ΚΙΝΗΣΕΙΣ ΠΛΕΚΤΩΝ (INTERWOVEN) HOWELL

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΙΝΗΣΕΙΣ ΠΛΕΚΤΩΝ (INTERWOVEN) HOWELL"

Transcript

1 ΚΙΝΗΣΕΙΣ ΠΛΕΚΤΩΝ (INTERWOVEN) HOWELL Μέχρι τώρα εξετάστηκε πως μπορεί σε έναν αγώνα, ένα ζεύγος να συναντήσει όλα ή σχεδόν όλα τα άλλα ζεύγη. Έστω όμως ότι για διάφορους λόγους πρέπει το κάθε ζεύγος να συναντήσει μόνο τα μισά ή και λιγότερα από τα υπόλοιπα ζεύγη. Αυτό σημαίνει ότι τα ζεύγη πρέπει να διαχωριστούν σε δύο ίσους και κατά το δυνατόν ισοδύναμους ομίλους, αλλά θα πρέπει να παίξουν τις ίδιες διανομές, ώστε εμμέσως στο τέλος του αγώνα να μπορούν όλα τα ζεύγη να συγκριθούν μεταξύ τους. ΔΙΠΛΑ HOWELL Μια λύση θα ήταν να σχηματιστούν δύο ίδια Howell στα οποία τα τραπέζια ανά δύο (ένα από κάθε Howell) θα παίζουν από κοινού (relay) τις διανομές. Η λύση αυτή όμως έχει τρία βασικά μειονεκτήματα: Τα μισά σχεδόν σετ διανομών (Τ-1 σετ) δεν παίζονται σε κάθε γύρο, ενώ τα άλλα μισά (Τ σετ) παίζονται από κοινού (relay) ανά δύο τραπέζια. Μόνο δύο ζεύγη παραμένουν σταθερά, ενώ όλα τα υπόλοιπα ζεύγη μετακινούνται. Το κάθε ζεύγος του ενός ομίλου συγκρίνεται με το αντίστοιχο ζεύγος του άλλου ομίλου σε όλες τις διανομές. Έστω λοιπόν ότι υπάρχουν 8 τραπέζια, οπότε σχηματίζονται δύο Howell των 4 τραπεζιών, και η διάταξη της αίθουσας με την έναρξη του αγώνα θα είναι: 8-1 A A A3 6 R STB 2-3 R STB B B2 4 R 7-2 B3 6 Όπως φαίνεται, σε κάθε γύρο υπάρχουν 4 σετ διανομών που παίζονται relay και 3 σετ διανομών που δεν παίζονται. Επί πλέον μόνο δύο ζεύγη (υπογραμμισμένα) παραμένουν σταθερά και το κάθε ζεύγος του ομίλου Α συγκρίνεται συνεχώς με το αντίστοιχο ζεύγος του ομίλου Β. 4-5 A4 7 R 4-5 B4 7 Μονός αριθμός τραπεζιών Όταν ο συνολικός αριθμός των τραπεζιών είναι μονός, τότε θεωρείται ο αμέσως μεγαλύτερος ζυγός αριθμός τραπεζιών και ακολουθείται η αντίστοιχη κίνηση. Αυτό βέβαια σημαίνει ότι σε κάθε όμιλο ένα ζεύγος δεν θα υπάρχει (bye) και σύμφωνα με τις αρχές του Howell αυτό θα είναι το σταθερό ζεύγος. Επειδή δεν είναι καλό να υπάρχουν δύο bye ταυτόχρονα, και επειδή τα δύο ζεύγη που δεν παίζουν σε κάθε γύρο κάθονται στο πρώτο τραπέζι του κάθε ομίλου, μπορούν να παίξουν μεταξύ τους, βάζοντας το ζεύγος του ενός ομίλου να παίξει ΒΝ και του άλλου ομίλου ΑΔ.

2 ΠΛΕΚΤΑ (INTERWOVEN) HOWELL Εξετάζοντας μια κίνηση Howell, διαπιστώνεται ότι υπάρχουν (Τ) τραπέζια και (2Τ-1) σετ διανομών, δηλαδή τα μισά μείον ένα (Τ-1) σετ διανομών δεν παίζονται σε κάθε γύρο. Άρα υπάρχει η δυνατότητα να σχηματιστεί ένα δεύτερο Howell που θα παίζει τα σετ των διανομών αυτών καθώς και ένα επί πλέον σετ διανομών (από αυτά που ήδη παίζονται), δηλαδή θα υπάρχει μόνο ένα σετ διανομών που θα παίζεται από κοινού (relay) σε δύο τραπέζια. Εξετάζοντας τις εναλλακτικές κινήσεις Howell 4 τραπεζιών (6 συνολικά), παρατηρείται ότι ανά δύο μπορούν να συνδυαστούν για να δώσουν μια κίνηση Πλεκτού Howell: Σετ Διανομών Howell A Howell B Τραπέζια 1& Με τον ίδιο τρόπο μπορούν να σχηματιστούν Πλεκτά Howell για οποιονδήποτε αριθμό τραπεζιών, και μάλιστα σχεδόν πάντοτε τα δύο τραπέζια που παίζουν από κοινού το ίδιο σετ διανομών είναι τα τραπέζια που έχουν το σταθερό ζεύγος σε κάθε όμιλο. Εξαίρεση αποτελεί η περίπτωση των 10 τραπεζιών (2x5) οπότε στην περίπτωση των 9 τραπεζιών (2x4½) η κίνηση αλλάζει, για να μπορέσουν να συναντηθούν τα δύο ζεύγη που θα είχαν bye. Όπως φαίνεται και από το παράδειγμα, η αρίθμηση των τραπεζιών είναι ενιαία, θεωρώντας ότι το πρώτο και το τελευταίο τραπέζι είναι αυτά που περιέχουν τα δύο σταθερά ζεύγη. Επί πλέον η αρίθμηση των ζευγών στους δύο ομίλους θα πρέπει να είναι διαφορετική (βλέπε αρίθμηση των ζευγών στις κινήσεις Mitchell), για να διαχωρίζονται οι δύο όμιλοι και να αποφεύγονται πιθανά λάθη στην βαθμολογία. Οι κινήσεις αυτές βρίσκουν τέλεια εφαρμογή σε διήμερους αγώνες (βλέπε αντίστοιχο κεφάλαιο). ΑΡΧΙΚΕΣ ΘΕΣΕΙΣ ΓΙΑ 7-18 ΤΡΑΠΕΖΙΑ Αναλυτικά δίνονται οι αρχικές θέσεις και η τοποθέτηση των διανομών για τις συνηθέστερες κινήσεις Πλεκτών Howell για 7 έως και 18 τραπέζια. Σε όλες τις περιπτώσεις ζυγού αριθμού τραπεζιών σημειώνεται το relay (R), και τα σταθερά ζεύγη (υπογραμμισμένα). Τέλος τα κινητά ζεύγη μετακινούνται μέσα στον όμιλό τους όπως ακριβώς και σε μια απλή κίνηση Howell. 7 ΤΡΑΠΕΖΙΑ-7 ΓΥΡΟΙ 8 ΤΡΑΠΕΖΙΑ-7 ΓΥΡΟΙ R R

3 9 ΤΡΑΠΕΖΙΑ-9 ΓΥΡΟΙ 10 ΤΡΑΠΕΖΙΑ-9 ΓΥΡΟΙ R R R R R R ΤΡΑΠΕΖΙΑ-11 ΓΥΡΟΙ 12 ΤΡΑΠΕΖΙΑ-11 ΓΥΡΟΙ R R 13 ΤΡΑΠΕΖΙΑ-13 ΓΥΡΟΙ 14 ΤΡΑΠΕΖΙΑ-13 ΓΥΡΟΙ R R

4 15 ΤΡΑΠΕΖΙΑ-15 ΓΥΡΟΙ 16 ΤΡΑΠΕΖΙΑ-15 ΓΥΡΟΙ R R 17 ΤΡΑΠΕΖΙΑ-17 ΓΥΡΟΙ 18 ΤΡΑΠΕΖΙΑ-17 ΓΥΡΟΙ R R ΕΞΙΣΟΡΡΟΠΗΣΗ ΚΙΝΗΣΕΩΝ Σε όλες τις περιπτώσεις μονού αριθμού τραπεζιών δεν υπάρχει ούτε ένα σταθερό ζεύγος, οπότε δεν τίθεται θέμα αλλαγής προσανατολισμού. Αντιθέτως, σε όλες τις περιπτώσεις ζυγού αριθμού τραπεζιών υπάρχουν δύο σταθερά ζεύγη, τα οποία όπως φαίνεται και από τις πιο πάνω αρχικές θέσεις, κάθονται σε αντίθετο προσανατολισμό. Πρέπει λοιπόν το ένα από τα δύο αυτά ζεύγη να αλλάξει προσανατολισμό σε μερικούς γύρους ώστε να μπορέσουν να συγκριθούν μεταξύ τους.

5 Η συνήθης διαδικασία είναι το σταθερό ζεύγος με τον μεγαλύτερο αριθμό να αλλάζει προσανατολισμό και να παίζει ως ΒΝ σε κάποιον ή κάποιους γύρους, ανάλογα με τον συνολικό αριθμό των γύρων που παίζονται, σύμφωνα με τον πιο κάτω πίνακα: 8 ΤΡΑΠΕΖΙΑ - 7 ΓΥΡΟΙ Νο28 = ΒΝ 7 10 ΤΡΑΠΕΖΙΑ - 9 ΓΥΡΟΙ Νο30 = ΒΝ 8, 9 12 ΤΡΑΠΕΖΙΑ - 11 ΓΥΡΟΙ Νο32 = ΒΝ 8, 10, ΤΡΑΠΕΖΙΑ - 13 ΓΥΡΟΙ Νο34 = ΒΝ 7, 9, 12, ΤΡΑΠΕΖΙΑ - 15 ΓΥΡΟΙ Νο36 = ΒΝ 3, 6, 9, 12, ΤΡΑΠΕΖΙΑ - 17 ΓΥΡΟΙ Νο38 = ΒΝ 6, 10, 12, 13, 15, 17 ΜΕΙΩΜΕΝΟΣ ΑΡΙΘΜΟΣ ΓΥΡΩΝ Οι συνήθεις κινήσεις διαρκούν είτε 6 ή 7 γύρους των τεσσάρων διανομών, είτε 8 ή 9 γύρους των τριών διανομών, είτε 12 ή 13 γύρους των δύο διανομών. Αυτό συνεπάγεται ότι αν για παράδειγμα υπάρχουν 17 τραπέζια θεωρείται υπερβολικό να παιχτούν όλοι οι γύροι και παίζονται μόνον 13 γύροι. Όπως και στις κινήσεις Howell, όπου όταν δεν μπορούν να παιχτούν όλοι οι γύροι υπάρχει η εναλλακτική λύση των Μειωμένων Howell, έτσι κι εδώ υπάρχει η αντίστοιχη λύση των Μειωμένων Πλεκτών Howell ώστε όλα τα ζεύγη να παίζουν όλες τις διανομές. Αναλυτικά δίνονται οι αρχικές θέσεις και η τοποθέτηση των διανομών για τις συνηθέστερες κινήσεις Μειωμένων Πλεκτών Howell για 7 έως και 18 τραπέζια. Σε όλες τις περιπτώσεις που κάποια τραπέζια παίζουν ανά δύο από κοινού το ίδιο σετ διανομών σημειώνεται το relay (R), όπως επίσης και όλα τα σταθερά ζεύγη (υπογραμμισμένα). 10 ΤΡΑΠΕΖΙΑ - 8 ΓΥΡΟΙ 11 ΤΡΑΠΕΖΙΑ - 9 ΓΥΡΟΙ R R R R R R R R R R R R ΤΡΑΠΕΖΙΑ - 12 ΓΥΡΟΙ (συνέχεια) R R R R

6 16 ΤΡΑΠΕΖΙΑ 12 ΓΥΡΟΙ 18 ΤΡΑΠΕΖΙΑ 12 ΓΥΡΟΙ R R R R R R R R R R R R R R R R R R R R 15 ΤΡΑΠΕΖΙΑ - 13 ΓΥΡΟΙ 16 ΤΡΑΠΕΖΙΑ - 13 ΓΥΡΟΙ R R R R R R R R R

7 17 ΤΡΑΠΕΖΙΑ - 13 ΓΥΡΟΙ 18 ΤΡΑΠΕΖΙΑ - 13 ΓΥΡΟΙ R R R R R R R R R R R R R R R R R R ΕΞΙΣΟΡΡΟΠΗΣΗ ΚΙΝΗΣΕΩΝ Σε όλες τις περιπτώσεις υπάρχουν περισσότερα από ένα σταθερά ζεύγη, οπότε πάντοτε τίθεται θέμα αλλαγής προσανατολισμού. Πρέπει λοιπόν τα σταθερά ζεύγη να αλλάξουν προσανατολισμό σε μερικούς γύρους ώστε να μπορέσουν να συγκριθούν μεταξύ τους, ανάλογα με τον συνολικό αριθμό των γύρων που παίζονται, σύμφωνα με τον πιο κάτω πίνακα: 10 ΤΡΑΠΕΖΙΑ - 8 ΓΥΡΟΙ 9 = ΑΔ = ΒΝ = ΒΝ 2, 3, 6, 7 11 ΤΡΑΠΕΖΙΑ - 9 ΓΥΡΟΙ 10 & 30 = ΒΝ 3, 6, 9 11 & 31 = ΑΔ 2, 5, 8 14 ΤΡΑΠΕΖΙΑ - 12 ΓΥΡΟΙ 13 = ΑΔ 3, 4, 7, 8, 11, = ΒΝ 2, 4, 5, 6, 10, = ΒΝ 2, 3, 6, 7, 10, ΤΡΑΠΕΖΙΑ - 12 ΓΥΡΟΙ = ΑΔ 8, 10, = ΒΝ 7, 9, ΤΡΑΠΕΖΙΑ - 12 ΓΥΡΟΙ = ΑΔ 7, 8, = ΒΝ 6, 7, ΤΡΑΠΕΖΙΑ - 13 ΓΥΡΟΙ 15 & 34 = ΑΔ & 35 = ΒΝ ΤΡΑΠΕΖΙΑ - 13 ΓΥΡΟΙ 15 & 34 = ΑΔ & 35 & 36 = ΒΝ ΤΡΑΠΕΖΙΑ - 13 ΓΥΡΟΙ = ΑΔ 6, 7, 12, = ΒΝ 5, 6, 11, ΤΡΑΠΕΖΙΑ - 13 ΓΥΡΟΙ = ΑΔ 6, 7, 12, = ΒΝ 5, 6, 11, 12

8

9

10

11

12

13

14

15

16

17

18

19

Ισορροπία (balance) Οι ιδιότητες που δημιουργεί η μέθοδος του ακεραίου τοπ.

Ισορροπία (balance) Οι ιδιότητες που δημιουργεί η μέθοδος του ακεραίου τοπ. Ισορροπία (balance) Ένας όρος που χρησιμοποιείται συχνά σε θέματα κινήσεων είναι η ισορροπία (balance). Για να προχωρήσουμε παρακάτω πρέπει να ξέρουμε πως να βγάζουμε αποτελέσματα σε ένα τουρνουά ζευγών

Διαβάστε περισσότερα

Κινήσεις σε Ημερίδες Μπριτζ

Κινήσεις σε Ημερίδες Μπριτζ Κινήσεις σε Ημερίδες Μπριτζ Τάκης Πουρναράς Σεμινάριο Νέων Διαιτητών 206 Εισαγωγή Κινήσεις σε Αγώνες Μπριτζ Λόγοι μελέτης των κινήσεων Για να δίνουμε σαφείς και κατανοητές οδηγίες. Για να μην απαιτείται

Διαβάστε περισσότερα

Οργάνωση μαθητικών ημερίδων ζευγών

Οργάνωση μαθητικών ημερίδων ζευγών Οργάνωση μαθητικών ημερίδων ζευγών Εισαγωγή Ένα από τα δυσκολότερα ερωτήματα που πρέπει να απαντήσετε σαν δάσκαλος είναι: Πόσο χρόνο θέλετε να διαρκεί η μαθητική ημερίδα σας; Φαίνεται απλό να απαντήσετε,

Διαβάστε περισσότερα

Οργάνωση καθημερινών ημερίδων

Οργάνωση καθημερινών ημερίδων Οργάνωση καθημερινών ημερίδων 1) Αγώνες ζευγών 1α) Διαθέσιμες κινήσεις: Φιλοσοφία, μηχανισμοί και τα χαρακτηριστικά τους. Οι κινήσεις είναι ένα από τα βασικότερα εργαλεία που έχει ένας διαιτητής στη διάθεσή

Διαβάστε περισσότερα

Οργάνωση πρωταθλημάτων ζευγών

Οργάνωση πρωταθλημάτων ζευγών α ) Εισαγωγή Οργάνωση πρωταθλημάτων ζευγών ) ημεροι αγώνες Μια μέρα, ο έφορος του τμήματος μπριτζ του σωματείου σας, σας ανακοινώνει ότι ήρθε η ώρα να κάνετε το πρώτο σας τριήμερο. Γεμάτος χαρά, σας ανακοινώνει

Διαβάστε περισσότερα

ΕΙΔΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΥ ΑΘΗΝΩΝ

ΕΙΔΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΥ ΑΘΗΝΩΝ Αθήνα, 10 Νοεμβρίου 2011 Αριθ. Πρωτ. 273/11/ΠΜ/ιμ 34ο ΠΑΝΕΛΛΗΝΙΟ ΠΡΩΤΑΘΛΗΜΑ ΖΕΥΓΩΝ ΚΑΤΗΓΟΡΙΩΝ 6-9 2011 ΕΙΔΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΥ ΑΘΗΝΩΝ Μετά τις δηλώσεις συμμετοχής και λαμβανομένων υπόψη των διατάξεων

Διαβάστε περισσότερα

Εξετάσεις Εκπαιδευτών

Εξετάσεις Εκπαιδευτών ΣΕΠΤΕΜΒΡΙΟΣ 2016 Εξετάσεις Εκπαιδευτών ΕΠΙΤΡΟΠΗ ΕΚΠΑΙΔΕΥΣΗΣ ΟΜΑΔΑ ΔΙΕΝΕΡΓΕΙΑΣ ΕΞΕΤΑΣΕΩΝ [0] 1. Διαιτησία. Σε μαθητική ημερίδα έχετε 6 ζεύγη και 16 διανομές (ένα σετ). Αναφέρατε δύο κινήσεις που μπορείτε

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΦΙΛΑΘΛΟΣ ΟΜΟΣΠΟΝΔΙΑ (ΕΦΟΑ) ΔΙΑΣΥΛΛΟΓΙΚΟ ΠΡΩΤΑΘΛΗΜΑ Α και Β ΕΘΝΙΚΗΣ ΑΝΔΡΩΝ ΓΥΝΑΙΚΩΝ 2017

ΕΛΛΗΝΙΚΗ ΦΙΛΑΘΛΟΣ ΟΜΟΣΠΟΝΔΙΑ (ΕΦΟΑ) ΔΙΑΣΥΛΛΟΓΙΚΟ ΠΡΩΤΑΘΛΗΜΑ Α και Β ΕΘΝΙΚΗΣ ΑΝΔΡΩΝ ΓΥΝΑΙΚΩΝ 2017 ΕΛΛΗΝΙΚΗ ΦΙΛΑΘΛΟΣ ΟΜΟΣΠΟΝΔΙΑ (ΕΦΟΑ) ΔΙΑΣΥΛΛΟΓΙΚΟ ΠΡΩΤΑΘΛΗΜΑ Α και Β ΕΘΝΙΚΗΣ ΑΝΔΡΩΝ ΓΥΝΑΙΚΩΝ 2017 Α ΕΘΝΙΚΗ ΚΑΤΗΓΟΡΙΑ Στο Πρωτάθλημα της Α Εθνικής συμμετέχουν 12 ομάδες της προηγούμενης χρονιάς και 4 ομάδες

Διαβάστε περισσότερα

Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι.

Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι. Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι. Βασικοί Κανόνες Τα πλακίδια ανακατεύονται και τοποθετούνται με την όψη προς τα κάτω στο

Διαβάστε περισσότερα

Πίστας Αγώνα Αρχικών Στοιχημάτων Βοηθήματος Παικτών Πρώτου Παίκτη Τούρμπο Πρώτο στοίχημα: Κατασκευή της πίστας:

Πίστας Αγώνα Αρχικών Στοιχημάτων Βοηθήματος Παικτών Πρώτου Παίκτη Τούρμπο Πρώτο στοίχημα: Κατασκευή της πίστας: Η χελώνα δέχτηκε την απαίτηση του λαγού για ρεβάνς του αγώνα και τα νέα εξαπλώθηκαν γρήγορα παντού. Ο μεγάλος αγώνας ήταν έτοιμος να ξεκινήσει και οι συμμετέχοντες ήταν πια έτοιμοι για την μεγάλη αναμέτρηση.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΓΥΝΑΙΚΩΝ 2015 24 ΙΑΝΟΥΑΡΙΟΥ 2015 ΠΡΟΚΗΡΥΞΗ

ΔΙΑΓΩΝΙΣΜΟΣ ΓΥΝΑΙΚΩΝ 2015 24 ΙΑΝΟΥΑΡΙΟΥ 2015 ΠΡΟΚΗΡΥΞΗ ΔΙΑΓΩΝΙΣΜΟΣ ΓΥΝΑΙΚΩΝ 2015 24 ΙΑΝΟΥΑΡΙΟΥ 2015 ΠΡΟΚΗΡΥΞΗ Τόπος διεξαγωγής Στο ΤΡΑΣΤ, έδρα του ομίλου Μπρίτζ Λευκωσίας. Πρόγραμμα Εγγραφή Μεχρι 8:00 μμ, Παρασκευή 23 Ιανουαρίου 2015 Πρώτο σκέλος 10:00 πμ

Διαβάστε περισσότερα

Έκδοση 5.8 ΟΡΟΙ ΠΡΟΠΟ ΚΑΙ ΣΤΟΙΧΗΜΑ

Έκδοση 5.8 ΟΡΟΙ ΠΡΟΠΟ ΚΑΙ ΣΤΟΙΧΗΜΑ ΣΥΣΤΗΜΑΤΑ ΜΕ COMPUTER Λ ί σ τ α ό ρ ω ν τ ο υ Έκδοση 5.8 ΤΟ ΚΟΡΥΦΑΙΟ ΠΡΟΓΡΑΜΜΑ ΚΑΤΑΣΚΕΥΗΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΥΠΟΛΟΓΙΣΤΗ (PC) ΓΙΑ ΤΑ ΠΑΙΧΝΙ ΙΑ: ΣΤΟΙΧΗΜΑ ΠΡΟΠΟ 14 και 7 ΤΖΟΚΕΡ ΚΙΝΟ ΛΟΤΤΟ ΠΡΟΠΟΓΚΟΛ ΕΞΤΡΑ-5 ΚΑΤΑΣΚΕΥΑΣΤΗΣ:

Διαβάστε περισσότερα

ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 5άδων BAKER ΑΣΜΘ Ο Μέγας Αλέξανδρος ΣΥΝΟΠΤΙΚΗ ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 5άδων BAKER

ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 5άδων BAKER ΑΣΜΘ Ο Μέγας Αλέξανδρος ΣΥΝΟΠΤΙΚΗ ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 5άδων BAKER Θεσσαλονίκη 23 Μαρτίου 2016 ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 5άδων BAKER ΑΣΜΘ Ο Μέγας Αλέξανδρος 2015-2016 Ο ΑΣΜΘ Μέγας Αλέξανδρος προκηρύσσει την διεξαγωγή Εσωτερικού Πρωταθλήματος Ομάδων τύπου Baker για την περίοδο

Διαβάστε περισσότερα

Οι παίκτες παίρνουν το ρόλο των χειρότερων πειρατών στο πλήρωμα ενός πλοίου. Ο καπετάνιος σας έχει στη μπούκα, επειδή είστε πολύ τεμπέληδες και

Οι παίκτες παίρνουν το ρόλο των χειρότερων πειρατών στο πλήρωμα ενός πλοίου. Ο καπετάνιος σας έχει στη μπούκα, επειδή είστε πολύ τεμπέληδες και Οι παίκτες παίρνουν το ρόλο των χειρότερων πειρατών στο πλήρωμα ενός πλοίου. Ο καπετάνιος σας έχει στη μπούκα, επειδή είστε πολύ τεμπέληδες και βλάκες για να αξίζετε μερίδιο στο ρούμι και τα λάφυρα. Επειδή

Διαβάστε περισσότερα

ΠΡΟΚΗΡΥΞΗ ΚΥΠΕΛΛΟΥ 4ΑΔΩΝ ΣΥΝΟΠΤΙΚΗ ΠΡΟΚΗΡΥΞΗ ΚΥΠΕΛΛΟΥ 4ΑΔΩΝ

ΠΡΟΚΗΡΥΞΗ ΚΥΠΕΛΛΟΥ 4ΑΔΩΝ ΣΥΝΟΠΤΙΚΗ ΠΡΟΚΗΡΥΞΗ ΚΥΠΕΛΛΟΥ 4ΑΔΩΝ Θεσσαλονίκη 6 Οκτωβίου 2016 ΠΡΟΚΗΡΥΞΗ ΚΥΠΕΛΛΟΥ 4ΑΔΩΝ 2016-2017 Ο ΑΣΜΘ Μέγας Αλέξανδρος προκηρύσσει την διεξαγωγή του Κυπέλλου για τις ομάδες που μετέχουν στο Εσωτερικό Πρωτάθλημα 4άδων για την περίοδο

Διαβάστε περισσότερα

Υπολογισμός Βαθμολογίας

Υπολογισμός Βαθμολογίας Υπολογισμός Βαθμολογίας Σταθμισμένη Βαθμολογία Διπλή Βαθμολογία Σο.Λα.Ρι.Τ.Ε. Τάκης Πουρναράς, Αθήνα, 2016 Εισαγωγή - Πότε επιδικάζουμε Ε.Β. Νόμος 12 - Διακριτικές εξουσίες του Διαιτητή Α - Δικαίωμα επιδίκασης

Διαβάστε περισσότερα

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν 1. Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών και να παραστήσετε σε ορθογώνιο σύστημα αξόνων τα αντίστοιχα σημεία. α. αν = 4ν + 3 β. αν = 2 + ( 1) ν γ. 1 1 1 1 αν = + + +... + 1 2 2

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 2άδων «9 no-tap» ΑΣΜΘ Ο Μέγας Αλέξανδρος ΣΥΝΟΠΤΙΚΗ ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 2άδων «9 no-tap»

ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 2άδων «9 no-tap» ΑΣΜΘ Ο Μέγας Αλέξανδρος ΣΥΝΟΠΤΙΚΗ ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 2άδων «9 no-tap» Θεσσαλονίκη 23 Μαρτίου 2016 ΠΡΟΚΗΡΥΞΗ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 2άδων «9 no-tap» ΑΣΜΘ Ο Μέγας Αλέξανδρος 2015-2016 Ο ΑΣΜΘ Μέγας Αλέξανδρος προκηρύσσει την διεξαγωγή Εσωτερικού Πρωταθλήματος Ομάδων 2άδων τύπου «9 no-tap»

Διαβάστε περισσότερα

Κατηγοριοποίηση των στρατηγικών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις

Κατηγοριοποίηση των στρατηγικών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις Κατηγοριοποίηση των στρατηγικών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις Στις ενότητες 4.1.3 και 4.1.4. παρουσιάσαμε την κατηγοριοποίηση των στρατηγικών της προπαίδειας και στην ενότητα 4.2.2. την

Διαβάστε περισσότερα

Προκήρυξη πρωταθλήματος S.P.M.L. CHAMPIONSHIP 2016

Προκήρυξη πρωταθλήματος S.P.M.L. CHAMPIONSHIP 2016 Προκήρυξη πρωταθλήματος S.P.M.L. CHAMPIONSHIP 2016 Ο Α.Σ.Μ. Γλυφάδας προκηρύσσει πρωτάθλημα που θα διεξάγεται κάθε Δευτέρα και Τετάρτη, ώρα 6:30 μμ στην αίθουσα του Blanos Bowling. Δικαίωμα συμμετοχής

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Τεχνολογικο Εκπαιδευτικο Ιδρυµα Πελοποννησου Σχολη Τεχνολογικων Εφαρµογων Τµηµα Μηχανικων Πληροφορικης τ.ε. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Εξάµηνο: Α ιδάσκων: Γιάννης Λιαπέρδος ιάρκεια

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,

Διαβάστε περισσότερα

Οικονομικά της Πολιτικής ή Δημόσια Επιλογή

Οικονομικά της Πολιτικής ή Δημόσια Επιλογή Οικονομικά της Πολιτικής ή Δημόσια Επιλογή Εφαρμογή των μεθόδων της οικονομικής επιστήμης για τη μελέτη της λειτουργίας των κυβερνήσεων Οι αγορές (ιδιωτική πρωτοβουλία) που αφήνονται ελεύθερες να λειτουργήσουν

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 9 ο, Τμήμα Α Γιατί νομίζετε ότι η άλγεβρα είναι το πιο σημαντικό εργαλείο που έχουμε στα μαθηματικά; Είναι ένα από τα λίγα εργαλεία των μαθηματικών που το χρησιμοποιούνε

Διαβάστε περισσότερα

Επιπρόσθετα για την δύναμη. Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973. Επιλογή μόνον για την εκπαίδευση των φοιτητών

Επιπρόσθετα για την δύναμη. Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973. Επιλογή μόνον για την εκπαίδευση των φοιτητών Επιπρόσθετα για την δύναμη Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973 Επιλογή μόνον για την εκπαίδευση των φοιτητών Εικόνα : Τα πόδια της κοπέλας σπρώχνουν κάτω καθώς πατάει πάνω

Διαβάστε περισσότερα

ΠΟΔΟΣΦΑΙΡΟ ΓΡΗΓΟΡΟ ΠΑΧΝΙΔΙ ΜΕ ΠΑΣΕΣ

ΠΟΔΟΣΦΑΙΡΟ ΓΡΗΓΟΡΟ ΠΑΧΝΙΔΙ ΜΕ ΠΑΣΕΣ ΠΟΔΟΣΦΑΙΡΟ ΓΡΗΓΟΡΟ ΠΑΧΝΙΔΙ ΜΕ ΠΑΣΕΣ Εικ. 10: Πάσα-λόμπα σε «πλέγμα» 5 παικτών με αλλαγές θέσεων. Βλέπε εικ. 10. Βλέπε εικ. 10, όπου οι παίκτες στους κύκλους αλλάζουν θέσεις με τους απέναντί τους, μετά

Διαβάστε περισσότερα

ΑΝΑΚΟΙΝΩΣΗ 12/14 Α ειδικός Κανονισμός αγώνων επιλογής Εθνικών Ομάδων Όπεν 2014

ΑΝΑΚΟΙΝΩΣΗ 12/14 Α ειδικός Κανονισμός αγώνων επιλογής Εθνικών Ομάδων Όπεν 2014 Προς όλα τα Σωματεία Μέλη Αθήνα 5 Φεβρουαρίου2014 Αριθ. Πρωτ. 24/14/ΕΕΟ/ισ ΑΝΑΚΟΙΝΩΣΗ 12/14 Α ειδικός Κανονισμός αγώνων επιλογής Εθνικών Ομάδων Όπεν 2014 Στους αγώνες επιλογής εθνικών ομάδων όπεν 2014

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ ΚΑΝΟΝΙΣΜΩΝ ΠΕΤΟΣΦΑΙΡΙΣΗΣ ΣΟΦΟΚΛΕΟΥΣ ΓΙΑΝΝΑΚΗΣ ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ, ΔΙΕΘΝΗΣ ΔΙΑΙΤΗΤΗΣ ΠΕΤΟΣΦΑΙΡΙΣΗΣ

ΣΕΜΙΝΑΡΙΟ ΚΑΝΟΝΙΣΜΩΝ ΠΕΤΟΣΦΑΙΡΙΣΗΣ ΣΟΦΟΚΛΕΟΥΣ ΓΙΑΝΝΑΚΗΣ ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ, ΔΙΕΘΝΗΣ ΔΙΑΙΤΗΤΗΣ ΠΕΤΟΣΦΑΙΡΙΣΗΣ ΣΕΜΙΝΑΡΙΟ ΚΑΝΟΝΙΣΜΩΝ ΠΕΤΟΣΦΑΙΡΙΣΗΣ ΣΟΦΟΚΛΕΟΥΣ ΓΙΑΝΝΑΚΗΣ ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ, ΔΙΕΘΝΗΣ ΔΙΑΙΤΗΤΗΣ ΠΕΤΟΣΦΑΙΡΙΣΗΣ Ο ΠΑΙΚΤΗΣ ΛΙΜΠΕΡΟ Οι Λίμπερο πρέπει να φορούν στολή (Η JACKET/BIB ΓΙΑ ΤΟΝ ΕΠΑΝΑΠΡΟΣΔΙΟΡΙΖΟΜΕΝΟ

Διαβάστε περισσότερα

Αλλαγές στο έµψυχο υλικό ή στο στυλ παιχνιδιού

Αλλαγές στο έµψυχο υλικό ή στο στυλ παιχνιδιού ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ-ΑΥΤΕΠΙΣΤΑΣΙΑ Η προετοιµασία των ποδοσφαιριστών για τη νέα αγωνιστική σεζόν Θέµατα ανάπτυξης Ο σκοπός της προετοιµασίας Η δοµή του προπονητικού

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Ο.Β.Θ. ΠΡΟΚΗΡΥΞΗ 2013 2014

Ο.Β.Θ. ΠΡΟΚΗΡΥΞΗ 2013 2014 ΕΝΑΡΞΗ: 9 Σεπτεµβρίου 2013 ΚΟΣΤΟΣ ΣΥΜΜΕΤΟΧΗΣ/ΑΓΩΝΙΣΤΙΚΗ: 12 ΗΜΕΡΑ ΑΓΩΝΙΣΤΙΚΗΣ: ευτέρα ΩΡΑ ΕΝΑΡΞΗΣ: 18:30 Τη ευτέρα, 9 Σεπτεµβρίου 2013, οι αθλητές & οι αθλήτριες που επιθυµούν θα αγωνιστούν σε 6 παιχνίδια

Διαβάστε περισσότερα

ΠΡΟΚΗΡΥΞΗ ΑΓΩΝΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ

ΠΡΟΚΗΡΥΞΗ ΑΓΩΝΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΡΟΚΗΡΥΞΗ ΑΓΩΝΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ 2016 2017 ΤΜΗΜΑ ΜΠΟΟΥΛΙΝΓΚ ΠΑΝΕΛΛΗΝΙΟ ΑΤΟΜΙΚΟ ΠΡΩΤΑΘΛΗΜΑ Θα πραγματοποιηθούν 4-6 περιφερειακοί ατομικοί γύροι στις περιφέρειες με αδειοδοτημένες αίθουσες, που θα αποδίδουν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΜΕΙΚΤΩΝ ΖΕΥΓΩΝ 2015 26 ΣΕΠΤΕΜΒΡΙΟΥ 2015

ΔΙΑΓΩΝΙΣΜΟΣ ΜΕΙΚΤΩΝ ΖΕΥΓΩΝ 2015 26 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΔΙΑΓΩΝΙΣΜΟΣ ΜΕΙΚΤΩΝ ΖΕΥΓΩΝ 2015 26 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΠΡΟΚΗΡΥΞΗ Τόπος διεξαγωγής Στο ξενοδοχείο Flamingo, έδρα του ομίλου Μπρίτζ Ζήνων, στην Λάρνακα Πρόγραμμα Εγγραφή 9:30 πμ, Σάββατο 26 Σεπτεμβρίου 2015

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 ΘΕΜΑ 1 ο (2 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 Δίνεται ο παρακάτω χάρτης πόλεων της Ρουμανίας με τις μεταξύ

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

6 ος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ «ΚΑΡΑΘΕΟΔΩΡΗ» 14 ΝΟΕΜΒΡΙΟΥ 2015 Α ΓΥΜΝΑΣΙΟΥ

6 ος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ «ΚΑΡΑΘΕΟΔΩΡΗ» 14 ΝΟΕΜΒΡΙΟΥ 2015 Α ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΡΟΔΟΠΗΣ Φιλίππου 33 69 13 ΚΟΜΟΤΗΝΗ Τηλ. 5310805 Πρόεδρος εξεταστικού 697335814 e-mail: emerodopis@gmail.com ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου

Διαβάστε περισσότερα

Προκήρυξη Παιδικού πρωταθλήματος Αντισφαίρισης

Προκήρυξη Παιδικού πρωταθλήματος Αντισφαίρισης Προκήρυξη Παιδικού πρωταθλήματος Αντισφαίρισης Ο Όμιλος Αντισφαίρισης Νίκαιας, υπό την αιγίδα της Ε Ένωσης Σωματείων Αντισφαίρισης Κεντρικής Ελλάδας και της Ελληνικής Ομοσπονδίας Αντισφαίρισης, διοργανώνει

Διαβάστε περισσότερα

14ο ΟΜΑΔΙΚΟ ΠΡΩΤΑΘΛΗΜΑ ΜΑΘΗΤΩΝ-ΜΑΘΗΤΡΙΩΝ ΘΕΣΣΑΛΟΝΙΚΗΣ - ΧΑΛΚΙΔΙΚΗΣ (ΠΡΟΚΡΙΜΑΤΙΚΗ ΦΑΣΗ 13ου ΠΑΝΕΛΛΗΝΙΟΥ ΟΜΑΔΙΚΟΥ ΠΡΩΤΑΘΛΗΜΑΤΟΣ ΜΑΘΗΤΩΝ-ΜΑΘΗΤΡΙΩΝ 2015)

14ο ΟΜΑΔΙΚΟ ΠΡΩΤΑΘΛΗΜΑ ΜΑΘΗΤΩΝ-ΜΑΘΗΤΡΙΩΝ ΘΕΣΣΑΛΟΝΙΚΗΣ - ΧΑΛΚΙΔΙΚΗΣ (ΠΡΟΚΡΙΜΑΤΙΚΗ ΦΑΣΗ 13ου ΠΑΝΕΛΛΗΝΙΟΥ ΟΜΑΔΙΚΟΥ ΠΡΩΤΑΘΛΗΜΑΤΟΣ ΜΑΘΗΤΩΝ-ΜΑΘΗΤΡΙΩΝ 2015) ΕΝΩΣΗ ΣΚΑΚΙΣΤΙΚΩΝ ΣΩΜΑΤΕΙΩΝ ΘΕΣΣΑΛΟΝΙΚΗ: ΕΣΣΘΧ: 26/10.11.2014 ΘΕΣΣΑΛΟΝΙΚΗΣ - ΧΑΛΚΙΔΙΚΗΣ Site: http://theschess.wordpress.com e-mail: saeakeam@hotmail.com Β. ΌΛΓΑΣ 285-546 55 ΤΗΛ : 2310-419 269, ΦΑΞ: 2310-417

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

EMOJITO! 7 Δίσκοι Ψηφοφορίας. 100 Κάρτες Συναισθημάτων. 1 Ταμπλό. 7 Πιόνια παικτών. 2-7 Παίκτες

EMOJITO! 7 Δίσκοι Ψηφοφορίας. 100 Κάρτες Συναισθημάτων. 1 Ταμπλό. 7 Πιόνια παικτών. 2-7 Παίκτες o Emojito! είναι ένα παιχνίδι παρέας, για 2 έως 14 άτομα, όπου οι παίκτες προσπαθούν να εκφράσουν συναισθήματα που απεικονίζονται σε κάρτες, είτε χρησιμοποιώντας το πρόσωπό τους, είτε ήχους ή και τα 2.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)/ ΟΜΑΔΑ ΠΡΩΤΗ

ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)/ ΟΜΑΔΑ ΠΡΩΤΗ ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)/29.12.2015 ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. α) Λάθος β) Σωστό γ) Λάθος δ)σωστό ε) Λάθος Α2. δ Α3. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1.α) Το εισόδημα των καταναλωτών.

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Α'Γυμνασίου Μαρίνος Παπαδόπουλος ΚΕΦΑΛΑΙΟ 1: ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. ιάταξη φυσικών αριθµών 2. Στρογγυλοποίηση 3. Πρόσθεση-Αφαίρεση-Πολλαπλασιασµός 4. υνάµεις 5. Ευκλείδεια ιαίρεση 6. ιαιρετότητα-μκ

Διαβάστε περισσότερα

4. Το βάρος ενός αντικειμένου είναι 98Ν. Πόση είναι η μάζα του; a. 9,8kg b. 46kg c. 10kg d. 1kg

4. Το βάρος ενός αντικειμένου είναι 98Ν. Πόση είναι η μάζα του; a. 9,8kg b. 46kg c. 10kg d. 1kg 1. Στη θέση Α είναι ένα ελατήριο με κρεμασμένο στην άκρη του ένα σώμα. Στη θέση Β είναι το ίδιο ελατήριο με το ίδιο σώμα στην άκρη. Τι μπορεί να συμβαίνει ώστε η επιμήκυνση στη θέση Α να μην είναι ίδια

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η ικανότητα χρήσης καθρέφτη και πηγής laser. Η κατανόηση

Διαβάστε περισσότερα

ΔΙΕΥΚΡΙΝΙΣΕΙΣ MEGA BOOSTER-ΠΟΔΟΣΦΑΙΡΟ

ΔΙΕΥΚΡΙΝΙΣΕΙΣ MEGA BOOSTER-ΠΟΔΟΣΦΑΙΡΟ ΔΙΕΥΚΡΙΝΙΣΕΙΣ MEGA BOOSTER-ΠΟΔΟΣΦΑΙΡΟ H επιβράβευση αυτή αφορά μόνο pregame στοιχήματα σε 3άδες και πάνω, σε αγορές των διοργανώσεων ΤΣΑΜΠΙΟΝΣ ΛΙΓΚ και ΓΙΟΥΡΟΠΑ ΛΙΓΚ. εφόσον έχουν απόδοση μεγαλύτερη ή

Διαβάστε περισσότερα

Κ ώ δ ι κ α ς Σ υ μ π ε ρ ι φ ο ρ ά ς ΚΜΣ Σχολική Χρονιά

Κ ώ δ ι κ α ς Σ υ μ π ε ρ ι φ ο ρ ά ς ΚΜΣ Σχολική Χρονιά Κ ώ δ ι κ α ς Σ υ μ π ε ρ ι φ ο ρ ά ς ΚΜΣ Σχολική Χρονιά 2014-2015 Το σχολείο πρέπει να δείχνει στα παιδιά ποιου είδους συμπεριφορά αναμένεται από αυτά. Ο κώδικας συμπεριφοράς καταρτίζεται από το Κεντρικό

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 7 η Βασίλης Στεφανής Αλγόριθμοι ταξινόμησης Στην προηγούμενη διάλεξη είδαμε: Binary search Λειτουργεί μόνο σε ταξινομημένους πίνακες Πώς τους ταξινομούμε? Πολλοί τρόποι. Ενδεικτικά:

Διαβάστε περισσότερα

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της. ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: α) Δεν επιτρέπεται η χρήση υπολογιστικής μηχανής. β) Δεν επιτρέπεται η χρήση διορθωτικού. γ) Να γράφετε μόνο με μπλε μελάνι. (Για τα σχήματα μπορείτε να χρησιμοποιήσετε

Διαβάστε περισσότερα

Επανάληψη ελέγχων υποθέσεων

Επανάληψη ελέγχων υποθέσεων Επανάληψη ελέγχων υποθέσεων Ποιό το πρόβλημα; Περιγραφή ενός πληθυσμού Σύγκριση δύο πληθυσμών Είδος δεδομένων; Είδος δεδομένων Ποσοτικά Ποιοτικά Ποσοτικά Ποιοτικά Ποιά παράμετρος; Z tet & δ.ε. του p Ποιά

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Ι. ΕΝΟΤΗΤΑ 2 Αποτίμηση Αποθεμάτων. Λογιστική Κόστους Ι 1

ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Ι. ΕΝΟΤΗΤΑ 2 Αποτίμηση Αποθεμάτων. Λογιστική Κόστους Ι 1 ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Ι ΕΝΟΤΗΤΑ 2 Αποτίμηση Αποθεμάτων Λογιστική Κόστους Ι 1 Συστήματα Απογραφής Τα συστήματα απογραφής που συναντάμε είναι τα εξής: Διαρκής Απογραφή Συστήματα Απογραφής Περιοδική Απογραφή

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

(Από το βιβλίο Γενική Χημεία των Ebbing, D. D., Gammon, S. D., Εκδόσεις Παπασωτηρίου )

(Από το βιβλίο Γενική Χημεία των Ebbing, D. D., Gammon, S. D., Εκδόσεις Παπασωτηρίου ) Δυνάμεις διπόλου διπόλου (Από το βιβλίο Γενική Χημεία των Ebbing, D. D., Gammon, S. D., Εκδόσεις Παπασωτηρίου ) Τα πολικά μόρια μπορούν να έλκονται αμοιβαία μέσω δυνάμεων διπόλου διπόλου. Η δύναμη διπόλου

Διαβάστε περισσότερα

Εγχειρίδιο αγορών Πάμε Στοίχημα

Εγχειρίδιο αγορών Πάμε Στοίχημα Εγχειρίδιο αγορών Πάμε Στοίχημα Περιεχόμενα: Ποδόσφαιρο.. σελ. 2 35 Μπάσκετ... σελ. 36-55 Βόλεϊ.. σελ. 56-59 Χάντμπολ.. σελ. 60-68 Μπέιζμπολ... σελ. 69-72 Χόκεϊ επί Πάγου.... σελ. 73 88 Αμερικάνικο Ποδόσφαιρο..

Διαβάστε περισσότερα

C: Από τη Θεωρία στην Εφαρµογή 2 ο Κεφάλαιο

C: Από τη Θεωρία στην Εφαρµογή 2 ο Κεφάλαιο C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 2 ο Τύποι Δεδοµένων Δήλωση Μεταβλητών Έξοδος Δεδοµένων Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Μνήµη και Μεταβλητές Σχέση Μνήµης Υπολογιστή και Μεταβλητών Η µνήµη (RAM) ενός

Διαβάστε περισσότερα

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει

Διαβάστε περισσότερα

Α. Αναλυτικές δοκιμές 1. Δοκιμές διάκρισης. 2. Περιγραφικές δοκιμές. Β. Δοκιμές προτίμησης και αποδοχής

Α. Αναλυτικές δοκιμές 1. Δοκιμές διάκρισης. 2. Περιγραφικές δοκιμές. Β. Δοκιμές προτίμησης και αποδοχής Α. Αναλυτικές δοκιμές 1. Δοκιμές διάκρισης α) δοκιμές διαφοράς β) δοκιμές ευαισθησίας 2. Περιγραφικές δοκιμές Β. Δοκιμές προτίμησης και αποδοχής Ο οργανοληπτικός έλεγχος εφαρμόζεται στη βιομηχανία τροφίμων,

Διαβάστε περισσότερα

www.arnos.gr κλικ στη γνώση Τιμολόγηση

www.arnos.gr κλικ στη γνώση Τιμολόγηση ΚΕΦΑΛΑΙΟ 8 Τιμολόγηση Παράγοντες επηρεασμού της τιμής Στόχος της τιμολογιακής πολιτικής πρέπει να είναι ο καθορισμός μιας ιδανικής τιμής η οποία θα ικανοποιεί τόσο τους πωλητές όσο και τους αγοραστές.

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

Διάλεξη 3. Προτιµήσεις. Ορθολογισµός στην οικονοµική. Σχέσεις προτιµήσεων

Διάλεξη 3. Προτιµήσεις. Ορθολογισµός στην οικονοµική. Σχέσεις προτιµήσεων Ορθολογισµός στην οικονοµική Διάλεξη 3 Προτιµήσεις!1 Υπόθεση συµπεριφοράς: Ένας λήπτης αποφάσεων επιλέγει πάντοτε τον πλέον προτιµώµενο συνδυασµό από το σύνολο των εναλλακτικών συνδυασµών που έχει στη

Διαβάστε περισσότερα

Το 1ο βήμα ανανέωσης. Νέα οθόνη ΚΙΝΟ. Επίσημη οθόνη στατιστικών ΚΙΝΟ από τον ΟΠΑΠ

Το 1ο βήμα ανανέωσης. Νέα οθόνη ΚΙΝΟ. Επίσημη οθόνη στατιστικών ΚΙΝΟ από τον ΟΠΑΠ ΚΙΝΟ BONUS Το 1ο βήμα ανανέωσης Νέα οθόνη ΚΙΝΟ Επίσημη οθόνη στατιστικών ΚΙΝΟ από τον ΟΠΑΠ Το 2 ο βήμα ανανέωσης Δελτίο με 4 Βήματα για τον «Άπειρο Παίκτη» που παίζει πρώτη φορά Δελτίο με περισσότερες

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΧΟΛΗΣ-----ΛΕΣΒΙΑΚΟΣ ΟΜΙΛΟΣ ΙΣΤΙΟΠΛΟΪΑΣ ΑΝΟΙΧΤΗΣ ΘΑΛΑΣΣΗΣ-----ΣΗΜΕΙΩΣΕΙΣ ΣΧΟΛΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΧΟΛΗΣ-----ΛΕΣΒΙΑΚΟΣ ΟΜΙΛΟΣ ΙΣΤΙΟΠΛΟΪΑΣ ΑΝΟΙΧΤΗΣ ΘΑΛΑΣΣΗΣ-----ΣΗΜΕΙΩΣΕΙΣ ΣΧΟΛΗΣ ΜΟΥΔΑΡΙΣΜΑ Αν ένα σκάφος ταξιδεύει άνετα με πλήρη ιστιοφορία σε άνεμο 4 μποφόρ, είναι αυτονόητο ότι σε ισχυρότερο άνεμο οι δυνάμεις που θα αναπτύσσονται στα πανιά θα είναι πολύ μεγαλύτερες. Οι δυνάμεις

Διαβάστε περισσότερα

Τελικός γύρος: C : προπονητή Τ : γυµναστή. AC : βοηθού προπονητή Μ : γιατρού ΣΕΛ. 2 ΑΠΟ 10

Τελικός γύρος: C : προπονητή Τ : γυµναστή. AC : βοηθού προπονητή Μ : γιατρού ΣΕΛ. 2 ΑΠΟ 10 Έκδοση 2009 ΜΕΤΑΦΡΑΣΗ ΕΠΙΜΕΛΕΙΑ ΑΠΟ ΤΟ ΠΡΩΤΟΤΥΠΟ ΤΗΣ FIVB ΓΙΩΡΓΟΣ ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΚΑΘΗΓΗΤΗΣ ΙΑΙΤΗΣΙΑΣ I. ΠΡΙΝ ΤΗΝ ΕΝΑΡΞΗ ΤΟΥ ΑΓΩΝΑ Ο σηµειωτής πρέπει να ελέγξει εάν έχουν συµπληρωθεί κατάλληλα οι γραµµές

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΔΙΚΤΥΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΤΕΧΝΟΛΟΓΙΑ ΔΙΚΤΥΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Όπως έχουμε ήδη αναφέρει, τα δίκτυα τεχνολογίας / χρησιμοποιούν διεύθυνση 32 bits, προκειμένου να δρομολογήσουν ένα αυτοδύναμο πακέτο στο προορισμό του. Κατά σύμβαση έχει επικρατήσει οι διευθύνσεις να

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Διαγώνισμα Έκφρασης Έκθεσης Γ Λυκείου

Διαγώνισμα Έκφρασης Έκθεσης Γ Λυκείου Διαγώνισμα Έκφρασης Έκθεσης Γ Λυκείου ΣΥΝΩΣΤΙΣΜΟΣ ΓΙΑ ΤΗΝ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ Είναι γνωστό ότι μια θέση στα Ανώτατα Εκπαιδευτικά και Τεχνολογικά Ιδρύματα αποτελεί το όνειρο χιλιάδων νέων και ίσως περισσότερο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ Σ (Το τυπολόγιο αυτό δεν αντικαθιστά το βιβλίο. Συγκεντρώνει απλώς τις ουσιώδεις σχέσεις του βιβλίου και σχολιάζει κάποια σημεία τους).

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

Μέτρο 6. Μέτρο 9. Αναλυτική προσέγγιση στο έργο του Θόδωρου Αντωνίου: Two Cadenza-like Inventiones for Solo Viola.

Μέτρο 6. Μέτρο 9. Αναλυτική προσέγγιση στο έργο του Θόδωρου Αντωνίου: Two Cadenza-like Inventiones for Solo Viola. Αναλυτική προσέγγιση στο έργο του Θόδωρου Αντωνίου: Two Cadenza-like Inventiones for Solo Viola Ανδρέας Γεωργοτάς Στόχος της ανά χείρας μελέτης είναι μια προσέγγιση στο T W O C A D E N Z A L I K E I N

Διαβάστε περισσότερα

Πανελλήνιο Πρωτάθλημα Μαθητών η ημερίδα Σάββατο 9/6

Πανελλήνιο Πρωτάθλημα Μαθητών η ημερίδα Σάββατο 9/6 Μανς - K102 Μοίρασε 5 Διανομή 1 1 3 Αντάμ: 3 Q10864 4 Q875 A8764 Q Η Δ δεν χρειάζεται να δείξει τις αφού έχει φιτ και μάλιστα μετρά K9843 AQ1062 και πόντους από κατανομή και δίνει το φιτ στο επίπεδο 3.

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Διοικητική Λογιστική Δημήτρης Μπάλιος Κοστολόγηση συνεχούς παραγωγής Πληροφορίες για το κόστος παραγωγής συγκεκριμένης περιόδου Βήμα 1ο : Προσδιορισμός της φυσικής ροής Βήμα 2ο : Προσδιορισμός των ισοδύναμων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Σκοπός της παρούσας εργασίας είναι η περαιτέρω εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Συνδυαστικής

Διαβάστε περισσότερα

Σ Π. 1 Βιβλίο Τιτανικού 60 κάρτες Επιβατών. 20 κάρτες Ενεργειών. 10 κάρτες Μελών Πληρώματος

Σ Π. 1 Βιβλίο Τιτανικού 60 κάρτες Επιβατών. 20 κάρτες Ενεργειών. 10 κάρτες Μελών Πληρώματος 14 Απριλίου 1912, ώρα 23:40, Βόρειος Ατλαντικός και το R.M.S. Τιτανικός προσκρούει σε παγόβουνο. Το νερό αμέσως πλημμυρίζει τα διαμερίσματα του κρουαζιερόπλοιου, το οποίο αρχίζει να γέρνει επικίνδυνα.

Διαβάστε περισσότερα

Πλειστηριασμός Για να πλειοδοτήσει κάποιος άξονας θα πρέπει να αναλάβει την υποχρέωση

Πλειστηριασμός Για να πλειοδοτήσει κάποιος άξονας θα πρέπει να αναλάβει την υποχρέωση Πλειστηριασμός Προκειμένου να περιγράψουμε το χέρι μας στο συμπαίκτη, χρησιμοποιούμε μια ειδική διεθνή γλώσσα τα Μπριτζικά ή Μπριτζιακά. Τα καλά νέα είναι ότι αυτή η γλώσσα έχει μόνο λίγες λεξούλες. Πλειστηριασμός

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

Εξέταση Πρώτου Τετραδίου

Εξέταση Πρώτου Τετραδίου Εξέταση Πρώτου Τετραδίου Φύλλο αξιολόγησης Μέρος Ά: Θεωρία Ερώτηση Βαθμοί 1 2 3 4 5 6 7 8 9 10 11 12 Σύνολο βαθμών Μέρος Β: Πρακτική Τραγούδι Βαθμοί 1 2 3 4 Σύνολο βαθμών 1 Μέρος Ά: Θεωρία (Σύνολο βαθμών

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις

Ευθύγραμμες Κινήσεις Οι παρακάτω σημειώσεις διανέμονται υπό την άδεια: Creaive Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές. 1 Θέση και Σύστημα αναφοράς Στην καθημερινή μας ζωή για να περιγράψουμε

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

δ. Έντυπο προγράμματος - κουπόνι (χαρακτηριστικά κουπονιού) ε. Ηλεκτρονικό έντυπο προγράμματος στο www.opap.gr (χαρακτηριστικά)

δ. Έντυπο προγράμματος - κουπόνι (χαρακτηριστικά κουπονιού) ε. Ηλεκτρονικό έντυπο προγράμματος στο www.opap.gr (χαρακτηριστικά) Ατζέντα α. Εισαγωγή β. Νέο δελτίο (χαρακτηριστικά νέου δελτίου) γ. Ηλεκτρονικό δελτίο (Coronis) δ. Έντυπο προγράμματος - κουπόνι (χαρακτηριστικά κουπονιού) ε. Ηλεκτρονικό έντυπο προγράμματος στο www.opap.gr

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Το διαστημόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3-2016 1 Σκοπός Σε αυτή την άσκηση ο φοιτητής χειρίζεται βασικά οπτικά όργανα όπως είναι οι λεπτοί φακοί. Στο πρώτο μέρος υπολογίζεται η εστιακή απόσταση

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν; ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2015 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2015 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 07 Μαρτίου 2015 Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Σχολείο: Τάξη/Τμήμα: Εξεταστικό Κέντρο: Πειραματικό Μέρος Θέμα 1 ο Μαθητές διαβάζουν, ο ένας μετά τον άλλο, τις ενδείξεις του

Διαβάστε περισσότερα