ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6"

Transcript

1 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΜΑΘΗΜΑ : ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Θεωρούμε ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές εκφρασμένο στις καρτεσιανές συντεταγμένες που ορίζονται από μια ορθοκανονική βάση του ευκλείδειου επιπέδου: και αναζητούμε τις λύσεις του: x : x ax bx x ax bx, x() x(), x(). Το ερώτημα που τίθεται αφορά στην ύπαρξη και τον προσδιορισμό γραμμικών συντεταγμένων στις οποίες το σύστημα των διαφορικών εξισώσεων αποκτά απλούστερη έκφραση με δυνατότητα άμεσης επίλυσής του. Για το σκοπό αυτό θεωρούμε στις καρτεσιανές συντεταγμένες του ευκλείδειου επιπέδου το γραμμικό μετασχηματισμό: x a bx x a b x. Οι καρτεσιανές συντεταγμένες ορίζονται από μια ορθοκανονική βάση και τις κανονικές προβολές: x :, i,. Κάθε γραμμικός ισομορφισμός: i : μετατρέπει την ορθοκανονική βάση σε βάση όχι απαραίτητα ορθοκανονική, οπότε οι καρτεσιανές συντεταγμένες μετασχηματίζονται σε γραμμικές συντεταγμένες: y, i : yi x i,, i. Γραμμικός μετασχηματισμός των καρτεσιανών συντεταγμένων στο ευκλείδειο επίπεδο. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

2 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 7 Οι αλλαγές των συντεταγμένων καθορίζονται από το μεταθετικό διάγραμμα: xi y i Το σύστημα των γραμμικών διαφορικών εξισώσεων διατυπώνεται συμβολικά στις καρτεσιανές συντεταγμένες ως εξής: X( ) A X( ) και στις νέες γραμμικές συντεταγμένες αποκτά την έκφραση: Y( ) BY( ). Οι ιδιοτιμές κάθε γραμμικού μετασχηματισμού διατηρούνται αναλλοίωτες κατά την αλλαγή βάσης και ταυτίζονται με τις ρίζες της χαρακτηριστικής εξίσωσης: de I. 3 0 Θεωρώντας την ορίζουσα και το ίχνος του γραμμικού μετασχηματισμού που επίσης διατηρούνται αναλλοίωτα κατά τις αλλαγές βάσης: de ab ba και r a b προκύπτει η ακόλουθη έκφραση της χαρακτηριστικής εξίσωσης: r de 0 και η φύση των ιδιοτιμών καθορίζεται από το πρόσημο της διακρίνουσας: Διακρίνουμε τρεις περιπτώσεις: (A) ( ra) 4de A. (A) 0 ιδιοτιμές,,, (A) 0 ιδιοτιμές,,, (A) 0 ιδιοτιμές,, i, i. Τώρα θα προσδιοριστούν όλες οι ενδεχόμενες τροχιές και εξελικτικές ροές της γραμμικής δυναμικής στο ευκλείδειο επίπεδο και το σκεπτικό αυτό θα γενικευθεί εύκολα στους πολυδιάστατους ευκλείδειους χώρους. Η γραμμική και τοπολογική ταξινόμηση των τροχιών και εξελικτικών ροών αποτελεί κεντρικό ζητούμενο του μαθήματος. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

3 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 8 ΠΕΡΙΠΤΩΣΗ (A) 0 ιδιοτιμές,,. Στην περίπτωση αυτή προκύπτουν δυο ανεξάρτητοι ιδιοάξονες:, i,. E /A i Επιλέγοντας μια βάση ιδιοδιανυσμάτων ο πίνακας του γραμμικού μετασχηματισμού διαγωνιοποιείται και προκύπτει: i y 0 y y 0 y οπότε στις αντίστοιχες γραμμικές συντεταγμένες το σύστημα εκφράζεται ως εξής: y y y y y () ce y () c e x() c e c e. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

4 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 9 ΠΕΡΙΠΤΩΣΗ (A) 0 ιδιοτιμές,,. Στην περίπτωση αυτή ο ιδιόχωρος είναι δισδιάστατος ή μονοδιάστατος: E / A. - Αν dim E τότε ο γραμμικός μετασχηματισμός εκφράζει ομοθεσία που έχει ως λόγο την τιμή της διπλής ιδιοτιμής: x 0x x 0 x και προκύπτουν απευθείας οι λύσεις του συστήματος των διαφορικών εξισώσεων: x x x x x() x oe x() xoe x() x e. o Οι τροχιές είναι οι ημιευθείες που ανάλογα με το πρόσημο της ιδιοτιμής απομακρύνονται ή πλησιάζουν ακτινωτά την αρχή του ευκλείδειου επιπέδου που αποτελεί κατάσταση ισορροπίας, ενώ στην ειδική περίπτωση μηδενικής ιδιοτιμής κάθε σημείο του επιπέδου αποτελεί κατάσταση ισορροπίας. - Αν dim E τότε επιλέγουμε μια βάση αποτελούμενη από ένα ιδιοδιάνυσμα και ένα διάνυσμα τέτοιο ώστε: A και στη βάση αυτή ο γραμμικός μετασχηματισμός έχει τριγωνικό πίνακα: y y y 0 y. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

5 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0 Έτσι, προκύπτουν οι γραμμικές συντεταγμένες στις οποίες το σύστημα των διαφορικών εξισώσεων αποκτά απλούστερη μορφή και υπολογίζονται απευθείας οι λύσεις: y y y y y y() ( c c) e y() ce x ()... x ()... ΠΕΡΙΠΤΩΣΗ (A) 0 ιδιοτιμές,, i, i. Στην περίπτωση αυτή έχουμε δυο συζυγείς μιγαδικές ιδιοτιμές και στο μιγαδικό επίπεδο προκύπτουν δυο συζυγή μιγαδικά ιδιοδιανύσματα * : Τα πραγματικά διανύσματα: i, i., ( ) i, συγκροτούν βάση στην οποία ο γραμμικός μετασχηματισμός εκφράζεται ως εξής: y y y y. * Ο μιγαδικός γραμμικός μετασχηματισμός εκφράζεται στη βάση των συζυγών ιδιοδιανυσμάτων ως εξής: z 0 z () (0) z z e z 0 z z () z (0) e ( i) ( i) Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

6 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έτσι, προκύπτουν οι γραμμικές συντεταγμένες στις οποίες το σύστημα των διαφορικών εξισώσεων αποκτά απλούστερη μορφή: y y y y y y. Όμως, για τον υπολογισμό των λύσεων χρειάζεται να εισαχθούν νέες μη γραμμικές συντεταγμένες: * και προκύπτει: άρα: y rcos, y rsin, r >0, ( mod ), r r y () roe cos( o) y () roe sin( o) r () re o () o x ()... x ()... Άσκηση 7. Προσδιορίστε την έκφραση των μονοπαραμετρικών ομάδων της δισδιάστατης γραμμικής δυναμικής και των εξελικτικών ροών της στο ευκλείδειο επίπεδο και δώστε την αλγεβρική και γεωμετρική ερμηνεία τους. * Δεν πρόκειται πάντα για πολικές συντεταγμένες γιατί δεν ορίζονται απευθείας από το ορθοκανονικό σύστημα καρτεσιανών συντεταγμένων του ευκλείδειου επιπέδου. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

7 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΤΡΟΧΙΩΝ ΤΗΣ ΔΙΣΔΙΑΣΤΑΤΗΣ ΓΡΑΜΜΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

8 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 3 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές: x ax bx x axbx. Το σύστημα αυτό έχει διατυπωθεί στις καρτεσιανές συντεταγμένες του ευκλείδειου επιπέδου, αλλά όπως διαπιστώσαμε, υπάρχουν κατάλληλες γραμμικές συντεταγμένες όπου αποκτά απλούστερη έκφραση με δυνατότητα άμεσης επίλυσής του. Αυτές οι συντεταγμένες καθορίζονται από ιδιοδιευθύνσεις ή κατάλληλες διευθύνσεις που εμφανίζονται στο ευκλείδειο επίπεδο ανάλογα με τη φύση των ιδιοτιμών της δυναμικής και οδηγούν στις κανονικές μορφές του συστήματος των εξισώσεων: y y y y y y y y y y y y y y y y y y y. Όταν η γραμμική δυναμική έχει δυο πραγματικές διακριτές ιδιοτιμές τότε στο ευκλείδειο επίπεδο εμφανίζονται δυο ανεξάρτητες ιδιοδιευθύνσεις και έτσι συγκροτείται ένα σύστημα ιδιοαξόνων στο οποίο προκύπτει η κανονική μορφή των εξισώσεων: y y y y y () ce y () c e. Για το σχεδιασμό των τροχιών είναι προτιμότερο να εργαστούμε στις συντεταγμένες του συστήματος των ιδιοαξόνων παρά στις καρτεσιανές συντεταγμένες. Πράγματι, η κανονική αυτή μορφή των εξισώσεων διατηρείται αναλλοίωτη κατά την αλλαγή: y y και y y. Συνεπώς, οι τροχιές οφείλουν να εμφανίζουν αξονική συμμετρία ως προς κάθε ιδιοάξονα παράλληλα προς τον άλλον. Αν κάποια από τις ιδιοτιμές είναι μηδενική τότε κάθε σημείο του αντίστοιχου ιδιοάξονα αποτελεί κατάσταση ισορροπίας και όλες οι άλλες τροχιές είναι ευθύγραμμες και εξελίσσονται κατά ζεύγη, ελκτικά ή απωστικά, εκατέρωθεν της αντίστοιχης κατάστασης ισορροπίας. Αν δεν υπάρχει μηδενική ιδιοτιμή τότε η αρχή των αξόνων αποτελεί τη μοναδική κατάσταση ισορροπίας και τέσσερις ευθύγραμμες τροχιές, που έχουν φορέα τους αντίστοιχους ημιάξονες των ιδιοδιευθύνσεων, κατευθύνονται προς αυτήν ή απομακρύνονται προς το άπειρο ανάλογα με το πρόσημο της αντίστοιχης ιδιοτιμής. Για όλες τις άλλες τροχιές, η αξονική τους συμμετρία ως προς τους ιδιοάξονες, υποδεικνύει ότι αρκεί να κατασκευαστούν στο τεταρτημόριο: y 0, y 0 και εκεί διαπιστώνουμε ότι φορέας τους είναι τα γραφήματα των εκθετικών συναρτήσεων: y cy, c 0. / Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

9 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4 Τροχιές της γραμμικής δυναμικής στην περίπτωση απλών πραγματικών μη μηδενικών ιδιοτιμών σε ορθοκανονικό σύστημα ιδιοαξόνων του ευκλείδειου επιπέδου. Όταν η γραμμική δυναμική έχει μια διπλή πραγματική ιδιοτιμή τότε, εκτός από τη μηδενική περίπτωση ή την περίπτωση ομοθεσίας, υπάρχει μόνο μια ιδιοδιεύθυνση. Έτσι, συγκροτείται ένα σύστημα αξόνων αποτελούμενο από ένα ιδιοάξονα και έναν κατάλληλα επιλεγμένο άξονα, όπως ήδη αναφέρθηκε, και σε αυτό το σύστημα γραμμικών συντεταγμένων προκύπτει η κανονική μορφή Jordan των εξισώσεων: y y y y y y() ( c c) e y() ce Η αρχή των αξόνων αποτελεί τη μοναδική κατάσταση ισορροπίας και δυο ευθύγραμμες τροχιές, που έχουν ως φορέα τους ημιάξονες της ιδιοδιεύθυνσης, κατευθύνονται προς αυτήν ή απομακρύνονται προς το άπειρο ανάλογα με το πρόσημο της ιδιοτιμής. Όλες οι άλλες τροχιές έχουν φορέα τα γραφήματα των συναρτήσεων: y ln y cy όπου c ln c c/ c, c 0. Τροχιές της γραμμικής δυναμικής στην περίπτωση διπλής ιδιοτιμής σε ορθοκανονικό σύστημα αξόνων. Όταν η γραμμική δυναμική έχει μιγαδικές ιδιοτιμές: i, i τότε στο ευκλείδειο επίπεδο δεν εμφανίζονται ιδιοδιευθύνσεις αλλά, όπως αναφέρθηκε, υπάρχει σύστημα γραμμικών συντεταγμένων στο οποίο προκύπτει η κανονική μορφή των εξισώσεων: y y y y y y. y () roe cos( o) y () roe sin( o) Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

10 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 5 Η αρχή των αξόνων αποτελεί τη μοναδική κατάσταση ισορροπίας και ολόγυρά της εξελίσσονται ελλειπτικές ή σπειροειδείς τροχιές ανάλογα με το αν οι ιδιοτιμές είναι καθαρά φανταστικές ή όχι. Οι σπειροειδείς τροχιές πλησιάζουν απεριόριστα την κατάσταση ισορροπίας ή απομακρύνονται στο άπειρο ανάλογα με το αν το πραγματικό μέρος των συζυγών ιδιοτιμών είναι αρνητικό ή θετικό. 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 Τροχιές της γραμμικής δυναμικής στην περίπτωση μιγαδικών ιδιοτιμών στο ευκλείδειο επίπεδο. Άσκηση 8. Σχεδιάστε τις τροχιές των δυναμικών συστημάτων που ορίζονται στο ευκλείδειο επίπεδο από τα ακόλουθα συστήματα διαφορικών εξισώσεων: [] x x x x 4xx [] x 3x x x 3x x [3] x x 3x x 3x 4x [4] x 3x 3x x 3x x Υπόδειξη. [] Ιδιοτιμές: 3,, Ιδιοδιανύσματα: (, 4), (, ). Προκύπτουν γραμμικές συντεταγμένες στις οποίες το σύστημα εκφράζεται ως εξής: y 3y y y y () ce 3 y () c e 3 x() ce ce x () 4c e c e 3 [] Ιδιοτιμές: /, 3, Ιδιοδιανύσματα: (, ), (, 3). Προκύπτουν γραμμικές συντεταγμένες στις οποίες το σύστημα εκφράζεται ως εξής: y y / y 3 y y () c e / y () c e 3 / 3 x() ce ce x () c e 3c e / 3 Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 [3] Ιδιοτιμή:, Ιδιοδιάνυσμα: (, ), Συμπληρωματικό διάνυσμα: ( /3, 0). Προκύπτουν γραμμικές συντεταγμένες στις οποίες το σύστημα εκφράζεται ως εξής: y y y y y y() ( cc) e y() c e x() ( ccc /3) e x() ( cc) e [4] Ιδιοτιμές: i 5, i 5, Ιδιοδιανύσματα: ( i 5, 3), ( i 5, 3). Τα διανύσματα (, 3), ( 5, 0) ορίζουν γραμμικές συντεταγμένες στις οποίες το σύστημα εκφράζεται ως εξής: y y 5y y 5y y Από το μετασχηματισμό y rsin, y r cos προκύπτει: άρα r () r () () 5 y () roe cos( 5 o) y() roe sin( 5 o) r () ro e () 5 o r ce / 5 x () roe cos( 5 o) 5cos( 5 o) x() roe sin( 5 o) [] [] [3] [4] Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

12 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 7 Άσκηση 9. Στο επόμενο σχήμα δίνονται οι τροχιές τριών δισδιάστατων δυναμικών συστημάτων από τα οποία μόνο ένα είναι γραμμικό. Μπορείτε να το αναγνωρίσετε; Άσκηση 0. Σχεδιάστε τις τροχιές της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από τα ακόλουθα συστήματα γραμμικών εξισώσεων: x x x x x 3x x x x 3x x x xx x xx x x x x xx Άσκηση. Οι γραμμικές δυναμικές στο ευκλείδειο επίπεδο με ίδιες ιδιοτιμές ορίζουν ίδιες τροχιές; Τεκμηριώστε την απάντησή σας. Άσκηση. Εντοπίστε τη διαφορά των τροχιών των δυναμικών συστημάτων που ορίζονται στο ευκλείδειο επίπεδο από τα συστήματα των γραμμικών εξισώσεων: [Ι] x x x x και x x x x [ΙΙ] x x x x και x x x x x Άσκηση 3. Σχεδιάστε τις τροχιές της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από τα ακόλουθα συστήματα εξισώσεων και εντοπίστε τις διαφορές τους: [Ι] x x x x x x x 9x 8x 8x x x 9x 0x 8x [ΙΙ] x xx x xx 0x 0x9 x 0x 9x0x 0x 0xx 0x x0 x Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

13 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 8 Άσκηση 4. Σχεδιάστε τις τροχιές της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από την κανονική μορφή Jordan του γραμμικού συστήματος διαφορικών εξισώσεων με διπλή πραγματική ιδιοτιμή: (Ι) /0, (ΙΙ) /0, και εντοπίστε τις διαφορές με την περίπτωση: 0. Άσκηση 5. Στο επόμενο σχήμα δίνονται σε ορθοκανονικό σύστημα αξόνων του ευκλείδειου επιπέδου οι τροχιές δυο άγνωστων γραμμικών δυναμικών συστημάτων. Μπορείτε να αναγνωρίσετε τη φύση των ιδιοτιμών τους; Είναι εφικτός ο προσδιορισμός τους; Ποιος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου στα οποία η εφαπτομένη των τροχιών είναι κάθετη στην εμφανιζόμενη ιδιοδιεύθυνση; Άσκηση 6. Σχεδιάστε τις τροχιές της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από το ακόλουθο σύστημα γραμμικών εξισώσεων για διάφορες τιμές της παραμέτρου ρ και παρατηρείστε τη συνεχή παραμόρφωσή τους που οδηγεί από κόμβο σε εστία: x xx x x ( /) x Άσκηση 7. Επιλέξτε (i) γραμμικούς ισομορφισμούς, (ii) αμφιδιαφορομορφισμούς, (iii) ομοιομορφισμούς του ευκλείδειου επιπέδου και αφήστε τους να δράσουν στην εξελικτική ροή της γραμμικής δυναμικής: ως εξής: g ( x ) x ( e,e ), h o o g h( x ), o x o, x o,,. Ποιο είναι το σύστημα των διαφορικών εξισώσεων που ορίζει τη δυναμική της εξελικτικής ροής η οποία προκύπτει από αυτούς τους μετασχηματισμούς; Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

14 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 9 Προβληματισμός: Τοπολογική ταξινόμηση των ροών της γραμμικής δυναμικής. Θεωρούμε δυο γραμμικά δυναμικά συστήματα που η εξέλιξή τους στο ευκλείδειο επίπεδο διέπεται αντίστοιχα από τις γραμμικές εξισώσεις: με αντίστοιχες μονοπαραμετρικές ομάδες: X( ) A X( ), i,, : / i i g, i,. Σύμφωνα με τον ορισμό της τοπολογικής ισοδυναμίας, οι δυναμικές που ορίζονται από δυο δυναμικά συστήματα είναι τοπολογικά ισοδύναμες αν και μόνο αν υπάρχει ομοιομορφισμός: h : τέτοιος ώστε: hg ( x ) g h( x ),,. o o Αν ο ομοιομορφισμός που αποκαθιστά την τοπολογική ισοδυναμία είναι γραμμικός ή αμφιδιαφορομορφικός τότε αντίστοιχα λέμε ότι οι δυναμικές είναι γραμμικά ή διαφορικά ισοδύναμες. Καταρχάς, είναι σημαντικό να κατανοήσουμε το εξής: Θεώρημα. Δυο γραμμικές δυναμικές είναι διαφορικά ισοδύναμες αν και μόνο αν είναι γραμμικά ισοδύναμες. * Θεώρημα. Δυο γραμμικές δυναμικές με πραγματικές διακριτές ιδιοτιμές είναι γραμμικά ισοδύναμες αν και μόνο αν έχουν ίδιες ιδιοτιμές. Απόδειξη. Κάθε γραμμική δυναμική με απλές πραγματικές ιδιοτιμές αποσυντίθενται σε μονοδιάστατες γραμμικές δυναμικές. Συνεπώς, οι γραμμικές δυναμικές που έχουν ίδιες διακριτές πραγματικές ιδιοτιμές δε μπορούν παρά να αποσυντεθούν στις ίδιες μονοδιάστατες γραμμικές δυναμικές. Αντίστροφα, αν οι δυο γραμμικές δυναμικές είναι γραμμικά ισοδύναμες τότε οι τελεστές τους ταυτίζονται με αλλαγή βάσης άρα έχουν ίδιες ιδιοτιμές απλές ή όχι. x o Παράδειγμα γραμμικά ισοδύναμων εξελικτικών ροών της γραμμικής δυναμικής στο ευκλείδειο επίπεδο. (Άραγε, ποιοι είναι οι ισομορφισμοί ταύτισης των εξελικτικών ροών του παραδείγματος;) * Το θεώρημα δεν. υπονοεί ότι κάθε αμφιδιαφορομορφισμός που αποκαθιστά τη διαφορική ισοδυναμία των εξελικτικών ροών της γραμμικής δυναμικής είναι οπωσδήποτε γραμμικός ισομορφισμός. Όμως, θεωρώντας το διαφορικό ενός τέτοιου αμφιδιαφορομορφισμού θα μπορούσατε να αντιληφθείτε το σκεπτικό της απόδειξης. Πρόκειται για αποτέλεσμα που ισχύει και για την πολυδιάστατη γραμμική δυναμική. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

15 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0 Θεώρημα: Κριτήρια τοπολογικής ταξινόμησης της γραμμικής δυναμικής. *.Οι γραμμικές δυναμικές των οποίων οι ιδιοτιμές έχουν θετικό πραγματικό μέρος είναι τοπολογικά ισοδύναμες με τη γραμμική δυναμική x x, x..οι γραμμικές δυναμικές των οποίων οι ιδιοτιμές έχουν αρνητικό πραγματικό μέρος είναι τοπολογικά ισοδύναμες με τη γραμμική δυναμική x x, x. Τοπολογικά ισοδύναμες γραμμικές δυναμικές στο ευκλείδειο επίπεδο. (Ιδιοτιμές με θετικό πραγματικό μέρος) Τοπολογικά ισοδύναμες γραμμικές δυναμικές στο ευκλείδειο επίπεδο. (Ιδιοτιμές με αρνητικό πραγματικό μέρος) Άσκηση 8. Αποφανθείτε για τη γραμμική και τοπολογική ισοδυναμία των εξελικτικών ροών της δυναμικής που ορίζεται από τα ακόλουθα συστήματα εξισώσεων και σχεδιάστε τις τροχιές τους στο ευκλείδειο επίπεδο: x x x x x x x x x x x x x xx x x x x x x x x x Άσκηση 9. Αποφανθείτε για τη γραμμική και τοπολογική ισοδυναμία των εξελικτικών ροών της δυναμικής που ορίζεται από τα ακόλουθα συστήματα εξισώσεων και σχεδιάστε τις τροχιές τους στο ευκλείδειο επίπεδο: [] x x x x x x x x x x [] x xx x xx x xx 4x x 4x [3] x x x x x x xx x x x * Το κριτήριο αυτό ισχύει στους πολυδιάστατους ευκλείδειους χώρους και έχει γενικότερη διατύπωση. Η κατασκευή του ομοιομορφισμού που αποκαθιστά την τοπολογική ισοδυναμία βασίζεται στη χρήση της συνάρτησης Liapounov που διδάσκεται σε επόμενο επίπεδο του μαθήματος των Δυναμικών Συστημάτων. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

16 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Άσκηση 0. Διαπιστώστε ότι τα ακόλουθα γραμμικά συστήματα εξισώσεων παρότι έχουν ίδιες ιδιοτιμές δεν ορίζουν γραμμικά ισοδύναμες δυναμικές και εξετάστε το ενδεχόμενο τοπολογικής ισοδυναμίας τους: x x x x x x x x x Άσκηση. Προσδιορίστε τις τιμές της παραμέτρου α στις οποίες η εξελικτική ροή του καθενός από τα ακόλουθα συστήματα εξισώσεων αλλάζει τοπολογικό τύπο: x x x x [Ι] [ΙΙ] x x x x. Άσκηση. Για τις διάφορες τιμές των παραμέτρων a και b, αποφανθείτε για τη γραμμική και τοπολογική ισοδυναμία των αντίστοιχων εξελικτικών ροών της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από το ακόλουθο σύστημα εξισώσεων: x x x ax bx Άσκηση 3. Ποιες είναι οι κλάσεις τοπολογικής ισοδυναμίας των εξελικτικών ροών των γραμμικών συστημάτων των οποίων οι τροχιές παρατίθενται στον ακόλουθο πίνακα. Τι θα λέγατε για τον διαμερισμό τους σε κλάσεις γραμμικής ισοδυναμίας; Θα μπορούσατε, σε κάθε μια από αυτές τις περιπτώσεις να προσδιορίστε την αριθμητική έκφραση του αντίστοιχου γραμμικού συστήματος διαφορικών εξισώσεων; Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

17 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Άσκηση 4. Για τις διάφορες τιμές των παραμέτρων a και b, αποφανθείτε για τη γραμμική και τοπολογική ισοδυναμία, ή μη, της δυναμικής που ορίζεται στο ευκλείδειο επίπεδο από την εξίσωση x ax+bx με εκείνη που ορίζεται από την εξίσωση xx ή την εξίσωση x x. * Άσκηση 5. Αποδεχόμενοι ότι οι τροχιές που παρατίθενται στα ακόλουθα σχήματα διανύονται με ταχύτητες αρκετά ομαλές χωρίς απότομες μεταβολές κατά την εξέλιξη, μπορείτε να τις συμπληρώσετε και να εντοπίσετε αυτές που διέπονται από γραμμική δυναμική; Άσκηση 6. Θα μπορούσατε να αποφανθείτε για το αν οι τροχιές που εμφανίζονται στα ακόλουθα σχήματα διέπονται από γραμμική δυναμική; * Σε αυτό το σύστημα γραμμικών διαφορικών εξισώσεων ης τάξης ανάγεται κάθε γραμμική διαφορική εξίσωση ης τάξης με σταθερούς συντελεστές: x axbx. Σ. Ν. ΠΝΕΥΜΑΤΙΚΟΣ 00

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα

Διαβάστε περισσότερα

και αναζητούμε τις λύσεις του:

και αναζητούμε τις λύσεις του: ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 3. ΔΙΣΔΙΑΣΤΑΤΗ ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ Η γραμμική δυναμική που ορίζεται στο ευκλείδειο επίπεδο εκφράζεται με ένα σύστημα γραμμικών διαφορικών εξισώσεων με

Διαβάστε περισσότερα

Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την

Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την ΜΑΘΗΜΑ ο : ΟΙ ΓΡΑΜΜΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την ακόλουθη έκφραση στις καρτεσιανές συντεταγμένες του ευκλείδειου χώρου

Διαβάστε περισσότερα

n xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων:

n xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων: ΜΑΘΗΜΑ 1: ΑΠΟ ΤΟ ΠΕΙΡΑΜΑ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟ ΠΡΟΤΥΠΟ Ας θεωρήσουμε ως παράδειγμα ένα σύστημα χημικών ουσιών που υπεισέρχονται σε μια χημική αντίδραση. Η στιγμιαία κατάσταση κάθε ουσίας χαρακτηρίζεται

Διαβάστε περισσότερα

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους: ΜΑΘΗΜΑ 6 ο : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ (ΣΥΝΑΡΤΗΣΕΙΣ LYAPUNOV) O Aleksadr Lyapuv (857-98) έθεσε τις βάσεις της μαθηματικής θεωρίας της ευστάθειας που φέρει το όνομά του εμπνευσμένος από μια απλή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδηµαϊκό έτος 5-6 ΜΑΘΗΜΑ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Καθηγητής: Σ Πνευµατικός ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΟΙ ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ JORDAN Θεωρούµε ένα n-διάστατο διανυσµατικό χώρο E στο σώµα Κ = ή και

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

, ( x) = ( f ( x),..., f ( x)

, ( x) = ( f ( x),..., f ( x) ΜΑΘΗΜΑ : ΕΞΕΛΙΚΤΙΚΗ ΡΟΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ Οι Συνήθεις Διαφορικές Εξισώσεις προσφέρουν τη δυνατότητα μαθηματικής μοντελοποίησης ενός πλήθους φυσικών, χημικών, βιολογικών, οικολογικών, οικονομικών

Διαβάστε περισσότερα

ΟΙ ΓΑΛΙΛΑΪΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΟΙ ΓΑΛΙΛΑΪΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ : ΟΙ ΓΑΛΙΛΑΪΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Simplici: Αυτό πραγματικά δεν μπορώ να το κατανοήσω Salviati: Θα το κατανοήσεις όταν σου δείξω που βρίσκεται το σφάλμα σου ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Ο Γαλιλαίος,

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

x (t) u (t) = x 0 u 0 e 2t,

x (t) u (t) = x 0 u 0 e 2t, Κεφάλαιο 7 Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Η ευαισθησία της λύσης μιας ΔΕ σε μεταβολές της αρχικής τιμής είναι έ- να θεμελιώδες ζήτημα στη θεωρία αλλά και στις εφαρμογές των διαφορικών εξισώσεων. Παράδειγμα 7.0.3.

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 1. Η μονοδιάστατη γραμμική δυναμική. *

ΠΑΡΑΔΕΙΓΜΑ 1. Η μονοδιάστατη γραμμική δυναμική. * ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 9 Ι. ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΔΥΝΑΜΙΚΗΣ Τα παραδείγματα που ακολουθούν αφορούν μονοδιάστατους χώρους καταστάσεων όπου ο νόμος της εξέλιξης εκφράζεται

Διαβάστε περισσότερα

Τροχιές της δισδιάστατης γραμμικής δυναμικής στην περιοχή των υπερβολικών καταστάσεων ισορροπίας. Σάγματα - saddles

Τροχιές της δισδιάστατης γραμμικής δυναμικής στην περιοχή των υπερβολικών καταστάσεων ισορροπίας. Σάγματα - saddles ΜΑΘΗΜΑ 5 ο : ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΣΤΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΙΣΟΡΡΟΠΙΑΣ (ΘΕΩΡΗΜΑ HARTMAN-GROBMAN Το θεώρημα των D M Grbman (959 και P Harman (960 δηλώνει ότι η εξελικτική ροή κάθε μη γραμμικής δυναμικής έχει τοπικά ίδια

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις

Συνήθεις Διαφορικές Εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μεταπτυχιακό Μάθημα: Συνήθεις Διαφορικές Εξισώσεις Καθηγητές: Α Μπούντης - Σ Πνευματικός Ακαδημαϊκό έτος 11-1 ΕΞΕΤΑΣΗ ΙΟΥΝΙΟΥ ΤΟ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΤΥΠΟ ΤΩΝ LOKA-VOLERRA

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος 2010-11 * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ Ο όρος δυναμικό σύστημα δηλώνει κάθε σύστημα, φυσικό,

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Πρώτα απ όλα θέλουμε να βρούμε και να εξηγήσουμε έναν ορισμό που να ταιριάζει όσο το δυνατό καλύτερα στα φυσικά φαινόμενα Και η πεποίθησή μας θα ενισχυθεί

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος 010-11 Μάθημα: ΜΗΧΑΝΙΚΗ Καθηγητές: Σ Πνευματικός Α Μπούντης ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Α ΚΕΦΑΛΑΙΟΥ Τα φροντιστήρια γίνονται κάθε Δευτέρα 1100-100 και κάθε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ. 6.1 Το Θεώρημα Hartman-Grobman

Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ. 6.1 Το Θεώρημα Hartman-Grobman Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ Στο κεφάλαιο αυτό θα δούμε ότι η συμπεριφορά των λύσεων ενός δυναμικού συστήματος ẋ = f (x) κοντά σε ένα σημείο ισορροπίας x 0, καθορίζεται από το γραμμικό τμήμα

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 4 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f σε κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μεταπτυχιακό Μάθημα Ακαδημαϊκό έτος 2012-13 Καθηγητής: Σ. Πνευματικός Ο όρος δυναμικό σύστημα δηλώνει κάθε σύστημα, φυσικό, χημικό, βιολογικό, οικονομικό,

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2012-13 ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι Καθηγητής: Σ. Πνευματικός ΘΕΜΑΤΑ ΜΕΛΕΤΗΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΥ Μάθημα 2 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΤΟΥΣ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος /8/5 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Υπολογίστε το διπλό ολοκλήρωμα / I y dyd συντεταγμένες. Επίσης σχεδιάστε το χωρίο ολοκλήρωσης. Λύση: Το

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί 5 Γενικά Γραμμικοί Μετασχηματισμοί Μία σχέση μεταξύ των στοιχείων δύο συνόλων Α,Β αντιστοιχίζει στοιχεία του Α με στοιχεία του Β άλλου μέσω ενός κανόνα που μπορεί να

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος 9/8/6 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Να υπολογισθούν τα ακρότατα της συνάρτησης: y y y y 3 (, ) 3 3 3 Πεδίο ορισμού της συνάρτησης είναι το Υπολογίζουμε

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Θωμάς Ραϊκόφτσαλης 01

Θωμάς Ραϊκόφτσαλης 01 0 Α. ΕΙΑΓΩΓΗ ΘΕΜΑ Α Γ_Μ_Μ_ΑΘΡ_ΕΙ_Β_ΕΚ_9 Έστω ο μιγαδικός αριθμός i,,. Τι καλούμε:. Πραγματικό μέρος του.. Φανταστικό μέρος του.. υζυγή του. 4. Εικόνα του μιγαδικού στο μιγαδικό επίπεδο. 5. Διανυσματική

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ ΜΑΘΗΜΑ 5: ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί που δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η μαθηματική

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. (Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος )

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. (Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος 00-) Καθηγητές: Σ. Πνευματικός - Α. Μπούντης η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: * ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ Πρέπει

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, Αυγούστου 00 Θέμα. (μονάδες.5) α) [μονάδες: 0.5] Υπολογίστε

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική Κατηγορίες f.p. σε γραμμικά διαφορικά συστήματα 1 ης τάξης Έστω το γενικό

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ ΜΑΘΗΜΑ 5: Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί όπου δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ. ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) c πάνω στην οποία κινείται το σημείο Μ. M x, y. x 2λ 1 και. 3 λ Υπάρχει λ ώστε.

Β ΛΥΚΕΙΟΥ. ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) c πάνω στην οποία κινείται το σημείο Μ. M x, y. x 2λ 1 και. 3 λ Υπάρχει λ ώστε. Β ΛΥΚΕΙΟΥ ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) Του Κώστα Βακαλόπουλου Στο άρθρο που ακολουθεί παραθέτουμε μια σειρά από ασκήσεις στις οποίες συνυπάρχουν άλλοτε αρμονικά και άλλοτε ανταγωνιστικά οι δύο βασικές

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες.

14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες. 14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες. 13 η εβδομάδα (20/01/2017) Έγιναν οι ασκήσεις 31, 32, 33, 34, 36 και 37 11 η 12 η εβδομάδα

Διαβάστε περισσότερα

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού //04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 0 ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι Καθηγητής: Σ Πνευματικός Μάθημα ο ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Η Κλασική Μηχανική, ως ορθολογική

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ορθοκανονικοποίηση, Ορίζουσες, Ιδιοτιμές και Ιδιοδιανύσματα Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α. 3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέματα και Λύσεις. Ox υπό την επίδραση του δυναμικού. x 01

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέματα και Λύσεις. Ox υπό την επίδραση του δυναμικού. x 01 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 1 Θέματα και Λύσεις ΘΕΜΑ 1 Υλικό σημείο κινείται στον άξονα x' Ox υπό την επίδραση του δυναμικού 3 ax x V ( x) a x, a 3 α) Βρείτε τα σημεία ισορροπίας και την ευστάθειά τους

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα

Διαβάστε περισσότερα

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2.

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2. ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητής: Σ ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 011) 1 Από τους ακόλουθους μετασχηματισμούς του αριθμητικού χωρο-χρόνου εντοπίστε

Διαβάστε περισσότερα

ΕΞΕΤΑΣΗ 30 ης ΜΑΪΟΥ 2016

ΕΞΕΤΑΣΗ 30 ης ΜΑΪΟΥ 2016 ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μάθηµα: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητές: Α Μπούντης - Σ Πνευµατικός ΕΞΕΤΑΣΗ 0 ης ΜΑΪΟΥ 016 ΘΕΜΑ I (5 µονάδες) Στερεό Σώµα Δίνεται ο τελεστής αδράνειας I: οµμογενούς στερεού σώµματος συνεχούς

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2 AΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Βλ σχολ βιβλίο σελ 5 Α Βλ σχολ βιβλίο σελ Α Σ Σ Σ 4 Σ 5 - Λ ΘΕΜΑ Β Β Η εξίσωση () z ισοδυναμεί με την z z που είναι τριώνυμο με διακρίνουσα 4 διότι 4 Άρα οι ρίζες είναι συζυγείς μιγαδικές

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα

Διαβάστε περισσότερα