Mechanical Metallurgy

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Mechanical Metallurgy"

Transcript

1 Mechanical Metallurg INME 606 Pabl G. Caceres Valencia Prfessr in Materials Science, B.Sc., Ph.D. (UK)

2 GENERL INFORMTION Curse Number INME 606 Curse Title Mechanical Metallurg Credit Hurs 3 (Lecture: 3hurs) Instructr Dr. Pabl G. Caceres Valencia Office Luchetti Building L Phne Etensin 358 Office Hurs M and Wed :00pm t 5:00pm e mail pcaceres@uprm.edu pcaceres@me.uprm.edu Web site

3 ssessment The curse will be assessed in the fllwing manner: Partial Eam 30% Final Eam 30% Quizzes (3)* 33% ttendance and Class Participatin 7% (*) ttal f three quizzes will be perfrmed. (**) Class ttendance (after the secnd absence pint will be deducted fr each nnauthrized absence). The participatin in class will be taken int accunt. ttendance ttendance and participatin in the lectures are mandatr and will be cnsidered in the grading. Students shuld bring calculatrs, rulers, pen and pencils t be used during the lectures. Students are epected t keep up with the assigned reading and be prepared fr the pp quizzes r t answer questins n these readings during lecture.

4 Tebks G.E. Dieter; Mechanical Metallurg; Mc Graw Hill M.. Meers and K.K. Chawla; Mechanical Metallurg: Principles and pplicatins; Prentice Hall I will als pst m lecture ntes in the web: TENTTIVES DTES Jan/9 Basic Principles Jan/8 Feb/0 Basic Elasticit Feb/8 Dislcatin Ther st Eam March/0 4 Strengthening Mechanisms pril/ 4 Fracture pril/ 5 Mechanical Prperties Jan/4 8 Stress Strain Feb/04 08 Single Crstals Feb/5 9 Strengthening Mechanisms Mar/7 N Class Hl Week pril/7 Mechanical Prperties Eam pr/8 Ma0 Mechanical Prperties Jan/ 5 Basic Elasticit Feb/ 5 Dislcatin Ther March/3 7 Strengthening Mechanisms Mar/4 8 Fracture pril /4 8 Mechanical Prperties

5 Cntent Stress and Strain Relatinships fr Elastic Behavir Elements f the Ther f Elasticit Plastic Defrmatin f Single Crstals Dislcatin Ther Strengthening Mechanisms Fracture Mechanical Prperties

6 The Cncept f Stress Uniaial tensile stress: frce F is applied perpendicular t the area (). Befre the applicatin f the frce, the crss sectin area was O Engineering stress r nminal stress: Frce divided b the riginal area. True stress: Frce divided b the instantaneus area T Engineering Strain r Nminal Strain: Change f length divided b the riginal length l l0 Δl ε l0 l0 True Strain: The rate f instantaneus increase in the instantaneus gauge length. d i ε T ln F 0 F

7 Δ Δ T i T d ln ln ln ε ε Relatinship between engineering and true stress and strain i i i T F F F * * i i ) ( ε Δ Δ i i l l ) ( ε T F We will assume that the vlume remains cnstant. ) ( ε T ) ln( ε ε T

8 Primar Tpes f Lading (a) Tensin (b) Cmpressin (c) Shear (d) Trsin (e) Flein

9 Hke s Law When strains are small, mst f materials are linear elastic. Yung s mdulus Nrmal: Δl F l E Εε Springs: the spring rate k F Δl E l E ε

10 Trsin Lading resulting frm the twist f a shaft. l r z r Z δ δ γ, l r G z r G G z z δ δ γ,, G Shear Mdulus f Elasticit Shear strain Twist Mment r Trque z z r l G r T δ δ,, r J δ rea Plar Mment f Inertia J G l T l J G T r J r T z, Thus: J r T Ma ngular spring rate: l G J T k a

11 Stress Cmpnents Nrmal Stresses,, z Shear Stresses,, z, z, z, z Frm equilibrium principles:, z, z z z Nrmal stress () : the subscript identifies the face n which the stress acts. Tensin is psitive and cmpressin is negative. Shear stress () : it has tw subscripts. The first subscript dentes the face n which the stress acts. The secnd subscript dentes the directin n that face. shear stress is psitive if it acts n a psitive face and psitive directin r if it acts in a negative face and negative directin.

12 Sign Cnventins fr Shear Stress and Strain The Shear Stress will be cnsidered psitive when a pair f shear stress acting n ppsite sides f the element prduce a cunterclckwise (ccw) trque (cuple). shear strain in an element is psitive when the angle between tw psitive faces (r tw negative faces) is reduced, and is negative if the angle is increased.

13 Fr static equilibrium, z z, z z resulting in Si independent scalar quantities. These si scalars can be arranged in a 33 matri, giving us a stress tensr. ij z z z z z The sign cnventin fr the stress elements is that a psitive frce n a psitive face r a negative frce n a negative face is psitive. ll thers are negative. The stress state is a secnd rder tensr since it is a quantit assciated with tw directins (tw subscripts directin f the surface nrmal and directin f the stress).

14 F F 3 F Cube with a Face area ij F F F F prpert f a smmetric tensr is that there eists an rthgnal set f aes, and 3 (called principal aes) with respect t which the tensr elements are all zer ecept fr thse in the diagnal. z z z z z ij 3 ' ' ij

15 Plane Stress r Biaial Stress : When the material is in plane stress in the plane, nl the and faces f the element are subject t stresses, and all the stresses act parallel t the and aes Stresses n Inclined Sectins Knwing the nrmal and shear stresses acting in the element dented b the ais, we will calculate the nrmal and shear stresses acting in the element dented b the ais.

16 O /Cs Equilibrium f frces: cting in O Sin/Cs X O X cs cs O XY sin O Sin Y O Sin Cs YX cs O Sin Cs

17 Eliminating, sec /cs and X X cs Y sin XY sin cs Y X Y XY sin cs sin cs cting in sec sin cs tancs tansin Eliminating, sec /cs and sin cs sin cs cs sin ( )

18 Transfrmatin Equatins fr Plane Stress Using the fllwing trignmetric identities: Cs ½ ( cs ) Sin ½ (- cs ) Sin cs ½ sin cs sin cs sin These equatins are knwn as the transfrmatin equatins fr plane stress.

19 Case : Uniaial stress Special Cases 0 0, Sin Cs Case : Pure Shear 0, Cs Sin cs sin sin cs

20 Case 3: Biaial stress, 0 Cs Sin

21 Eample: n element in plane stress is subjected t stresses 6000psi, 6000psi, and 4000psi (as shwn in figure belw). Determine the stresses acting n an element inclined at an angle 45 (cunterclckwise - ccw). Slutin: We will use the fllwing transfrmatin equatins: sin cs cs sin

22 Numerical substitutin ½( ) ½ ( ) 000psi ½( - ) ½ ( ) 5000psi 4000psi sin sin 90 cs cs 90 0 Then 000psi 5000psi (0) 4000psi () 5000psi - (5000psi) () (4000psi) (0) psi then psi 7,403psi 4,597 psi Ma 6, 403 psi

23 Eample: plane stress cnditin eists at a pint n the surface f a laded structure such as shwn belw. Determine the stresses acting n an element that is riented at a clckwise (cw) angle f 5 with respect t the riginal element. Slutin: We will use the fllwing transfrmatin equatins: sin cs cs sin

24 Numerical substitutin ½( ) ½ (- 46 ) - 7MPa ½( - ) ½ (- 46 ) - 9MPa - 9MPa sin sin (- 30 ) cs cs (- 30 ) then - 7MPa ( - 9MPa)(0.8660) (-9MPa)(- 0.5) - 3.6MPa - (- 9MPa) (- 0.5) (- 9MPa) (0.8660) - 3.0MPa then - 46MPa MPa (- 3.6MPa) -.4MPa

25 Eample : rectangular plate f dimensins 3.0 in 5.0 in is frmed b welding tw triangular plates (see figure). The plate is subjected t a tensile stress f 600psi in the lng directin and a cmpressive stress f 50psi in the shrt directin. Determine the nrmal stress w acting perpendicular t the line r the weld and the shear stress w acting parallel t the weld. (ssume w is psitive when it acts in tensin and w is psitive when it acts cunterclckwise against the weld).

26 Slutin Biaial stress weld jint 600psi -50psi 0 Frm the figure tan 3 / 5 arctan(3/5) arctan(0.6) We will use the fllwing cs transfrmatin equatins: sin cs Numerical substitutin ½( ) 75psi ½ ( - ) 45psi 0psi sin sin 6.9 cs cs 6.9 Then 375psi - 375psi then 600 (- 50) 375-5psi 5psi -375psi 375psi sin Θ 30.96

27 Stresses acting n the weld w 5psi w 375psi w -5psi and w 375psi

28 Principal Stresses and Maimum Shear Stresses The sum f the nrmal stresses acting n perpendicular faces f plane stress elements is cnstant and independent f the angle. cs sin X Y X Y s we change the angle there will be maimum and minimum nrmal and shear stresses that are needed fr design purpses. The maimum and minimum nrmal stresses are knwn as the principal stresses. These stresses are fund b taking the derivative f with respect t and setting equal t zer. δ ( )sin cs 0 δ tan P

29 The subscript p indicates that the angle p defines the rientatin f the principal planes. The angle p has tw values that differ b 90. The are knwn as the principal angles. Fr ne f these angles is a maimum principal stress and fr the ther a minimum. The principal stresses ccur in mutuall perpendicular planes. tan P sin P R cs P ( ) R cs fr the maimum stress P sin

30 ( ) ( ) ( ) ( ) But R R R R R R Principal stresses: The plus sign gives the algebraicall larger principal stress and the minus sign the algebraicall smaller principal stress. ( ) ( )

31 Maimum Shear Stress The lcatin f the angle fr the maimum shear stress is btained b taking the derivative f with respect t and setting it equal t zer. sin cs δ δ tan tan S S sin S cs ( )cs S ( ) cs P sin cs P R sin cs tan sin 0 P ct ( 90 P ) ( 90 ) P Therefre, s - p -90 r s p /- 45 The planes fr maimum shear stress ccurs at 45 t the principal planes. The plane f the maimum psitive shear stress ma is defined b the angle S fr which the fllwing equatins appl: P sin cs ( ) R ( P 90 ) ( 90 ) 0 s sin s and s P 45 P

32 The crrespnding maimum shear is given b the equatin nther epressin fr the maimum shear stress The nrmal stresses assciated with the maimum shear stress are equal t Equatins f a Circle General equatin Cnsider Equatin () ( ) VER VER MX MX VER ( ) ( ) ( ) cs sin cs sin cs sin

33 Equatin () ( ) cs sin cs sin Equatin () Equatin () ( ) ( ) cs sin sin cs VER ( ) ( ) ( ) ( ) ( ) cs sin cs sin cs sin cs sin sin cs sin cs R SUM ( ) ( ) R VER

34 P C ( ) R The radius f the Mhr circle is the magnitude R. Mhr Circle ( ) R The center f the Mhr circle is the magnitude ( ) VER ( ) ( ) ( ) VER

35 lternative sign cnversin fr shear stresses: (a) clckwise shear stress, (b) cunterclckwise shear stress, and (c) aes fr Mhr s circle. Frms f Mhr s Circle Nte that clckwise shear stresses are pltted upward and cunterclckwise shear stresses are pltted dwnward. a) We can plt the nrmal stress psitive t the right and the shear stress psitive dwnwards, i.e. the angle will be psitive when cunterclckwise r b) We can plt the nrmal stress psitive t the right and the shear stress psitive upwards, i.e. the angle will be psitive when clckwise. Bth frms are mathematicall crrect. We use (a)

36 Tw frms f Mhr s circle: (a) is psitive dwnward and the angle is psitive cunterclckwise, and (b) is psitive upward and the angle is psitive clckwise. (Nte: The first frm is used here)

37 Cnstructin f Mhr s circle fr plane stress.

38 Eample: t a pint n the surface f a pressurized clinder, the material is subjected t biaial stresses 90MPa and 0MPa as shwn in the element belw. Using the Mhr circle, determine the stresses acting n an element inclined at an angle 30 (Sketch a prperl riented element). Slutin ( 90MPa, 0MPa and 0MPa) Because the shear stress is zer, these are the principal stresses. Cnstructin f the Mhr s circle The center f the circle is aver ½ ( ) ½ (90 0) 55MPa The radius f the circle is R SQR[(( )/) ( ) ] R (90 0)/ 35MPa.

39 Stresses n an element inclined at 30 B inspectin f the circle, the crdinates f pint D are aver R cs 60 55MPa 35MPa (Cs 60 ) 7.5MPa - R sin 60-35MPa (Sin 60 ) MPa In a similar manner we can find the stresses represented b pint D, which crrespnd t an angle 0 ( 40 ) aver -R cs60 55MPa - 35MPa (Cs 60 ) 37.5MPa R sin 60 35MPa (Sin 60 ) 30.3MPa

40 Eample: n element in plane stress at the surface f a large machine is subjected t stresses 5000psi, 5000psi and 4000psi, as shwn in the figure. Using the Mhr s circle determine the fllwing: a) The stresses acting n an element inclined at an angle 40 b) The principal stresses and c) The maimum shear stresses. Slutin Cnstructin f Mhr s circle: Center f the circle (Pint C): aver ½ ( ) ½ ( ) 0000psi Radius f the circle: R SQR[(( )/) ( ) ] R SQR[(( )/) (4000) ] 6403psi. Pint, representing the stresses n the face f the element ( 0 ) has the crdinates 5000psi and 4000psi Pint B, representing the stresses n the face f the element ( 90 ) has the crdinates 5000psi and psi The circle is nw drawn thrugh pints and B with center C and radius R

41 Stresses n an element inclined at 40 These are given b the crdinates f pint D which is at an angle 80 frm pint. B inspectin the angle CP fr the principal stresses (pint P ) is tan CP 4000/ r Then, the angle P CD is

42 Knwing this angle, we can calculate the crdinates f pint D (b inspectin) aver R cs psi 6403psi (Cs 4.34 ) 480psi - R sin psi (Sin 4.34 ) - 430psi In an analgus manner, we can find the stresses represented b pint D, which crrespnd t a plane inclined at an angle aver - R cs psi psi (Cs 4.34 ) 590psi R sin psi (Sin 4.34 ) 430psi nd f curse, the sum f the nrmal stresses is 480psi 590psi 5000psi 5000psi

43 Principal Stresses The principal stresses are represented b pints P and P n Mhr s circle. 0000psi 6400psi 6400psi 0000psi 6400psi 3600psi The angle it was fund t be r 9.3 Maimum Shear Stresses These are represented b pint S and S in Mhr s circle. The angle CS frm pint t pint S is S This angle is negative because is measured clckwise n the circle. Then the crrespnding S value is 5.7.

44 Eample:t a pint n the surface f a generatr shaft the stresses are -50MPa, 0MPa and - 40MPa as shwn in the figure. Using Mhr s circle determine the fllwing: (a) Stresses acting n an element inclined at an angle 45, (b) The principal stresses and (c) The maimum shear stresses Slutin Cnstructin f Mhr s circle: Center f the circle (Pint C): aver ½ ( ) ½ ((-50) 0) - 0MPa Radius f the circle: R SQR[(( )/) ( ) ] R SQR[((- 50 0)/) (- 40) ] 50MPa. Pint, representing the stresses n the face f the element ( 0 ) has the crdinates -50MPa and - 40MPa Pint B, representing the stresses n the face f the element ( 90 ) has the crdinates 0MPa and 40MPa The circle is nw drawn thrugh pints and B with center C and radius R.

45 Stresses n an element inclined at 45 These stresses are given b the crdinates f pint D ( 90 f pint ). T calculate its magnitude we need t determine the angles CP and PCD. tan CP 40/304/3 CP 53.3 P CD 90 CP Then, the crdinates f pint D are aver R cs MPa 50MPa (Cs ) - 60MPa R sin MPa (Sin ) 30MPa In an analgus manner, the stresses represented b pint D, which crrespnd t a plane inclined at an angle 35 r 70-0MPa 50MPa (Cs ) 0MPa -30MPa nd f curse, the sum f the nrmal stresses is -50MPa0MPa -60MPa 0MPa

46 Principal Stresses The are represented b pints P and P n Mhr s circle. - 0MPa 50MPa 30MPa -0MPa 50MPa - 70MPa The angle CP is P r P 6.6 The angle CP is P 53.3 r P 6.6 Maimum Shear Stresses These are represented b pint S and S in Mhr s circle. The angle CS is S r 7.6. The magnitude f the maimum shear stress is 50MPa and the nrmal stresses crrespnding t pint S is -0MPa.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1 SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

Lecture 5 Plane Stress Transformation Equations

Lecture 5 Plane Stress Transformation Equations Lecture 5 Plane Stress Transformation Equations Stress elements and plane stress. Stresses on inclined sections. Transformation equations. Principal stresses, angles, and planes. Maimum shear stress. Normal

Διαβάστε περισσότερα

Class 03 Systems modelling

Class 03 Systems modelling Class 03 Systems mdelling Systems mdelling input utput spring / mass / damper Systems mdelling spring / mass / damper Systems mdelling spring / mass / damper applied frce displacement input utput Systems

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain Relationships between tress and train (Hooke s Law) When strains are small, most of materials are linear elastic. Tensile: Ε hear: Poisson s ratio Δl l Δl l Nominal lateral strain (transverse strain) Poisson

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix Matrices Review Matri Multiplication : When the number of columns of the first matri is the same as the number of rows in the second matri then matri multiplication can be performed. Here is an eample

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Lecture 8 Plane Strain and Measurement of Strain

Lecture 8 Plane Strain and Measurement of Strain P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 8 Plane Strain and Measurement of Strain Plane stress versus plane strain. Transformation equations. Principal strains and maimum shear strains. Mohr

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τομέας Υδατικών Πόρων και Περιβάλλοντος Εύα- Στυλιανή Στείρου Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations P4 Stre and Strain Dr. A.B. Zavatk HT08 Lecture 5 Plane Stre Tranformation Equation Stre element and lane tre. Stree on inclined ection. Tranformation equation. Princial tree, angle, and lane. Maimum hear

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Chapter 5 Stress Strain Relation

Chapter 5 Stress Strain Relation Chapter 5 Stress Strain Relation 5.1 General Stress Strain sstem Parallelepiped, cube F 5.1.1 Surface Stress Surface stresses: normal stress shear stress, lim A 0 ( A ) F A lim F lim A 0 A A 0 F A lim

Διαβάστε περισσότερα

Μηχανικές αρχές. Spiros Prassas National & Kapodistrian University of Athens

Μηχανικές αρχές. Spiros Prassas National & Kapodistrian University of Athens Μηχανικές αρχές 1 Σηµαντικοί παράγοντες στην εκτέλεση από µηχανικής απόψεως ικανότητα απόκτησης ύψους ικανότητα περιστροφής ικανότητα αιώρησης ικανότητα προσγείωσης Δύναµη είναι η φυσική οντότητα η οποία

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V February 5, 006 CHAPTER 0 P.P.0. 0 in(t 0 0, ω H jωl j4 0. F -j.5 jωc Hence, e circuit in e frequency dmain i a hwn belw. -j.5 Ω 4 Ω 0 0 A Ω x j4 Ω x At nde, At nde, 0 - j.5 00 (5 j4 j ( 4 x where x j4

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

1999 by CRC Press LLC

1999 by CRC Press LLC Plarikas A. D. Trignmetric and Hyperblic Fnctins The Handbk f Frmlas and Tables fr Signal Prcessing. Ed. Aleander D. Plarikas Bca Ratn: CRC Press LLC,999 999 by CRC Press LLC 43 Trignmetry and Hyperblic

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα