ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες"

Transcript

1 ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης

2 Ε ανάληψη Μερική αρατηρησιµότητα POMDPs βέλτιστες πολιτικές µετατροπή σε MDP Θεωρία αιγνίων στρατηγικές ισορροπίες Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 2

3 Σήµερα Στρατηγικές MaxiMin παιχνίδια µηδενικού αθροίσµατος αλγόριθµος µαθηµατικού προγραµµατισµού Παιχνίδια µη µηδενικού αθροίσµατος επαναλαµβανόµενα Μαρκωβιανά αιχνίδια µοντελοποίηση σχεδιασµός µάθηση Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 3

4 Στρατηγικές MaxiMin MaxiMin Strategies

5 Παιχνίδια Μηδενικού Αθροίσµατος Ε\Ο ένα δύο ένα E= +2, O= 2 E= 3, O= +3 δύο E= 3, O= +3 E= +4, O= 4 Zero-Sum Games οι απολαβές σε κάθε περίπτωση έχουν άθροισµα ίσο µε 0 συµµετρικότητα: αρκεί να εξεταστούν οι απολαβές ενός παίκτη παίκτες: µεγιστοποιητής και ελαχιστοποιητής γενικότερα, παιχνίδια σταθερού αθροίσµατος MaxiMin (von Neumann, 1928) µέθοδος εύρεσης βέλτιστης µικτής στρατηγικής για zero-sum Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 5

6 Παράδειγµα MaxiMin Συλλογιστική αν ο ένας παίκτης αποκαλύψει τη στρατηγική του πριν παίξει ο άλλος; από αµιγείς στρατηγικές: χρησιµότητα παιχνιδιού 3 U +2 αν ο 1ος παίκτης παίζει µικτή στρατηγική, τι γίνεται; ο 2ος παίκτης παίζοντας αµιγή στρατηγική δεν µπορεί να χάσει! 2ος παίκτης: αµιγείς στρατηγικές [ένα] ή [δύο] u ένα ή u δύο 2ος παίκτης: µικτή στρατηγική [p: ένα, 1-p: δύο] pu ένα +(1-p)u δύο Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 6

7 Παράδειγµα MaxiMin 1ος αίκτης µικτή στρατηγική παραµετροποιηµένη επιλογή (p,q) 2ος αίκτης αµιγής στρατηγική Ο: ένα, αν p<7/12, αλλιώς δύο E: ένα, αν q>7/12, αλλιώς δύο Bέλτιστη ε ιλογή 1ος παίκτης E: p=7/12 1ος παίκτης Ο: q=7/12 ισορροπία maximin (και Nash) Χρησιµότητα αιχνιδιού U = 1/12 (προτιµότερος ο Ο) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 7

8 MaxiMin Θεώρηµα von Neumann όλα τα παιχνίδια µηδενικού αθροίσµατος µε δύο παίκτες έχουν ισορροπία maximin όταν επιτρέπονται µικτές στρατηγικές κάθε ισορροπία Nash είναι ένα σηµείο maximin και για τους δύο Γενικός αλγόριθµος n δυνατές ενέργειες για κάθε παίκτη µικτή στρατηγική: σηµείο στις n διαστάσεις καµπύλες χρησιµότητας: υπερεπίπεδα (hyperplanes), όχι ευθείες απαλοιφή των κυριαρχούµενων αµιγών στρατηγικών 2ου παίκτη βέλτιστη επιλογή: µέγιστο σηµείο τοµής υπερεπιπέδων πρόβληµα γραµµικού προγραµµατισµού (linear programming) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 8

9 Βέλτιστη Στρατηγική MaxiMin MaxiMin µικτή στρατηγική [7/12: ένα, 5/12: δύο] (µεγιστοποιητής) κοινή γνώση και για τους δύο ορθολογικό να υιοθετήσουν και οι δύο την ίδια στρατηγική αναµενόµενη χρησιµότητα για Ε: U=-1/12 συντηρητική στρατηγική Παράδοξο έστω ότι ο ένας µόνο παίκτης αλλάζει σε αµιγή στρατηγική η αναµενόµενη χρησιµότητα παραµένει U=-1/12 η µονοµερής αλλαγή δεν επηρεάζει αρνητικά τη χρησιµότητα αν ο άλλος παίκτης το ξέρει µπορεί να το εκµεταλλευτεί Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 9

10 Παιχνίδια Games

11 Παιχνίδια Μη Μηδενικού Αθροίσµατος Βέλτιστη στρατηγική µικτή στρατηγική ισορροπία Nash Αλγόριθµος απαρίθµηση δυνατών υποσυνόλων ενεργειών για µικτές στρατηγικές προφίλ στρατηγικών µε 1, 2, 3, 4,... το πολύ ενέργειες εκθετικός αριθµός συνδυασµών για κάθε προφίλ στρατηγικών, έλεγχος για ισορροπία πρόβληµα µαθηµατικού προγραµµατισµού για 2 παίκτες: γραµµικός προγραµµατισµός για 3 ή περισσότερους παίκτες: µη γραµµικός προγραµµατισµός Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 11

12 Ε αναλαµβανόµενα Παιχνίδια Repeated Games πεπερασµένες επαναλήψεις ενός παιχνιδιού ίδιες διαθέσιµες επιλογές σε κάθε επανάληψη γνωστό το ιστορικό των προηγούµενων αποφάσεων προσθετικές απολαβές από όλες τις επαναλήψεις Πλήθος ε αναλήψεων γνωστό πλήθος επαναλήψεων άγνωστο γνωστό πλήθος επαναλήψεων άπειρες επαναλήψεις Στρατηγικές διαρκής τιµωρία (perpetual punishment) µία σου και µία µου (tit for tat) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 12

13 Ε αναλαµβανόµενα Παιχνίδια Α \Β οµολογία άρνηση οµολογία A= 5, B= 5 A= 10, B= 0 άρνηση A= 0, B= 10 A= 1, B= γύρους ισορροπία κυρίαρχης στρατηγικής [οµολογία, οµολογία] αναµενόµενες απολαβές: % ε όµενος γύρος στρατηγική: άρνηση, εκτός κι αν ο άλλος έχει επιλέξει οµολογία απολαβές: -100, όσο δεν επιλέξει κανείς οµολογία, αλλιώς 999 στρατηγική: άρνηση, αναπαραγωγή προηγούµενης επιλογής του άλλου Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 13

14 Μαρκωβιανά Παιχνίδια Markov Games

15 Zero-Sum Markov Games Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 15

16 MiniMax Optimality Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 16

17 Bellman Equation for MGs Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 17

18 Bellman Optimality Equation for MGs Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 18

19 MiniMax (Greedy) Policy over Q Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 19

20 [Littman, 1994] ΕΚΠ 413/606 Αυτόνοµοι Πράκτορες 2007 Example: RPS Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 20

21 Planning in MGs Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 21

22 Μάθηση σε Μαρκωβιανά Παίγνια Learning in Markov Games

23 MiniMaxQ Learning [Littman, 1994] Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 23

24 Linear ApproximationArchitectures Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 24

25 Implied MiniMax Policy Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 25

26 LSTDQ for Zero-Sum MGs Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 26

27 LSPI for Zero-Sum MGs Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 27

28 Simplified Soccer Game Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 28

29 Learning Parameters Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 29

30 4x4 Soccer against Optimal Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 30

31 8x8 Soccer against Benchmark Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 31

32 Generalization to 40x40 Soccer Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 32

33 Router-Server Flow Control Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 33

34 Learning Parameters Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 34

35 Results Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 35

36 Μελέτη Σύγγραµµα Ενότητα 17.6 Άρθρα M. Littman, Markov Games as a Framework for Multi-Agent Reinforcement Learning, International Conference on Machine Learning, M. Lagoudakis and Ronald Parr, Value Function Approximation in Zero-Sum Markov Games, Uncertainty in Artificial Intelligence, Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 36

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Μερική Παρατηρησιµότητα Θεωρία Παιγνίων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Reinforcement Learning (RL)

Διαβάστε περισσότερα

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενο Μάθηµα: Κυρίαρχη Στρατηγική- Κυριαρχούµενη στρατηγική-nash equilibrium Μια στρατηγική

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack Χλης Νικόλαος-Κοσμάς Περιγραφή παιχνιδιού Βlackjack: Σκοπός του παιχνιδιού είναι ο παίκτης

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Ενισχυτική Μάθηση Reinforcement Learning Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λήψη α οφάσεων ακολουθιακά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι...

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι... ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xv 1 Εισαγωγή 1 1.1 Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο........ 1 1.2 Μερικά Ιστορικά Στοιχεία..................... 3 1.3 Ενα Παράδοξο Παιχνίδι...................... 4 Μέρος

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές

Διαβάστε περισσότερα

ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας

ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας Ομάδα εργασίας: LAB51315282 Φοιτητής: Μάινας Νίκος ΑΦΜ: 2007030088 ΠΕΡΙΓΡΑΦΗ ΙΔΕΑΣ Η ιδέα της εργασίας βασίζεται στην εύρεση της καλύτερης πολιτικής για ένα

Διαβάστε περισσότερα

Μοντέλα των Cournotκαι Bertrand

Μοντέλα των Cournotκαι Bertrand Μοντέλα των Cournotκαι Bertrand Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τι θα πούμε Θα εξετάσουμε αναλυτικά το μοντέλο Cournot

Διαβάστε περισσότερα

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Ιστορική αναδρομή 1713 Ο Francis Waldegrave, σε ένα γράμμα του, παρουσίασε την πρώτη μικτή στρατηγική μεγίστου

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Ισορροπία Nash Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων

Αλγοριθμική Θεωρία Παιγνίων Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 4: Η τραγωδία των κοινών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 4: Η τραγωδία των κοινών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 4: Η τραγωδία των κοινών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Συνέχεια από πριν.. Στο προηγούμενο μάθημα είδαμε ότι μπορούμε να επιλύσουμε παίγνια με την μέθοδο της απαλοιφής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2006 0 ΠΕΡΙΕΧΟΜΕΝA Σελίδα ΕIΣΑΓΩΓΗ 3 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

Notes. Notes. Notes Σ -1,-1-9,0 Π 0,-9-6,-6. Notes Σ Π

Notes. Notes. Notes Σ -1,-1-9,0 Π 0,-9-6,-6. Notes Σ Π Θεωρία αιγνίων-υριαρχία ώστας Ρουμανιάς Ο..Α. Τμήμα Δ. Ε. Ο.. Δεκεμβρίου 1 ώστας Ρουμανιάς (Δ.Ε.Ο..) Θεωρία αιγνίων-υριαρχία Δεκεμβρίου 1 1 / Λύσεις αιγνίων. υριαρχούμενες/υρίαρχες στρατηγικές Το δίλημμα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Λογικοί Πράκτορες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Περιορισµοί χρόνου πεπερασµένα χρονικά περιθώρια ανά κίνηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι Ροµ οτικοί Πράκτορες Αβεβαιότητα Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία είδη πρακτόρων αυτόνοµοι

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΚΟΙΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Players-Παίκτες Rules- Κανόνες. Τιµωρείσαι εάν τους παραβιάσεις.

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Βασικές Έννοιες Θεωρίας v. 01/06/2014 Παύλος Σ. Εφραιμίδης Βασικές Έννοιες Θεωρίας Περιεχόμενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός μαθηματικού μοντέλου Το δίλημμα του φυλακισμένου Σημείο ισορροπίας

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ίκτυα Bayes σηµασιολογία Πλεονεκτήµατα συµπαγής αναπαράσταση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Παύλος Σ. Εφραιμίδης Περιεχόµενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός µαθηµατικού µοντέλου Το δίληµµα του φυλακισµένου Σηµείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game theory) µας βοηθάει

Διαβάστε περισσότερα

Κεφάλαιο 5 R (2, 3) R (3, 0)

Κεφάλαιο 5 R (2, 3) R (3, 0) Κεφάλαιο 5 Θα ξεκινήσουµε το κεφάλαιο αυτό βλέποντας ένα ακόµη παράδειγµα αναφορικά µε την ισορροπία που προκύπτει από την οπισθογενή επαγωγή (backwards induction) και την ισορροπία κατά Nash στην στρατηγική

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενα Μαθήµατα: Παίχτες: είναι αυτοί που λαµβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 ) Κεφάλαιο 7ο Μιλήσαµε στο προηγούµενο κεφάλαιο για το τι θα συµβεί αν οι επιχειρήσεις ανταγωνίζονται σε τιµές. Επιπλέον µιλήσαµε για το πως αποδεικνύεται το παράδοξο του Bertrand και καθώς επίσης και για

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή

Διαβάστε περισσότερα

2). V (s) = R(s) + γ max T (s, a, s )V (s ) (3)

2). V (s) = R(s) + γ max T (s, a, s )V (s ) (3) ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Παράδοση: 5 Απριλίου 2012 Μιχελιουδάκης Ευάγγελος 2007030014 ΠΛΗ513: Αυτόνομοι Πράκτορες ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Εισαγωγή Η εργασία με

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πρόγραµµα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή ιατριβή Τίτλος ιατριβής ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΟΛΙΤΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΑ

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος Αυτόνομοι Πράκτορες Εργασία εξαμήνου Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος 2010030090 Περιγραφή του παιχνιδιού Το British square είναι ένα επιτραπέζιο

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας

Διαβάστε περισσότερα

Evolutionary Equilibrium

Evolutionary Equilibrium Evolutionary Equilibrium Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών v. 22.05.2012 Algorithmic Game Theory Evolutionary Equilibium 1 τι θα πούμε εξελικτικά

Διαβάστε περισσότερα

Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά:

Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά: Γενικοί Ορισμοί Η Θεωρία Παιγνίων (game theory) εξετάζει δραστηριότητες στις οποίες το αποτέλεσμα της απόφασης ενός ατόμου εξαρτάται όχι μόνο από τον τρόπο με τον οποίο επιλέγει ανάμεσα από διάφορες εναλλακτικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 4 Φεβρουαρίου 005 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1 ο (.5) Αναλύστε

Διαβάστε περισσότερα

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Εφαρμογή της Θεωρίας Παιγνίων στην κατανομή ισχύος σε ασύρματα δίκτυα.

Εφαρμογή της Θεωρίας Παιγνίων στην κατανομή ισχύος σε ασύρματα δίκτυα. 2012 Εφαρμογή της Θεωρίας Παιγνίων στην κατανομή ισχύος σε ασύρματα δίκτυα. ΔΗΜΗΤΡΗΣ ΜΟΣΧΟΒΙΤΗΣ 03101121 ΣΗΜΜΥ, ΕΜΠ ΑΘΗΝΑ 4/7/2012 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΘΗΝΑ, 2012 Εφαρμογή της Θεωρίας Παιγνίων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΙΑΤΜΗΜΑΤΙΚΟ Μ.Π.Σ. ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ι. ΠΟΛΥΡΑΚΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΓΚΡΑΒΑΣ Αριθµός

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 8 Σεπτεµβρίου 005 ιάρκεια εξέτασης: 3 ώρες (:00-4:00 ΘΕΜΑ ο (.5 Το παράδοξο

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σύγχρονοι Αλγόριθµοι Σχεδιασµού Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Σχεδιασµός το πρόβληµα του σχεδιασµού γλώσσα αναπαράστασης

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες

Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» Μεταπτυχιακή Διατριβή Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες Στυλιανός Θ. Δρακάτος Επιβλέπων

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire Αυτόνομοι Πράκτορες Εργασία εξαμήνου Value Iteration και Q- Learning για Peg Solitaire Μαρίνα Μαυρίκου 2007030102 1.Εισαγωγικά για το παιχνίδι Το Peg Solitaire είναι ένα παιχνίδι το οποίο παίζεται με ένα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 1 Διαδίκτυο (1) Είναι µάλλον αποδεκτό ότι το Διαδίκτυο έχει ξεπεράσει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Έλεγχος Ισχύος σε ασύρµατα δίκτυα µε εφαρµογή της Θεωρίας Παιγνίων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Έλεγχος Ισχύος σε ασύρµατα δίκτυα µε εφαρµογή της Θεωρίας Παιγνίων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑ ΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Έλεγχος Ισχύος σε ασύρµατα δίκτυα µε εφαρµογή της Θεωρίας

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Σημειώσεις μαθημάτων

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Σημειώσεις μαθημάτων ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Σημειώσεις μαθημάτων Περιεχόμενα ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ... 2 Σκοπός... 2 Μαθησιακοί στόχοι... 2 1. Παίγνια και λήψη αποφάσεων... 2 2. Μαθηματική διατύπωση παιγνίων... 6 3. Παίγνια μηδενικού αθροίσματος

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούμενα Μαθήματα: Παίχτες: είναι αυτοί που λαμβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Reinforcement Learning Competition Invasive Species Domain - αυτόνομοι Πράκτορες Γιώργος Κεχαγιάς

Reinforcement Learning Competition Invasive Species Domain - αυτόνομοι Πράκτορες Γιώργος Κεχαγιάς Reinforcement Learning Competition Invasive Species Domain - αυτόνομοι Πράκτορες 2015-16 Γιώργος Κεχαγιάς 2010030002 Ορισμός του προβλήματος Η οικονομική και η οικολογική καταστοροφή απο τα Invasive species

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Σχεδίαση μηχανισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία Κεφάλαιο 4 Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία κατά Nash είναι: (α) ένα διάνυσµα από στρατηγικές, έτσι ώστε δεδοµένων των υπολοίπων στρατηγικών, ο παίκτης

Διαβάστε περισσότερα

Αυτόνομη Πλοήγηση Θαλάσσιας Ρομποτικής Πλατφόρμας με χρήση Μεθόδων Ενισχυτικής Μάθησης. Κωνσταντίνο Τζιορτζιώτη

Αυτόνομη Πλοήγηση Θαλάσσιας Ρομποτικής Πλατφόρμας με χρήση Μεθόδων Ενισχυτικής Μάθησης. Κωνσταντίνο Τζιορτζιώτη Αυτόνομη Πλοήγηση Θαλάσσιας Ρομποτικής Πλατφόρμας με χρήση Μεθόδων Ενισχυτικής Μάθησης Η Μεταπτυχιακή Εργασία Εξειδίκευσης υποβάλλεται στην ορισθείσα από τη Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος

Διαβάστε περισσότερα

Systematic Search and Reinforcement Learning for the Board Game Turning Points. Diploma Thesis

Systematic Search and Reinforcement Learning for the Board Game Turning Points. Diploma Thesis Πολυτεχνειο Κρητης Σχολη Ηλεκτρολογων Μηχανικων Και Μηχανικων Υπολογιστων Συστηματική Αναζήτηση και Ενισχυτική Μάθηση για το Επιτραπέζιο Παιχνίδι Turning Points Διπλωματικη Εργασια του ΣΩΤΗΡΙΟΥ Σ. ΒΑΓΕΝΑ

Διαβάστε περισσότερα

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια. Kεφάλαιο 10 Θα δούµε ένα δύο παραδείγµατα να ορίσουµε/ µετρήσουµε τα υποπαίγνια και µετά θα λύσουµε και να βρούµε αυτό που λέγεται τέλεια κατά Nash ισορροπία. Εδώ θα δούµε ένα παίγνιο όπου έχουµε µια επιχείρηση

Διαβάστε περισσότερα

Χρήση του προγράμματος Gambit για την επίλυση προβλημάτων θεωρίας παιγνίων

Χρήση του προγράμματος Gambit για την επίλυση προβλημάτων θεωρίας παιγνίων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Χρήση του προγράμματος Gambit για την επίλυση προβλημάτων θεωρίας παιγνίων ΔΗΜΟΠΟΥΛΟΥ

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

1 ΤΕΤΡΑΓΩΝΙΚΑ ΠΑΙΧΝΙ ΙΑ

1 ΤΕΤΡΑΓΩΝΙΚΑ ΠΑΙΧΝΙ ΙΑ Μια Εισαγωγή στη Θεωρία Παιγνίων Κώστας Στροπωνιάτης ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ A ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΑΜΟΣ 1 Επιβλέπων Βαγγέλης Φελουζής Επιτροπή Χρήστος Νικολόπουλος Νίκος Παπαλεξίου 2 Περιεχόµενα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016 Λύσεις 2ης σειράς ασκήσεων Προθεσμία παράδοσης: 25 Ιουνίου 2016 Πρόβλημα 1.

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 213 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Μια κατασκευαστική εταιρεία ετοιμάζει την ενεργειακή μελέτη ενός

Διαβάστε περισσότερα

Αλληλεπιδράσεις πρακτόρων. Πώς σχεδιάζουμε κοινωνίες πρακτόρων;

Αλληλεπιδράσεις πρακτόρων. Πώς σχεδιάζουμε κοινωνίες πρακτόρων; Αλληλεπιδράσεις πρακτόρων Πώς σχεδιάζουμε κοινωνίες πρακτόρων; Δεν υπάρχει σύστημα ενός πράκτορα! πράκτορας οργανωσιακή σχέση πρακτόρων αλληλεπίδραση πρακτόρων σφαίρα επιρροής πράκτορα περιβάλλον 2 Δεν

Διαβάστε περισσότερα

Παίγνια. Κώστας Ρουµανιάς. Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Οικονοµικό Πανεπιστήµιο Αθηνών. 14 Μαΐου 2015

Παίγνια. Κώστας Ρουµανιάς. Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Οικονοµικό Πανεπιστήµιο Αθηνών. 14 Μαΐου 2015 Κώστας Ρουµανιάς Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Οικονοµικό ανεπιστήµιο Αθηνών 14 Μαΐου 21 Κώστας Ρουµανιάς (Ο..Α.) αίγνια 14 Μαΐου 21 1 / 6 Ορισµός Τί είναι παίγνιο; αίγνιο: Μαθηµατική (αυστηρή) αναπαράσταση/ανάλυση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 6: Εκτατική μορφή παίγνιων. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 6: Εκτατική μορφή παίγνιων. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Εκτατική μορφή παίγνιων Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ιπλωµατική Εργασία ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΑΡΓΥΡΗΣ Σ. ΚΑΛΑΝΤΖΑΚΗΣ Επιβλέπων καθηγητής : Παπαναστασίου Ιωάννης

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Ροµ οτικός Εντο ισµός Robo Localizaion Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Χρονικά ιθανοτικά µοντέλα κρυφά

Διαβάστε περισσότερα