Curved spacetime and General Relativity

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Curved spacetime and General Relativity"

Transcript

1 Chapter 6 Curved spacetime and General Relativity 6.1 Manifolds, tangent spaces and local inertial frames A manifold is a continuous space whose points can be assigned coordinates, the number of coordinates being the dimension of the manifold [ for example a surface of a sphere is 2D, spacetime is 4D ]. A manifold is differentiable if we can define a scalar field φ at each point which can be differentiated everywhere. General Relativity. This is always true in Special Relativity and We can then define one - forms dφ as having components {φ,α φ x α } and vectors V as linear functions which take dφ into the derivative of φ along a curve with tangent V: V ( dφ ) = V φ = φ,α V α = dφ dλ. (6.1) Tensors can then be defined as maps from one - forms and vectors into the reals [ see chapter 3 ]. A Riemannian manifold is a differentiable manifold with a symmetric metric tensor g at each point such that g (V, V) > 0 (6.2) for any vector V, for example Euclidian 3D space. 65

2 CHAPTER 6. CURVED SPACETIME AND GR 66 If however g (V, V) is of indefinite sign as it is in Special and General Relativity it is called Pseudo - Riemannian. For a general spacetime with coordinates {x α }, the interval between two neighboring points is ds 2 = g αβ dx α dx β. (6.3) In Special Relativity we can choose Minkowski coordinates such that g αβ = η αβ everywhere. This will not be true for a general curved manifold. Since g αβ is a symmetric matrix, we can always choose a coordinate system at each point x 0 in which it is transformed to the diagonal Minkowski form, i.e. there is a transformation such that gᾱ β(x 0 ) = ηᾱ β = Λᾱβ xᾱ x β (6.4) (6.5) Note that the sum of the diagonal elements is conserved; this is the signature of the metric [ +2 ]. In general Λᾱβ will not diagonalize g αβ at every point since there are ten functions g αβ (x) and only four transformation functions X ᾱ(x β ). x 0 i.e. We can also choose Λᾱβ so that the first derivatives of the metric vanishes at for all α, β and γ. This implies g αβ x γ = 0 (6.6) g αβ (x µ ) = η αβ + O[(x µ ) 2 ]. (6.7) That is, the metric near x 0 is approximately that of Special Relativity, differences being of second order in the coordinates. This corresponds to the local inertial frame whose existence was deduced from the equivalence principle. In summary we can define a local inertial frame to be one where g αβ (x 0 ) = η αβ (6.8)

3 CHAPTER 6. CURVED SPACETIME AND GR 67 for all α, β, and for all α, β, γ. However g αβ,γ (x 0 ) = 0 (6.9) g αβ,γµ (x 0 ) 0 (6.10) for at least some values of α. β, γ and µ. It reflects the fact that any curved space has a flat tangent space at every point, although these tangent spaces cannot be meshed together into a global flat space. Recall that straight lines in a flat spacetime are the worldlines of free particles; the absence of first derivative terms in the metric of a curved spacetime will mean that free particles are moving on lines that are locally straight in that coordinate system. This makes such coordinates very useful for us, since the equations of physics will be nearly as simple as they are in flat spacetime, and if they are tensor equations they will be valid in every coordinate system. 6.2 Covariant derivatives and Christoffel symbols In Minkowski spacetime with Minkowski coordinates (t, x, y, z) the derivative of a vector V = V α e α is just V x β = V α x β e α, (6.11) since the basis vectors do not vary. In a general spacetime with arbitrary coordinates, e α which vary from point to point so V x β = V α x β e α + V α e α x β. (6.12) Since e α / x β is itself a vector for a given β it can be written as a linear combination of the bases vectors: e α x β = Γµ αβe µ. (6.13) The Γ s are called Christoffel symbols [ or the metric connection ]. Thus we have: V x β = V α x β e α + V α Γ µ αβe µ, (6.14)

4 CHAPTER 6. CURVED SPACETIME AND GR 68 so Thus we can write where ( ) V V α x = β x e β α + V µ Γ α µβ e α. (6.15) V x β = V α ;βe α, (6.16) V α ;β = V α,β + V µ Γ α µβ. (6.17) Let us now prove that V α ;β are the components of a 1/1 tensor. Remember in section 3.5 we found that V α,β was only a tensor under Poincaré transformations in Minkowski space with Minkowski coordinates. V α ;β is the natural generalization for a general coordinate transformation. Writing Λᾱβ xᾱ x β, we have: Now therefore so we obtain: V ᾱ; β = V ᾱ, β + V µ Γᾱ µ β = Λ µ β x (ΛᾱνV ν ) + V µ µ Γᾱ µ β = Λ µ V ν βλᾱν x + V ν Λ µ Λᾱν µ β x + V µ µ Γᾱ µ β. (6.18) e µ x β = Γ λ µ βe λ, (6.19) e µ x β wᾱ = Γ λ µ βe λ wᾱ = Γ λ µ βδᾱ λ = Γᾱ µ β, (6.20) V ᾱ; β = Λ µ V ν βλᾱν x + V ν Λ µ Λᾱν µ β x µ = Λ µ V ν βλᾱν x + V ν Λ µ Λᾱν µ β x µ = Λ µ V ν βλᾱν x + V ν Λ µ Λᾱν µ β x µ µ e µ + V wᾱ x β + Λ µ γv γ Λᾱδ w δ e µ x β + Λ µ γv γ Λᾱδ w δ Λ ɛ β x ɛ (Λν µe ν ) = Λ µ V ν βλᾱν x + V ν Λ µ Λᾱν µ β x + Λ µ γv γ µ Λᾱδ w δ Λ ɛ βλ ν e ν µ x ɛ + Λ µ γv γ Λᾱδ w δ Λ ɛ βe ν Λ ν µ x ɛ (6.21)

5 CHAPTER 6. CURVED SPACETIME AND GR 69 Now using Λ ν µλ µ γ = δ ν γ, w δ e ν = δ δ ν and Λᾱν Λν µ x ɛ = Λ ν µ Λᾱν x ɛ we obtain: V ᾱ; β = ΛᾱνΛ µ V ν β x + V ν Λ µ Λᾱν µ β x µ + ΛᾱδΛ ɛ βv ν Γ δ νɛ Λ µ Λᾱν β x V ν µ = ΛᾱνΛ µ V ν β x + ΛᾱδΛ ɛ βv ν Γ δ µ νɛ ( ) V = ΛᾱνΛ µ ν β x + V δ Γ ν µ δµ, (6.22) so V ᾱ; β = ΛᾱνΛ µ βv ν ;µ. (6.23) We have shown that V α ;β are indeed the components of a 1/1 tensor. We write this tensor as V = V α ;βe α w β. (6.24) It is called the covariant derivative of V. Using a Cartesian basis, the components are just V α,β, but this is not true in general; however for a scalar φ we have: since scalars do not depend on basis vectors. α φ φ ;α = φ x α, φ = dφ, (6.25) Writing Γ α µβ = eµ x β w α, we can find the transformation law for the components of the Christoffel symbols. This is just Γ α µβ = e µ x β wα = Λ α γ w γ Λ σ β x σ ( Λ λµ e λ = Λ α γλ σ e λ βλ λ µ w γ + Λα γλ σ x σ β w γ Λ λ µ e λ x σ = Λ α γλ σ βλ λ Γ γ µ λ σ + Λ α λλ σ Λ λ µ β (6.26) x σ Γ α µβ = xα x σ x λ Γ γ x γ x β x µ λ σ + xα 2 x λ x λ x β x. (6.27) µ We can calculate the covariant derivative of a one - form p by using the fact that p(v) is a scalar for any vector V: φ = p α V α. (6.28) )

6 CHAPTER 6. CURVED SPACETIME AND GR 70 We have β φ = φ,β = p α x V α V α + p β α x β = p α x V α + p β α V α ;β p α V µ Γ α µβ = ( ) pα x p µγ µ β αβ V α + p α V α ;β. (6.29) Since β φ and V α ;β components: are tensors, the term in the parenthesis is a tensor with p α;β = p α,β p µ Γ µ αβ. (6.30) We can extend this argument to show that β T µν T µν;β = T µν,β T αν Γ α µβ Γ µα Γ α νβ, β T µν T µν ;β = T µν ;β + T αν Γ µ αβ + T µα Γ ν αβ, β T µ ν T µ ν;β = T µ ν,β + T α νγ µ αβ T µ αγ α νβ. (6.31) 6.3 Calculating Γ α βγ from the metric Since V α ;β is a tensor we can lower the index α using the metric tensor: V α;β = g αµ V µ ;β. (6.32) But by linearity, we have: V α;β = (g αµ V µ ) ;β = g αµ;β V µ + g αµ V µ ;β. (6.33) So consistency requires g αµ;β V µ = 0. Since V is arbitrary this implies that g αµ;β = 0. (6.34) Thus the covariant derivative of the metric is zero in every frame. We next prove that Γ α βγ = Γ α γβ [ i.e. symmetric in β and γ ]. In a general frame we have for a scalar field φ: φ ;βα = φ,β;α = φ,βα Γ γ βαφ,γ. (6.35)

7 CHAPTER 6. CURVED SPACETIME AND GR 71 in a local inertial frame, this is just φ,βα 2 φ, which is symmetric in β and α. x β x α Thus it must also be symmetric in a general frame. Hence Γ γ αβ is symmetric in β and α: Γ γ αβ = Γ γ βα. (6.36) We now use this to express Γ γ αβ in terms of the metric. Since g αβ;µ = 0, we have: g αβ,µ = Γ ν αµg νβ + Γ ν βµg αν. (6.37) By writing different permutations of the indices and using the symmetry of Γ γ αβ, we get g αβ,µ + g αµ,β g βµ,α = 2g αν Γ ν βµ. (6.38) Multiplying by 1 2 gαγ and using g αγ g αν = δ γ ν gives Γ γ βµ = 1 2 gαγ (g αβ,µ + g αµ,β g βµ,α ). (6.39) Note that Γ γ βµ is not a tensor since it is defined in terms of partial derivatives. In a local inertial frame Γ γ βµ = 0 since g αβ,µ = 0. We will see later the significance of this result. 6.4 Tensors in polar coordinates The covariant derivative differs from partial derivatives even in flat spacetime if one uses non - Cartesian coordinates. This corresponds to going to a non - inertial frame. To illustrate this we will focus on two dimensional Euclidian space with Cartesian coordinates (x 1 = x, x 2 = y) and polar coordinates (x 1 = r, x 2 = θ). The coordinates are related by x = r cos θ, y = r sin θ, θ = tan ( ) ( 1 y x, r = x 2 + y 2) 1/2. (6.40) For neighboring points we have and dr = r r dx + dy = cos θdx + sin θdy, (6.41) x y dθ = θ θ dx + x y dy = 1 r sin θdx + 1 cos θdy. (6.42) r

8 CHAPTER 6. CURVED SPACETIME AND GR 72 We can represent this by a transformation matrix Λᾱβ: where Λᾱβ = dxᾱ = Λᾱβdx β, (6.43) ( ) cos θ sin θ 1 sin θ 1 cos θ. (6.44) r r Any vector components must transform in the same way. For any scalar field φ, we can define a one - form: We have dφ ( φ r, φ ) θ. (6.45) φ θ = φ x x θ + φ y y θ = r sin θ φ φ + r cos θ x y, (6.46) and φ r = φ x x r + φ y y r = cos θ φ φ + sin θ x y, (6.47) This transformation can be represented by another matrix Λ α β: φ x β = φ Λα β x, (6.48) α where ( cos θ r sin θ Λ α β = sin θ r cos θ ). (6.49) Any one - form components must transform in the same way. The matrices Λᾱβ and Λ α β are different but related: ( ) ( ) ΛᾱγΛ γ cos θ sin θ cos θ r sin θ β = 1 sin θ 1 cos θ = sin θ r cos θ r r ( ). (6.50)

9 CHAPTER 6. CURVED SPACETIME AND GR 73 This is just what you would expect since in general ΛᾱγΛ γ β = δᾱ β. The basis vectors and basis one - forms are e r = Λ α re α = Λ x re x + Λ y re y = cos θe x + sin θe y, e θ = Λ α θe α = Λ x θe x + Λ y θe y = r sin θe x + r cos θe y, (6.51) and w r = dr = Λ r α w α = Λ r x w x + Λ r y w y = cos θ w x + sin θ w y, w θ = dθ = Λ θ α w α = Λ θ x w x + Λ θ y w y = 1 r sin θ wx + 1 r cos θ wy. (6.52) Note that the basis vectors change from point to point in polar coordinates and need not have unit length so they do not form an orthonormal basis: e r = 1, e θ = r, w r = 1, w θ = 1 r. (6.53) The inverse metric tensor is: gᾱ β = ( r 2 ) (6.54) so the components of the vector gradient dφ of a scalar field φ are: (dφ) r = g αr φ,α = g rr φ,r + g rθ φ,θ = φ r, (dφ) θ = g αθ φ,α = g rθ φ,r + g θθ φ,θ = 1 r 2 φ θ. (6.55) This is exactly what we would expect from our understanding of normal vector calculus. and We also have: Since e r r = r (cos θe x + sin θe y ) = 0, (6.56) e r θ = 1 r e θ, e θ r = 1 r e θ, e θ θ = re r. (6.57) eᾱ x β = Γ µ ᾱ βe µ, (6.58)

10 CHAPTER 6. CURVED SPACETIME AND GR 74 we can work out all the components of the Christoffel symbols: Γ θ rθ = 1 r, Γθ θr = 1 r, Γr θθ = r, (6.59) and all other components are zero. Alternatively, we can work out these components from the metric [ EXERCISE ]: Γᾱ β γ = [ 1 gᾱ δ g 2 β δ, γ + g γ δ, β g β γ, δ]. (6.60) In fact this is the best way of working out the components of Γᾱ β γ, and it is the way we will adopt in General Relativity. Finally we can check that all the components of gᾱ β; γ = 0 as requited. For example g θθ;r = g θθ,r Γ µ θrg θ µ Γ µ θrg µθ = (r 2 ),r 2 r (r2 ) = 0. (6.61) 6.5 Parallel transport and geodesics A vector field V is parallel transported along a curve with tangent U = dx dλ, (6.62) where λ is the parameter along the curve [ usually taken to be the proper time τ if the curve is timelike ] if and only if in an inertial frame. Since in a general frame the condition becomes: dv α dλ = 0 (6.63) dv α dλ = V α x β dx β dλ = U β V α,β, (6.64) U β V α ;β = 0, (6.65) i.e. we just replace the partial derivatives (,) with a covariant derivative (;). This is called the comma goes to semicolon rule, i.e. work things out in a local inertial

11 CHAPTER 6. CURVED SPACETIME AND GR 75 V Timelike curve U Figure 6.1: Parallel transport of a vector V along a timelike curve with tangent U. frame and if it is a tensor equation it will be valid in all frames. The curve is a geodesic if it parallel transports its own tangent vector: U β U α ;β = 0. (6.66) This is the closest we can get to defining a straight line in a curved space. In flat space a tangent vector is everywhere tangent only for a straight line. Now U β U α ;β = 0 U β U α,β + Γ α µβu µ U β = 0. (6.67) Since U α = dxα dλ and d = U β dλ x β we can write this as d 2 x α dλ + dx µ dx β 2 Γα µβ dλ dλ = 0. (6.68) This is the geodesic equation. It is a second order differential equation for x α (λ), so one gets a unique solution by specifying an initial position x 0 and velocity U The variational method for geodesics We now apply the variational techniques to compute the geodesics for a given metric. For a curved spacetime, the proper time dτ is defined to be dτ 2 = 1 c 2 ds2 = 1 c 2 g αβdx α dx β. (6.69)

12 CHAPTER 6. CURVED SPACETIME AND GR 76 Remember in flat spacetime it was just dτ 2 = 1 c η αβdx α dx β. (6.70) 2 Therefore the proper time between two points A and B along an arbitrary timelike curve is τ AB = = B A B A dτ = B A dτ dλ dλ [ 1 g αβ (x) dxα c dλ dx β ] 1/2 dλ, (6.71) dλ so we can write the Lagrangian as and the action becomes L(x α, ẋ α, λ) = 1 c A = τ AB = [ B A g αβ (x) dxα dλ dx β ] 1/2, (6.72) dλ L(x α, ẋ α, λ)dλ. (6.73) Extremizing the action we get the Euler - Lagrange equations: L x = d ( ) L α dλ ẋ α. (6.74) Now and Since we get and L x = 1 ( dx µ g α µν 2c dλ L ẋ = 1 ( dx µ g α µν 2c dλ ( 1 dx α g αβ c dλ dx ν ) 1/2 g βγ dx β dx γ dλ x α dλ dλ (6.75) dx ν ) 1/2 dx β (2)g αβ dλ dλ. (6.76) dx β ) 1/2 = dτ dλ dλ L x = 1 dλ g βγ dx β dx γ α 2 dτ x α dλ dλ (6.77) (6.78) L ẋ α = dλ dτ g αβ dx β dλ = g αβ dx β dτ, (6.79)

13 CHAPTER 6. CURVED SPACETIME AND GR 77 so the Euler - Lagrange equations become: 1 dλ g βγ dx β dx γ 2 dτ x α dλ dλ = d dλ [ g αβ dx β dτ ]. (6.80) Multiplying by dλ dτ we obtain 1 g βγ dx β dx γ 2 x α dτ dτ = d dτ [ dx β ] g αβ dτ. (6.81) Using we get Multiplying by g δα gives dg αβ dτ 1 g βγ dx β dx γ 2 x α dτ dτ = g d 2 x β αβ dτ 2 = g αβ x γ dx γ dτ, (6.82) + g αβ dx γ dx β x γ dτ dτ. (6.83) d 2 x δ dτ 2 = gδα [ gαβ x γ 1 2 ] g βγ dx β dx γ x α dτ dτ. (6.84) Now g αβ dx β dx γ x γ dτ dτ = 1 2 [ gαβ dx β x γ dτ dx γ dτ + g αβ dx γ x γ dτ dx β ] dτ = 1 2 [ gαβ x γ + g αγ x β ] dx β dτ dx γ dτ. (6.85) Using the above result gives us d 2 x δ = 1 dτ 2 2 gδα [g αβ,γ + g αγ,β g βγ,α ] dxβ dx γ dτ dτ so we get the geodesic equation again = Γ δ dx β dx γ βγ dτ dτ, (6.86) d 2 x δ dτ 2 + dx β dx γ Γδ βγ dτ dτ = 0. (6.87) This is the equation of motion for a particle moving on a timelike geodesic in curved spacetime. Note that in a local inertial frame i.e. where Γ δ βγ = 0, the equation reduces to d 2 x δ dτ 2 = 0, (6.88)

14 CHAPTER 6. CURVED SPACETIME AND GR 78 which is the equation of motion for a free particle. The geodesic equation preserves its form if we parameterize the curve by any other parameter λ such that for constants a and b. affine. d 2 λ = 0 λ = aτ + b (6.89) dτ 2 A parameter which satisfies this condition is said to be The principle of equivalence again In Special Relativity, in a coordinate system adapted for an inertial frame, namely Minkowski coordinates, the equation for a test particle is: d 2 x α dτ 2 = 0. (6.90) If we use a non - inertial frame of reference, then this is equivalent to using a more general coordinate system [xᾱ = xᾱ(x β )]. In this case, the equation becomes where Γ α βγ d 2 x α dτ 2 + dx β dx γ Γα βγ dτ dτ = 0, (6.91) is the metric connection of g αβ, which is still a flat metric but not the Minkowski metric η αβ. The additional terms involving Γ α βγ which appear, are inertial forces. The principle of equivalence requires that gravitational forces, a well as inertial forces, should be given by an appropriate Γ α βγ. In this case we can no longer take the spacetime to be flat. The simplest generalization is to keep Γ α βγ as the metric connection, but now take it to be the metric connection of a non - flat metric. If we are to interpret the Γ α βγ as force terms, then it follows that we should regard the g αβ as potentials. The field equations of Newtonian gravitation consist of second - order partial differential equations in the potential Φ. In an analogous manner, we would expect that General Relativity also to involve second order partial differential equations in the potentials g αβ. The remaining task which will allow us to build a relativistic theory of gravitation is to construct this set of partial differential equations. We will do this shortly but first we must define a quantity that quantifies spacetime curvature.

15 CHAPTER 6. CURVED SPACETIME AND GR The curvature tensor and geodesic deviation So far we have used the local - flatness theorem to develop as much mathematics on curved manifolds as possible without having to consider curvature explicitly. In this section we will make a precise mathematical definition of curvature and discuss the remaining tools needed to derive the Einstein field equations. It is important to distinguish two different kinds of curvature: intrinsic and extrinsic. Consider for example a cylinder. Since a cylinder is round in one direction, one thinks of it as curved. It is its extrinsic curvature i.e. the curvature it has in relation to the flat three - dimensional space it is part of. On the other hand, a cylinder can be made by rolling a flat piece of paper without tearing or crumpling it, so the intrinsic geometry is that of the original paper i.e. it is flat. This means that the distance between any two points is the same as it was in the original paper. Also parallel lines remain parallel when continued; in fact all of Euclid s axioms hold for the surface of a cylinder. A 2D ant confined to that surface would decide that it was flat; only that the global topology is funny! It is clear therefore that when we talk of the curvature of spacetime, we talk of its intrinsic curvature since the worldlines [ geodesics ] of particles are confined to remain in spacetime. The cylinder, as we have just seen is intrinsically flat; a sphere, on the other hand, has an intrinsically curved surface. To see this, consider the surface of a sphere [ or balloon ] in which two neighboring lines begin at A and B perpendicular to the equator, and hence are parallel. When continued as locally straight lines they follow the arc of great circles, and the two lines meet at the pole P. So parallel lines, when continued, do not remain parallel, so the space is not flat. There is an even more striking illustration of the curvature of the surface of a sphere. Consider, first, a flat space. Let us take a closed path starting at A then going to B and C and then back to A. Let s parallel transport a vector around this loop. The vector finally drawn at A is, of course, parallel to the original one [ see Figure 6.2 ]. A completely different thing happens on the surface of a sphere! This time the vector is rotated through 90 degrees! [ see the balloon example ]. We will

16 CHAPTER 6. CURVED SPACETIME AND GR 80 B A Figure 6.2: Parallel transport around a closed loop in flat space. C now use parallel transport around a closed loop in curved space to define curvature in that space The curvature tensor Imagine in our manifold a very small closed loop whose four sides are the coordinate lines x 1 = a, x 1 = a + δa, x 2 = b, x 2 = b + δb. A vector V defined at A is parallel transported to B. From the parallel transport law e V = 0 V α it follows that at B the vector has components V α (B) = V α (A) + V α (B) = V α (A) x 1 = Γα µ1v µ, (6.92) B A x 2 =b V α x 1 dx1 Γ α µ1v µ dx 1, (6.93) where the notation x 2 = b under the integral denotes the path AB. Similar transport from B to C to D gives and V α (C) = V α (B) V α (D) = V α (C) + x 1 =a+δa x 1 =b+δb Γ α µ2v µ dx 2, (6.94) Γ α µ1v µ dx 1. (6.95) The integral in the last equation has a different sign because of the direction of transport from C to D is in the negative x 1 direction.

17 CHAPTER 6. CURVED SPACETIME AND GR 81 B x 1 =a A e^ 1 e^ 2 C x 1 =a+ δa x 2 =b D x 2 =b + δb Figure 6.3: Parallel transport around a closed loop ABCD. Similarly, the completion of the loop gives V α (A final ) = V α (D) + x 1 =a Γ α µ2v µ dx 2. (6.96) The net change in V α (A) is a vector δv α, found by adding (6.93) - (6.96). To lowest order we get δv α = V α (A final ) V α (A initial ) = Γ α µ2v µ dx 2 + x 1 =a x 2 =b+δb Γ α µ1v µ dx 1 x 1 =a+δa x 2 =b b+δb δv α = δa b x 1 (Γα µ2v mu ) dx 2 + a+δa a δaδb [ δb x 2 (Γα µ1v µ ) dx 1 x 1 (Γα µ2v µ ) + Γ α µ2v µ dx 2 Γ α µ1v µ dx 1. (6.97) ] x 2 (Γα µ1v µ ). (6.98) This involves derivatives of Γ s and of V α. The derivatives of V α can be eliminated

18 CHAPTER 6. CURVED SPACETIME AND GR 82 using for example This gives V µ x 1 = Γµ α1v α. (6.99) δv α = δaδb [Γ α µ1,2 Γ α µ2,1 + Γ α ν2γ ν µ1 Γ α ν1γ ν µ2] V µ. (6.100) To obtain this, one needs to relabel dummy indices in the terms quadratic in Γ. Notice that this just turns out to be a number times V µ summed on µ. Now the indices 1 and 2 appear because the path was chosen to go along those coordinates. It is antisymmetric in 1 and 2 because the change δv α would have the opposite sign if one went around the loop in the opposite direction. If we use general coordinate lines x σ and x λ, we find δv α = δaδb [Γ α µσ,λ Γ α µλ,σ + Γ α νλγ ν µσ Γ α νσγ ν µλ] V µ. (6.101) Defining we can write R α µλσ Γ α µσ,λ Γ α µλ,σ + Γ α νλγ ν µσ Γ α νσγ ν µλ (6.102) δv α = δaδbr α µλσv µ w λ w σ. (6.103) R α βµν are the components of a 1/3 tensor. This tensor is called the Riemann curvature tensor Properties of the Riemann curvature tensor Recall that the Riemann tensor is R α βµν Γ α βν,µ Γ α βµ,ν + Γ α σµγ σ βν Γ α σνγ σ βµ. (6.104) In a local inertial frame we have Γ α µν = 0, so in this frame R α βµν = Γ α βν,µ Γ α βµ,ν. (6.105) Now Γ α βν = 1 2 gαδ (g δβ,ν + g δν,β g βν,δ ) (6.106)

19 CHAPTER 6. CURVED SPACETIME AND GR 83 so Γ α βν,µ = 1 2 gαδ (g δβ,νµ + g δν,βµ g βν,δµ ) (6.107) since g αδ,µ = 0 i.e the first derivative of the metric vanishes in a local inertial frame. Hence R α βµν = 1 2 gαδ (g δβ,νµ + g δν,βµ g βν,δµ g δβ,µν g δµ,βν + g βµ,δν ). (6.108) Using the fact that partial derivatives always commute so that g δβ,νµ = g δβ,µν, we get R α βµν = 1 2 gαδ (g δν,βµ g δµ,βν + g βµ,δν g βν,δν ) (6.109) in a local inertial frame. Lowering the index α with the metric we get R αβµν = g αλ R λ βνν = 1 2 δδ α (g δν,βµ g δµ,βν + g βµ,δν g βν,δν ). (6.110) So in a local inertial frame the result is R αβµν = 1 2 (g αν,βµ g αµ,βν + g βµ,αν g βν,αµ ). (6.111) We can use this result to discover what the symmetries of R αβµν are. It is easy to show from the above result that R αβµν = R βαµν = R αβνµ = R µναβ (6.112) and R αβµν + R ανβµ + R αµνβ = 0. (6.113) Thus R αβµν is antisymmetric on the final pair and second pair of indices, and symmetric on exchange of the two pairs. Since these last two equations are valid tensor equations, although they were derived in a local inertial frame, they are valid in all coordinate systems. We can use these two identities to reduce the number of independent components of R αβµν from 256 to just 20.

20 CHAPTER 6. CURVED SPACETIME AND GR 84 A flat manifold is one which has a global definition of parallelism: i.e. a vector can be moved around parallel to itself on an arbitrary curve and will return to its starting point unchanged. This clearly means that R α βµν = 0, (6.114) i.e. the manifold is flat [ EXERCISE 6.5: try a cylinder! ]. An important use of the curvature tensor comes when we examine the consequences of taking two covariant derivatives of a vector field V: α β V µ = α (V µ ;β) = (V µ ;β),α + Γ µ σαv σ ;β Γ µ βαv µ ;σ. (6.115) As usual we can simplify things by working in a local inertial frame. So in this frame we get α β V µ = (V µ ;β),α = (V µ,β + Γ µ νβv ν ),α = V µ,βα + Γ µ νβ,αv ν + Γ µ νβv ν,α. (6.116) The second term of this is zero in a local inertial frame, so we obtain α β V µ = V µ,αβ + Γ µ νβ,αv ν. (6.117) Consider the same formula with the α and β interchanged: β α V µ = V µ,βα + Γ µ να,βv ν. (6.118) If we subtract these we get the commutator of the covariant derivative operators α and β : [ α, β ] V µ = α β V µ β α V µ = (Γ µ νβ,α Γ µ να,β) V ν. (6.119) The terms involving the second derivatives of V µ drop out because V µ,αβ = V ν,βα [ partial derivatives commute ].

21 CHAPTER 6. CURVED SPACETIME AND GR 85 V/ A/ ξ a V A Figure 6.4: Geodesic deviation Since in a local inertial frame the Riemann tensor takes the form R µ ναβ = Γ µ νβ,α Γ µ να,β, (6.120) we get [ α, β ] V µ = R µ ναβv ν. (6.121) This is closely related to our original derivation of the Riemann tensor from parallel transport around loops, because the parallel transport problem can be thought of as computing, first the change of V in one direction, and then in another, followed by subtracting changes in the reverse order. 6.7 Geodesic deviation We have shown that in a curved space [ for example on the surface of a balloon ] parallel lines when extended do not remain parallel. We will now formulate this mathematically in terms of the Riemann tensor. Consider two geodesics with tangents V and V that begin parallel and near each other at points A and A [ see Figure 6.4 ]. Let the affine parameter on the geodesics be λ. We define a connecting vector ξ which reaches from one geodesic to another, connecting points at equal intervals in λ. To simplify things, let s adopt a local inertial frame at A, in which the coordinate x 0 points along the geodesics. Thus at A we have V α = δ α 0.

22 CHAPTER 6. CURVED SPACETIME AND GR 86 The geodesic equation at A is d 2 x α dλ 2 A = 0 (6.122) since all the connection coefficients vanish at A. The connection does not vanish at A, so the equation of the geodesic at A is d 2 x α dλ 2 A + Γα 00(A ) = 0, (6.123) where again at A we have arranged the coordinates so that V α = δ α 0. But, since A and A are separated by the connecting vector ξ we have the right hand side being evaluated at A, so Now x α (A ) x α (A) = ξ α so Γ α 00(A ) = Γ α 00,βξ β, (6.124) d 2 x α dλ 2 A = Γα 00,βξ β. (6.125) d 2 ξ α dλ 2 = d2 x α dλ 2 A d2 x α dλ 2 A = Γ α 00,βξ β. (6.126) This then gives us an expression telling us how the components of ξ change. Consider now the full second covariant derivative V V ξ. Now In a local inertial frame this is V V ξ α = V ( V ξ α ) = d dλ ( ( Vξ α ) + Γ α β0 V ξ β). (6.127) V V ξ α = d dλ ( Vξ α ) = d dλ ( dξ α dλ + Γα β0ξ β ) = d2 ξ α dλ + Γα β0,0ξ β, (6.128)

23 CHAPTER 6. CURVED SPACETIME AND GR 87 where everything is again evaluated at A. Using the result for d2 ξ α dλ 2 we get since we have chosen V α = δ α 0. V V ξ α = (Γ α β0,0 Γ α 00,β) ξ β = R α 00βξ β = R α µνβv µ V ν ξ β, (6.129) The final expression is frame invariant, so we have in any basis V V ξ α = R α µνβv µ V ν ξ β. (6.130) So geodesics in flat space maintain their separation; those in curved space don t. This is called the equation of geodesic deviation and it shows mathematically that the tidal forces of a gravitational field can be represented by the curvature of spacetime in which particles follow geodesics. 6.8 The Bianchi identities; Ricci and Einstein tensors In the last section we found that in a local inertial frame the Riemann tensor could be written as R αβµν = 1 2 (g αν,βµ g αµ,βν + g βµ,αν g βν,αµ ). (6.131) Differentiating with respect to x λ we get R αβµν,λ = 1 2 (g αν,βµλ g αµ,βνλ + g βµ,ανλ g βν,αµλ ). (6.132) From this equation, the symmetry g αβ = g βα and the fact that partial derivatives commute, it is easy to show that R αβµν,λ + R αβλµ,ν + R αβνλ,µ = 0. (6.133) This equation is valid in a local inertial frame, therefore in a general frame we get R αβµν;λ + R αβλµ;ν + R αβνλ;µ = 0. (6.134) This is a tensor equation, therefore valid in any coordinate system. It is called the Bianchi identities, and will be very important for our work.

24 CHAPTER 6. CURVED SPACETIME AND GR The Ricci tensor Before looking at the consequences of the Bianchi identities, we need to define the Ricci tensor R αβ : R αβ = R µ αµβ = R βα. (6.135) It is the contraction of R µ ανβ on the first and third indices. Other contractions would in principle also be possible: on the first and second, the first and fourth, etc. But because R αβµν is antisymmetric on α and β and on µ and ν, all these contractions either vanish or reduce to ±R αβ. Therefore the Ricci tensor is essentially the only contraction of the Riemann tensor. Similarly, the Ricci scalar is defined as R = g µν R µν = g µν g αβ R αβµν. (6.136) The Einstein Tensor Let us apply the Ricci contraction to the Bianchi identities g αµ [R αβµν;λ + R αβλµ;ν + R αβνλ;µ ] = 0. (6.137) Since g αβ;µ = 0 and g αβ ;µ = 0, we can take g αµ in and out of covariant derivatives at will: We get: R µ βµν;λ + R µ βλµ;ν + R µ βνλ;µ = 0. (6.138) Using the antisymmetry on the indices µ and λ we get R µ βµν;λ R µ βµλ;ν + R µ βνλ;µ, (6.139) so R βν;λ R βλ;ν + R µ βνλ;µ = 0. (6.140) These equations are called the contracted Bianchi identities. Let us now contract a second time on the indices β and ν: g βν [R βν;λ R βλ;ν + R µ βνλ;µ] = 0. (6.141) This gives R ν ν;λ R ν λ;ν + R µν νλ;µ = 0. (6.142)

25 CHAPTER 6. CURVED SPACETIME AND GR 89 so or R ;λ 2R µ λ;µ = 0, (6.143) 2R µ λ;µ R ;λ = 0. (6.144) Since R ;λ = g µ λr ;µ, we get [ 2R µ λ 1 2 gµ λr ] ;µ = 0. (6.145) Raising the index λ with g λν we get [ R µν 1 2 gµν R ] ;µ = 0. (6.146) Defining we get G µν = R µν 1 2 gµν R (6.147) G µν ;µ = 0. (6.148) The tensor G µν is constructed only from the Riemann tensor and the metric, and it is automatically divergence free as an identity. It is called the Einstein tensor, since its importance for gravity was first understood by Einstein. We will see in the next chapter that Einstein s field equations for General Relativity are where T µν is the stress - energy tensor. The Bianchi Identities then imply which is the conservation of energy and momentum. G µν = 8πG c 4 T µν, (6.149) T αβ ;β = 0, (6.150)

Parallel transport and geodesics

Parallel transport and geodesics Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Symmetry. March 31, 2013

Symmetry. March 31, 2013 Symmetry March 3, 203 The Lie Derivative With or without the covariant derivative, which requires a connection on all of spacetime, there is another sort of derivation called the Lie derivative, which

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Συντακτικές λειτουργίες

Συντακτικές λειτουργίες 2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

DETERMINATION OF FRICTION COEFFICIENT

DETERMINATION OF FRICTION COEFFICIENT EXPERIMENT 5 DETERMINATION OF FRICTION COEFFICIENT Purpose: Determine μ k, the kinetic coefficient of friction and μ s, the static friction coefficient by sliding block down that acts as an inclined plane.

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes Orthogonal Curvilinear Coordinates 28.3 Introduction The derivatives div, grad and curl from Section 29.2 can be carried out using coordinate systems other than the rectangular cartesian coordinates. This

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Derivation of Quadratic Response Time Dependent Hartree-Fock (TDHF) Equations

Derivation of Quadratic Response Time Dependent Hartree-Fock (TDHF) Equations Derivation of Quadratic Response Time Dependent Hartree-Fock (TDHF) Equations Joshua Goings, Feizhi Ding, Xiaosong Li Department of Chemistry, University of Washington Nember 21, 2014 1 Derivation of Equations

Διαβάστε περισσότερα

The Normal and Lognormal Distributions

The Normal and Lognormal Distributions The Normal and Lognormal Distributions John Norstad j-norstad@northwestern.edu http://www.norstad.org February, 999 Updated: November 3, Abstract The basic properties of the normal and lognormal distributions,

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 342 Βάσεις εδοµένων ιδάσκων: Γ. Σαµάρας 5η σειρά ασκήσεων: Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση. Λύσεις Μέρος Α. Συναρτησιακές Εξαρτήσεις 1. Αποδείξτε

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

MATRICES

MATRICES MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 4: English a Language of Economy Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

Chapter 2 * * * * * * * Introduction to Verbs * * * * * * *

Chapter 2 * * * * * * * Introduction to Verbs * * * * * * * Chapter 2 * * * * * * * Introduction to Verbs * * * * * * * In the first chapter, we practiced the skill of reading Greek words. Now we want to try to understand some parts of what we read. There are a

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα