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 60 Άσκηση 4. Σχεδιάστε τις τροχιές της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από την κανονική μορφή Jrdan του γραμμικού συστήματος διαφορικών εξισώσεων με διπλή πραγματική ιδιοτιμή: (Ι) λ= /0, (ΙΙ) λ= /0, και εντοπίστε τις διαφορές με την περίπτωση: λ= 0. Άσκηση 5. Στο επόμενο σχήμα δίνονται σε ορθοκανονικό σύστημα αξόνων του ευκλείδειου επιπέδου οι τροχιές δυο άγνωστων γραμμικών δυναμικών συστημάτων. Μπορείτε να αναγνωρίσετε τη φύση των ιδιοτιμών τους; Είναι εφικτός ο προσδιορισμός τους; Ποιος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου στα οποία η εφαπτομένη των τροχιών είναι κάθετη στην εμφανιζόμενη ιδιοδιεύθυνση; Άσκηση 6. Σχεδιάστε τις τροχιές της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από το ακόλουθο σύστημα γραμμικών εξισώσεων για διάφορες τιμές της παραμέτρου ρ και παρατηρείστε τη συνεχή παραμόρφωσή τους που οδηγεί από κόμβο σε εστία: = x+ρx = x + ( +ρ/) x ρ. ρ= 0.5 ρ= 0. ρ= 0 ρ= 0.5 ρ= Άσκηση 7. Επιλέξτε (i) γραμμικούς ισομορφισμούς, (ii) αμφιδιαφορομορφισμούς, (iii) ομοιομορφισμούς του ευκλείδειου επιπέδου και αφήστε τους να δράσουν στην εξελικτική ροή της γραμμικής δυναμικής: ως εξής: g ( x ) = x ( e,e ),,, h x g hx ( ),,. x Ποιο είναι το σύστημα των διαφορικών εξισώσεων που ορίζει τη δυναμική της εξελικτικής ροής η οποία προκύπτει από αυτούς τους μετασχηματισμούς; Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

7 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 6 Προβληματισμός: Τοπολογική ταξινόμηση των ροών της γραμμικής δυναμικής. Θεωρούμε δυο γραμμικά δυναμικά συστήματα που η εξέλιξή τους στο ευκλείδειο επίπεδο διέπεται αντίστοιχα από τις γραμμικές εξισώσεις: με αντίστοιχες μονοπαραμετρικές ομάδες: X( ) = A X( ), i =,, { : / i } i g, i =,. Σύμφωνα με τον ορισμό της τοπολογικής ισοδυναμίας, οι δυναμικές που ορίζονται από δυο δυναμικά συστήματα είναι τοπολογικά ισοδύναμες αν και μόνο αν υπάρχει ομοιομορφισμός: h : τέτοιος ώστε: hg ( x) = g hx ( ),,. Αν ο ομοιομορφισμός που αποκαθιστά την τοπολογική ισοδυναμία είναι γραμμικός ή αμφιδιαφορομορφικός τότε αντίστοιχα λέμε ότι οι δυναμικές είναι γραμμικά ή διαφορικά ισοδύναμες. Καταρχάς, είναι σημαντικό να κατανοήσουμε το εξής: Θεώρημα. Δυο γραμμικές δυναμικές είναι διαφορικά ισοδύναμες αν και μόνο αν είναι γραμμικά ισοδύναμες. * Θεώρημα. Δυο γραμμικές δυναμικές με πραγματικές διακριτές ιδιοτιμές είναι γραμμικά ισοδύναμες αν και μόνο αν έχουν ίδιες ιδιοτιμές. Απόδειξη. Κάθε γραμμική δυναμική με απλές πραγματικές ιδιοτιμές αποσυντίθενται σε μονοδιάστατες γραμμικές δυναμικές. Συνεπώς, οι γραμμικές δυναμικές που έχουν ίδιες διακριτές πραγματικές ιδιοτιμές δε μπορούν παρά να αποσυντεθούν στις ίδιες μονοδιάστατες γραμμικές δυναμικές. Αντίστροφα, αν οι δυο γραμμικές δυναμικές είναι γραμμικά ισοδύναμες τότε οι τελεστές τους ταυτίζονται με αλλαγή βάσης άρα έχουν ίδιες ιδιοτιμές απλές ή όχι. x Παράδειγμα γραμμικά ισοδύναμων εξελικτικών ροών της γραμμικής δυναμικής στο ευκλείδειο επίπεδο. (Άραγε, ποιοι είναι οι ισομορφισμοί ταύτισης των εξελικτικών ροών του παραδείγματος;) * Το θεώρημα δεν. υπονοεί ότι κάθε αμφιδιαφορομορφισμός που αποκαθιστά τη διαφορική ισοδυναμία των εξελικτικών ροών της γραμμικής δυναμικής είναι οπωσδήποτε γραμμικός ισομορφισμός. Όμως, θεωρώντας το διαφορικό ενός τέτοιου αμφιδιαφορομορφισμού θα μπορούσατε να αντιληφθείτε το σκεπτικό της απόδειξης. Πρόκειται για αποτέλεσμα που ισχύει και για την πολυδιάστατη γραμμική δυναμική. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

8 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 6 Θεώρημα: Κριτήρια τοπολογικής ταξινόμησης της γραμμικής δυναμικής. *.Οι γραμμικές δυναμικές των οποίων οι ιδιοτιμές έχουν θετικό πραγματικό μέρος είναι τοπολογικά ισοδύναμες με τη γραμμική δυναμική x = x, x..οι γραμμικές δυναμικές των οποίων οι ιδιοτιμές έχουν αρνητικό πραγματικό μέρος είναι τοπολογικά ισοδύναμες με τη γραμμική δυναμική x = x, x. Τοπολογικά ισοδύναμες γραμμικές δυναμικές στο ευκλείδειο επίπεδο. (Ιδιοτιμές με θετικό πραγματικό μέρος) Τοπολογικά ισοδύναμες γραμμικές δυναμικές στο ευκλείδειο επίπεδο. (Ιδιοτιμές με αρνητικό πραγματικό μέρος) Άσκηση 8. Αποφανθείτε για τη γραμμική και τοπολογική ισοδυναμία των εξελικτικών ροών της δυναμικής που ορίζεται από τα ακόλουθα συστήματα εξισώσεων και σχεδιάστε τις τροχιές τους στο ευκλείδειο επίπεδο: = x+ x = x x = x x = x+ x = x+ x = x+ x = x + x = x + x Άσκηση 9. Αποφανθείτε για τη γραμμική και τοπολογική ισοδυναμία των εξελικτικών ροών της δυναμικής που ορίζεται από τα ακόλουθα συστήματα εξισώσεων και σχεδιάστε τις τροχιές τους στο ευκλείδειο επίπεδο: [] [] = x = x + x = x+ x = x+ x = x = x + x = x+ x 4x = x + 4x [3] x = x x = x x x = x x = x x * Το κριτήριο αυτό ισχύει στους πολυδιάστατους ευκλείδειους χώρους και έχει γενικότερη διατύπωση. Η κατασκευή του ομοιομορφισμού που αποκαθιστά την τοπολογική ισοδυναμία βασίζεται στη χρήση της συνάρτησης Liapunv που διδάσκεται σε επόμενο επίπεδο του μαθήματος των Δυναμικών Συστημάτων. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

9 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 63 Άσκηση 0. Διαπιστώστε ότι τα ακόλουθα γραμμικά συστήματα εξισώσεων παρότι έχουν ίδιες ιδιοτιμές δεν ορίζουν γραμμικά ισοδύναμες δυναμικές και εξετάστε το ενδεχόμενο τοπολογικής ισοδυναμίας τους: x = x = x = x + x = x Άσκηση. Προσδιορίστε τις τιμές της παραμέτρου α στις οποίες η εξελικτική ροή του καθενός από τα ακόλουθα συστήματα εξισώσεων αλλάζει τοπολογικό τύπο: [Ι] x x = x = α x [ΙΙ] x x = x = αx. Άσκηση. Για τις διάφορες τιμές των παραμέτρων a και b, αποφανθείτε για τη γραμμική και τοπολογική ισοδυναμία των αντίστοιχων εξελικτικών ροών της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από το ακόλουθο σύστημα εξισώσεων: = x = ax + bx Άσκηση 3. Ποιες είναι οι κλάσεις τοπολογικής ισοδυναμίας των εξελικτικών ροών των γραμμικών συστημάτων των οποίων οι τροχιές παρατίθενται στον ακόλουθο πίνακα. Τι θα λέγατε για τον διαμερισμό τους σε κλάσεις γραμμικής ισοδυναμίας; Θα μπορούσατε, σε κάθε μια από αυτές τις περιπτώσεις να προσδιορίστε την αριθμητική έκφραση του αντίστοιχου γραμμικού συστήματος διαφορικών εξισώσεων; Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

10 ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 64 Άσκηση 4. Για τις διάφορες τιμές των παραμέτρων a και b, αποφανθείτε για τη γραμμική και τοπολογική ισοδυναμία, ή μη, της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από την εξίσωση x= a x+bx με εκείνη που ορίζεται από την εξίσωση x= x ή την εξίσωση x= x. * Άσκηση 5. Αποδεχόμενοι ότι οι τροχιές που παρατίθενται στα ακόλουθα σχήματα διανύονται με ταχύτητες αρκετά ομαλές χωρίς απότομες μεταβολές κατά την εξέλιξη, μπορείτε να τις συμπληρώσετε και να εντοπίσετε αυτές που διέπονται από γραμμική δυναμική; Άσκηση 6. Θα μπορούσατε να αποφανθείτε για το αν οι τροχιές που εμφανίζονται στα ακόλουθα σχήματα διέπονται από γραμμική δυναμική; * Σε αυτό το σύστημα γραμμικών διαφορικών εξισώσεων ης τάξης ανάγεται κάθε γραμμική διαφορική εξίσωση ης τάξης με σταθερούς συντελεστές: x= ax+ bx. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΜΑΘΗΜΑ : ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Θεωρούμε ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές εκφρασμένο στις καρτεσιανές συντεταγμένες

Διαβάστε περισσότερα

και αναζητούμε τις λύσεις του:

και αναζητούμε τις λύσεις του: ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 3. ΔΙΣΔΙΑΣΤΑΤΗ ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ Η γραμμική δυναμική που ορίζεται στο ευκλείδειο επίπεδο εκφράζεται με ένα σύστημα γραμμικών διαφορικών εξισώσεων με

Διαβάστε περισσότερα

Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την

Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την ΜΑΘΗΜΑ ο : ΟΙ ΓΡΑΜΜΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την ακόλουθη έκφραση στις καρτεσιανές συντεταγμένες του ευκλείδειου χώρου

Διαβάστε περισσότερα

n xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων:

n xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων: ΜΑΘΗΜΑ 1: ΑΠΟ ΤΟ ΠΕΙΡΑΜΑ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟ ΠΡΟΤΥΠΟ Ας θεωρήσουμε ως παράδειγμα ένα σύστημα χημικών ουσιών που υπεισέρχονται σε μια χημική αντίδραση. Η στιγμιαία κατάσταση κάθε ουσίας χαρακτηρίζεται

Διαβάστε περισσότερα

, ( x) = ( f ( x),..., f ( x)

, ( x) = ( f ( x),..., f ( x) ΜΑΘΗΜΑ : ΕΞΕΛΙΚΤΙΚΗ ΡΟΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ Οι Συνήθεις Διαφορικές Εξισώσεις προσφέρουν τη δυνατότητα μαθηματικής μοντελοποίησης ενός πλήθους φυσικών, χημικών, βιολογικών, οικολογικών, οικονομικών

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 1. Η μονοδιάστατη γραμμική δυναμική. *

ΠΑΡΑΔΕΙΓΜΑ 1. Η μονοδιάστατη γραμμική δυναμική. * ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 9 Ι. ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΔΥΝΑΜΙΚΗΣ Τα παραδείγματα που ακολουθούν αφορούν μονοδιάστατους χώρους καταστάσεων όπου ο νόμος της εξέλιξης εκφράζεται

Διαβάστε περισσότερα

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους: ΜΑΘΗΜΑ 6 ο : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ (ΣΥΝΑΡΤΗΣΕΙΣ LYAPUNOV) O Aleksadr Lyapuv (857-98) έθεσε τις βάσεις της μαθηματικής θεωρίας της ευστάθειας που φέρει το όνομά του εμπνευσμένος από μια απλή

Διαβάστε περισσότερα

Τροχιές της δισδιάστατης γραμμικής δυναμικής στην περιοχή των υπερβολικών καταστάσεων ισορροπίας. Σάγματα - saddles

Τροχιές της δισδιάστατης γραμμικής δυναμικής στην περιοχή των υπερβολικών καταστάσεων ισορροπίας. Σάγματα - saddles ΜΑΘΗΜΑ 5 ο : ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΣΤΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΙΣΟΡΡΟΠΙΑΣ (ΘΕΩΡΗΜΑ HARTMAN-GROBMAN Το θεώρημα των D M Grbman (959 και P Harman (960 δηλώνει ότι η εξελικτική ροή κάθε μη γραμμικής δυναμικής έχει τοπικά ίδια

Διαβάστε περισσότερα

x (t) u (t) = x 0 u 0 e 2t,

x (t) u (t) = x 0 u 0 e 2t, Κεφάλαιο 7 Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Η ευαισθησία της λύσης μιας ΔΕ σε μεταβολές της αρχικής τιμής είναι έ- να θεμελιώδες ζήτημα στη θεωρία αλλά και στις εφαρμογές των διαφορικών εξισώσεων. Παράδειγμα 7.0.3.

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος 2010-11 * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ Ο όρος δυναμικό σύστημα δηλώνει κάθε σύστημα, φυσικό,

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις

Συνήθεις Διαφορικές Εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μεταπτυχιακό Μάθημα: Συνήθεις Διαφορικές Εξισώσεις Καθηγητές: Α Μπούντης - Σ Πνευματικός Ακαδημαϊκό έτος 11-1 ΕΞΕΤΑΣΗ ΙΟΥΝΙΟΥ ΤΟ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΤΥΠΟ ΤΩΝ LOKA-VOLERRA

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδηµαϊκό έτος 5-6 ΜΑΘΗΜΑ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Καθηγητής: Σ Πνευµατικός ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΟΙ ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ JORDAN Θεωρούµε ένα n-διάστατο διανυσµατικό χώρο E στο σώµα Κ = ή και

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. (Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος )

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. (Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος 00-) Καθηγητές: Σ. Πνευματικός - Α. Μπούντης η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: * ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ Πρέπει

Διαβάστε περισσότερα

ΟΙ ΓΑΛΙΛΑΪΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΟΙ ΓΑΛΙΛΑΪΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ : ΟΙ ΓΑΛΙΛΑΪΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Simplici: Αυτό πραγματικά δεν μπορώ να το κατανοήσω Salviati: Θα το κατανοήσεις όταν σου δείξω που βρίσκεται το σφάλμα σου ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Ο Γαλιλαίος,

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Πρώτα απ όλα θέλουμε να βρούμε και να εξηγήσουμε έναν ορισμό που να ταιριάζει όσο το δυνατό καλύτερα στα φυσικά φαινόμενα Και η πεποίθησή μας θα ενισχυθεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μεταπτυχιακό Μάθημα Ακαδημαϊκό έτος 2012-13 Καθηγητής: Σ. Πνευματικός Ο όρος δυναμικό σύστημα δηλώνει κάθε σύστημα, φυσικό, χημικό, βιολογικό, οικονομικό,

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 4 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f σε κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ. 6.1 Το Θεώρημα Hartman-Grobman

Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ. 6.1 Το Θεώρημα Hartman-Grobman Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ Στο κεφάλαιο αυτό θα δούμε ότι η συμπεριφορά των λύσεων ενός δυναμικού συστήματος ẋ = f (x) κοντά σε ένα σημείο ισορροπίας x 0, καθορίζεται από το γραμμικό τμήμα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος 010-11 Μάθημα: ΜΗΧΑΝΙΚΗ Καθηγητές: Σ Πνευματικός Α Μπούντης ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Α ΚΕΦΑΛΑΙΟΥ Τα φροντιστήρια γίνονται κάθε Δευτέρα 1100-100 και κάθε

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Στο Κεφάλαιο αυτό θα θεωρήσουμε δυναμικά συστήματα της μορφής

Στο Κεφάλαιο αυτό θα θεωρήσουμε δυναμικά συστήματα της μορφής Κεφάλαιο 9 ΔΙΑΚΛΑΔΩΣΕΙΣ ΣΗΜΕΙΩΝ ΙΣΟΡΡΟΠΙΑΣ Στο Κεφάλαιο αυτό θα θεωρήσουμε δυναμικά συστήματα της μορφής ẋ = f (x, µ), (9.0.1) όπου το διανυσματικό πεδίο f εξαρτάται από μία παράμετρο µ και είναι αρκούντως

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΗ 30 ης ΜΑΪΟΥ 2016

ΕΞΕΤΑΣΗ 30 ης ΜΑΪΟΥ 2016 ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μάθηµα: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητές: Α Μπούντης - Σ Πνευµατικός ΕΞΕΤΑΣΗ 0 ης ΜΑΪΟΥ 016 ΘΕΜΑ I (5 µονάδες) Στερεό Σώµα Δίνεται ο τελεστής αδράνειας I: οµμογενούς στερεού σώµματος συνεχούς

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2012-13 ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι Καθηγητής: Σ. Πνευματικός ΘΕΜΑΤΑ ΜΕΛΕΤΗΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΥ Μάθημα 2 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΤΟΥΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η ισότητα στο σύνολο C των µιγαδικών αριθµών ορίζεται από την ισοδυναµία: α +βi = γ + δi α = γ και β = δ. Σ Λ. * Αν z = α + βi, α, β

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική Κατηγορίες f.p. σε γραμμικά διαφορικά συστήματα 1 ης τάξης Έστω το γενικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

Κεφάλαιο 7 ΔΙΑΣΥΝΔΕΣΗ ΜΕ ΤΗ ΘΕΩΡΙΑ ΕΥΣΤΑΘΕΙΑΣ ΔΥΝΑΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Κεφάλαιο 7 ΔΙΑΣΥΝΔΕΣΗ ΜΕ ΤΗ ΘΕΩΡΙΑ ΕΥΣΤΑΘΕΙΑΣ ΔΥΝΑΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Κεφάλαιο 7 ΔΙΑΣΥΝΔΕΣΗ ΜΕ ΤΗ ΘΕΩΡΙΑ ΕΥΣΤΑΘΕΙΑΣ ΔΥΝΑΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται μέθοδοι ανάλυσης στάσιμων και περιοδικών αποκρίσεων δυναμικών συστημάτων. Αυτές οι μέθοδοι είναι

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2.

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2. ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητής: Σ ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 011) 1 Από τους ακόλουθους μετασχηματισμούς του αριθμητικού χωρο-χρόνου εντοπίστε

Διαβάστε περισσότερα

= x. = x1. math60.nb

= x. = x1. math60.nb MH ΓΡΑΜΜΙΚΑ ΑΥΤΟΝΟΜΑ ΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΑΣΤΑΣΕΩΝ Χώρος Φάσεων : Επίπεδο (, Φασικές Τροχιές : Επίπεδες µονοπαραµετρικές καµπύλες (t (t χωρίς εγκάρσιες τοµές. Οι φασικές τροχιές µπορούν να υπολογιστούν από

Διαβάστε περισσότερα

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ ΜΑΘΗΜΑ 5: Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί όπου δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 0 ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι Καθηγητής: Σ Πνευματικός Μάθημα ο ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Η Κλασική Μηχανική, ως ορθολογική

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +

Διαβάστε περισσότερα

14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες.

14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες. 14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες. 13 η εβδομάδα (20/01/2017) Έγιναν οι ασκήσεις 31, 32, 33, 34, 36 και 37 11 η 12 η εβδομάδα

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος /8/5 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Υπολογίστε το διπλό ολοκλήρωμα / I y dyd συντεταγμένες. Επίσης σχεδιάστε το χωρίο ολοκλήρωσης. Λύση: Το

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Γεωµετρικη Θεωρια Ελεγχου

Γεωµετρικη Θεωρια Ελεγχου Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2016-2017 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία 1. Βρείτε δύο διαφορετικά παραδείγµατα συστηµάτων στο

Διαβάστε περισσότερα

Απαντήσεις στα Θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 19/05/2010 ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Απαντήσεις στα Θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 19/05/2010 ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Απαντήσεις στα Θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 9/5/ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Απαντήσεις Πανελλαδικών εξετάσεων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης -

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Το σημείο είναι ο θεμελιώδης λίθος της Γεωμετρίας.

Διαβάστε περισσότερα

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την (μη ομογενή) κυματική εξίσωση σε D χωρικές και 1 χρονική διάσταση :

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την (μη ομογενή) κυματική εξίσωση σε D χωρικές και 1 χρονική διάσταση : Η Κυματική Εξίσωση. Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την (μη ομογενή κυματική εξίσωση σε χωρικές και 1 χρονική διάσταση : t ( Ψ (, rt = f(, rt (139 ( Εδώ είναι μια σταθερά με διαστάσεις ταχύτητας.

Διαβάστε περισσότερα

ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ ΜΑΘΗΜΑ 5: ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί που δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η μαθηματική

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών

Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Μηχανική ΙΙ Τµήµα Ιωάννου-Αποστολάτου 6 Μαϊου 2001 Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Θεωρούµε ότι 6 ίσες µάζες συνδέονται µε ταυτόσηµα

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ

1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις του τύπου «σωστό-λάθος» 1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ 3. Οι ευθείες x = κ και y

Διαβάστε περισσότερα

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Μία ειδική κατηγορία διδιάστατων δυναμικών συστημάτων είναι τα λεγόμενα συντηρητικά συστήματα. Ο όρος προέρχεται από την μηχανική, όπου για υλικό σημείο που δέχεται δύναμη

Διαβάστε περισσότερα

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0 Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με

Διαβάστε περισσότερα

2.5. Απλές λύσεις κυματικών εξισώσεων σε δύο και τρεις διαστάσεις

2.5. Απλές λύσεις κυματικών εξισώσεων σε δύο και τρεις διαστάσεις ΚΕ. Εισαγωγή στην φυσική της κυματικής κίνησης.-0.5. Απλές λύσεις κυματικών εξισώσεων σε δύο και τρεις διαστάσεις.5.1 Σφαιρικά κύματα ως απλές λύσεις της εξίσωσης d Alembet στις τρεις διαστάσεις.5. Κυλινδρικά

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Έστω (z) = z iz, z. α) Να λύσετε την εξίσωση : (z) = i. β) Αν (z) = να βρείτε το z. γ) Αν z = να δείξετε ότι ο γεωμετρικός τόπος των εικόνων του w=(z) είναι κύκλος

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα