ZNANSTVENI KALKULATOR UPUTSTVO ZA UPOTREBU

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ZNANSTVENI KALKULATOR UPUTSTVO ZA UPOTREBU"

Transcript

1 ZNANSTVENI KALKULATOR UPUTSTVO ZA UPOTREBU

2

3 TIPKOVNICA HR-1 FAST ČR a. s.

4 i UPRAVLJAČKE TIPKE 1 Tipka za isključenje Pritiskom ove tipke, kalkulator se isključuje. Funkcija automatskog isključenja (A. P. 0.) Ovaj kalkulator se automatski isključuje oko 8 minuta nakon zadnjeg pritiska tipke kako bi se štedjela energija. 2 Tipka za uključenje i mod brisanja / statistističkog izračuna. Pritisnite tipku za uključenje kalkulatora. Spreman je za rad. Ponovnim pritiskom tijekom rada briše kalkulator, osim memorije. : Aktivira statistički program. Kada je kalkulator namješten na mod statističkog izračuna preko ovih tipki, pojavljuje se simbol, i istovremeno numeričke vrijednosti računalne narebe, osim za obrisani sadržaj memorije. Dok u modu statitstičkog izračuna tipke,, i rade kao, i ii. Pritiskom ovih tipki odmah nakon pritiska tipke kao 3 Oznakatipke2nd function (druga funkcija) imaju funkciju 4 Tipka stupanj / radijan / odabir gradijana / konverzija kutne jedinice Za izračun konverzije trigonometrije, inverzne trigornometrije i koordinata. Tipka DRG mijenja mod kuta. FAST ČR a. s. HR-2

5 (Pritisnite ) Ex. DEG GRAD: Pritisite dvaput. DEG mod - Unosi i odgovori su u decimalnim stupnjevima. RAD mod - Unosi i odgovori su u radijanima. GRAD mod - Unosi i odgovori su u gradijanima. (100 g = 90 = 2 π ) : Ima funkciju tipke kao i koverziju prikazanog broja u broj navedenog kutnog moda. 5 Tipka za hiperbolične / inverzne hiperbolične funkcije 6 Tipka funkcije trigonometrije, inverzne trigornometrije 7 Tipka za prikaz izmjene formata / tabulacije : Kada je izračunati rezultat prikazan u decimalnom sustavu s pomičnim zarezom, pritiskom tipke rezultat se prikazuje u sustavu znanstvenog zapisa. Ponovnim pritiskom tipke rezultat se prikazuje u decimalnom sustavu s pomičnim zarezom ponovno. : Za određivanje broja decimala u rezultatu izračuna. 8 Tipka za brisanje unosa / faktorijele HR-3 FAST ČR a. s.

6 : Za brisanje neispravno unesenog broja : Izračunava faktorijel unesenog broja. Faktorijel od n(nl) n (n - 1) + (n-2) Stupnjevi / minute / sekunde Konverzija u decimalne stupnjeve / tipka za heksadecimalni broj Za konverziju stupnjeva / minuta / sekundi u decimalne stupnjeve i obratno. Tipka za heksadecimalni broj D. (radi samo u modu za heksadecimalni brojevni sustav - HEX mod) q; Tipka za prirodni logaritam / antilogaritam i za heksadecimalni broj : Koristi se za dobivanje logaritamske baze e (e = ). : Izračunava antilogaritamsku bazu e prikazanog broja. : HEX mod Tipka za heksadecimalni broj E. qa qs Tipka za dekadski logaritam / antilogaritam i za heksadecimalni broj : Koristi se za dobivanje logaritma s bazom 10. : Izračunava antilogaritam s bazom 10. : HEX mod Tipka za heksadecimalni broj F. Tipka za unos realnog broja / konverziju koordinata : Koristi se kada se unosi realni dio kompleksnog broja i kada se poziva realni dio rezultata izračuna. FAST ČR a. s. HR-4

7 qd qf Koristi se pri konverziji koordinata kada se unosi koordinata X u Kartezijevom sustavu (X, Y) ili kada se unosi r polarnih koordinata (r, ). Također se koristi za pozivanje izračunatih vrijednosti X ili r. : Konvertira Kartezijeve koordinate u polarne koordinate. Tipka za unos imaginarnog broja / konverziju koordinata : Koristi se kada se unosi imaginarni dio kompleksnog broja i kada se poziva imaginarni dio rezultata izračuna. Koristi se pri konverziji koordinata kada se unosi koordinata Y u Kartezijevom sustavu (X, Y) ili kada se unosi e polarnih koordinata {r, ). Također se koristi za pozivanje izračunatih vrijednosti Y ili. : Konvertira polarne koordinate u Kartezijeve. Desna shift tipka / tipka za mod kompleksnih brojeva : Primjer Unos Prikaz : Koristi se za prebacivanje u mod za sustav kompleksnih brojeva. 15 Tipka za unos eksponenta / Pi i za heksadecimalni broj HR-5 FAST ČR a. s.

8 : Za unos broja u znanstvenom obliku. Unosi se konstanta π (π = ). : HEX mod Tipka za heksadecimalni broj A. qh i tipka za heksadecimalni broj. Diže broj na potenciju. Izračunava X-ti korijen od Y. HEX mod Tipka za heksadecimalni broj B. qj qk ql Tipka za drugi korijen / treći korijen i heksadecimalni broj. : Izračunava drugi korijen od prikazanog broja. : Izračunava treći korijen od prikazanog broja. HEX mod Tipka za heksadecimalni broj C. Tipka za kvadrat / recipročni broj: Izračunava kvadrat prikazanog broja. : Izračunava recipročan broj od prikazanog broja. Otvorena zagrada / tipka za zamjenu : Koristi se za otvaranje zagrada. Koristi se za zamjenu prikazanog broja brojem koji je pohranjen u radni registar. (x y) w; Zatvorena zagrada / tipka za statistički izračun : Koristi se za zatvaranje zagrada. : U modu za statistički izračun, : Prikazuje broj unesenih uzoraka (n). FAST ČR a. s. HR-6

9 : Koristi se za računanje sume (Σx). wa ws wd wf wg Brojčane tipke Koriste se za unos brojeva. Dijeljenje / tipka za mod binarnih brojeva : Pritisnite za dijeljenje. : Koristi se za prebacivanje u mod za binarni sustav. : Konvertira prikazani broj u broj s bazom 2. Množenje / tipka za mod oktalnih brojeva: Pritisnite za množenje. Koristi se za prebacivanje u mod za oktalni sustav. : Konvertira prikazani broj u broj s bazom 8. Minus / tipka za mod heksadecimalnih brojeva : Pritisnite za oduzimanje. : Koristi se za prebacivanje u mod za heksadecimalni sustav. Konvertira prikazani broj u broj s bazom 16. Plus / tipka za mod decimalnih brojeva : Pritisnite za zbrajanje. : Koristi se za prebacivanje u mod za decimalni sustav (normalni mod). Konvertira prikazani broj u broj s bazom 10. wh Memorija / tipka za statistički izračun : Briše memorirani broj i pohranjuje u memoriju broj koji je trenutno prikazan. Za brisanje memorije pritisnite tipku zatim tipku. U modu za statistički izračun. : Koristi se za izračun srednje vrijednosti brojeva, (x) : Koristi se za izračun sume kvadrata brojeva. (Σ x 2 ) te HR-7 FAST ČR a. s.

10 wj wk Tipka za poziv broja iz memorije / statistički izračun :Prikazuje sadržaj memorije. Pritiskom na ovu tipku sadržaj memorije ostaje nepromijenjen. U modu za statistički izračun. : Koristi se za izračun standardne devijacije uzorka podataka. : Koristi se za izračun standardne devijacije statističke populacije podataka. Dodaj u memoriju / DATA CD tipka : Koristi se za dodavanje prikazanog broja ili rezultata izračuna u sadržaj memorije. Za oduzimanje broja iz memorije, pritisnite tipku te tipku tim redoslijedom. U modu za statistički izračun : Koristi se za unos podataka (brojeva): : Koristi se za ispravak krivog unosa, (funkcija brisanja). wl Tipka za mijenjanje predznaka Mijenja predznak prikazanog broja iz pozitivnog u negativni ili obratno. Primjer 5-5 e; Decimalna točka / tipka za nasumični broj : Primjer: : Ove tipke se koriste za generiranje ravnomjerno raspoređenih nasumičnih brojeva od do Napomena: Generiranje nasumičnih brojeva nije moguće u modu za binarni / oktalni / heksadecimalni brojevni sustav. FAST ČR a. s. HR-8

11 ea Jednako / tipka za postotak : Daje rezultat četiri aritmetičke operacije (+, -, x, ), x Y, Y x i operacija s kompleksnim brojevima. : Koristi se za operacije s postotcima i izračun dodatka / popusta. HR-9 FAST ČR a. s.

12 PRIKAZ (1) Format prikaza (Decimalni sustav s pomičnim zarezom, normalni prikaz) Znanstveni zapis Mantisa Eksponent (2) Simboli Simbol minus Označava da je prikazani broj koji slijedi simbol «-» negativan. Simbol za memoriju Prikazuje se kada je neki broj pohranjen u memoriji. E 2ndF HYP Simbol za grešku Prikazuje se u slučaju greške ili preljeva memorije. Simbol za označavanje druge funkcije Prikazuje se kada se dodijeli druga funkcija. Simbol za označavanje hiperbolične funkcije Prikazuje se kada se dodijeli hiperbolična funkcija. FAST ČR a. s. HR-10

13 DEG RAD GRAD Simbol moda za računanje u stupnjevima Prikazuje se u modu za računanje u stupnjevima ili označuje da je kutni mod konvertiranog rezultata u stupnjevima. Simbol moda za računanje u radijanima Prikazuje se u modu za računanje u radijanima ili označuje da je kutni mod konvertiranog rezultata u radijanima. Simbol moda za računanje u gradijanima Prikazuje se u modu za računanje u gradijanima ili označuje da je kutni mod konvertiranog rezultata u gradijanima. ( ) Simbol zagrada Prikazuje se kod računanja sa zagradama pritiskom na tipku. Prikazuje se u modu za binarni brojevni sustav ili označuje da je prikazani broj binaran. Prikazuje se u modu za oktalni brojevni sustav ili označuje da je prikazani broj oktalan. Prikazuje se u modu za heksadecimalni brojevni sustav ili označuje da je prikazani broj heksadecimalan. Prikazuje se u modu za računanje s kompleksnim brojevima. Prikazuje se u modu za statistički izračun. HR-11 FAST ČR a. s.

14 (3) Sustav prikaza Uređaj prikazuje rezultat izračuna (x), ukoliko je u sljedećem rasponu, u decimalnom sustavu s pomičnim zarezom x U suprotnom, uređaj prikazuje x u znanstvenom obliku. Rezultat izračuna u gornjem rasponu također može biti prikazan u znanstvenom obliku pritiskom na tipku. Primjer: (Deseto decimalno mjesto se zaokružuje.) (Deseto decimalno mjesto mantise se zaokružuje.) Kalkulator ovo određuje u obliku x 10-2 Zaokruživanje 11. znamenke mantise daje x Kod prebacivanja u decimalni sustav s pomičnim zarezom, zaokruženi dio može biti prikazan drugačije nego u ovom primjeru. FAST ČR a. s. HR-12

15 ZAMJENA BATERIJE Ako ekran postane taman ili mutan, zamijenite baterije novima prema sljedećem postupku. Baterija: LR x 2 ili AG13 x 2 1. Isključite kalkulator. 2. Skinite poklopac za baterije. 3. Zamijenite baterije (+ mora biti prema gore) 4. Gurnite poklopac za baterije natrag na mjesto. 5. Nakon zamjene, pritisnite tipke i tim redoslijedom za brisanje ekrana. Ako su baterije pravilno umetnute, prikazat će se DEG 0. (Ukoliko ekran ostane prazan, ako prikaže beznačajan simbol ili tipke prestanu reagirati, izvadite baterije i umetnite ih ponovno. Pritisnite tipke i tim redoslijedom te ponovo provjerite ekran.) Napomena: - obrišite površinu novih baterija suhom krpom prije umetanja. - uvijek mijenjajte obje baterije u isto vrijeme. HR-13 FAST ČR a. s.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

SEC 104 ZNANSTVENI KALKULATOR KORISNIČKI PRIRUČNIK.

SEC 104 ZNANSTVENI KALKULATOR KORISNIČKI PRIRUČNIK. SEC 104 ZNANSTVENI KALKULATOR KORISNIČKI PRIRUČNIK www.sencor.eu I. Osnovne funkcije 1. Zaslon s dva reda 2. Osnovne operacije 3. Znanstveni kalkulator 4. Računanje jednadžbi 5. Statističke operacije

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Μini Hi-Fi. Oδηγίες Xρήσης MHC-EX99/EX88/EX66 MHC-EX900/EX700/EX600

Μini Hi-Fi. Oδηγίες Xρήσης MHC-EX99/EX88/EX66 MHC-EX900/EX700/EX600 Ηχοσύστηµα Μini Hi-Fi Oδηγίες Xρήσης MHC-EX99/EX88/EX66 MHC-EX900/EX700/EX600 ΠΡΟΕΙ ΟΠΟΙΗΣΗ Για να περιορίσετε τον κίνδυνο πυρκαγιάς, µην καλύπτετε τις σχισµές εξαερισµού της συσκευής µε εφηµερίδες, τραπεζοµάντιλα,

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Preporuke za rješavanje ispita iz Matematike

Preporuke za rješavanje ispita iz Matematike Preporuke za rješavanje ispita iz Matematike Tijekom ocjenjivanja nacionalnih ispita i ispita državne mature, neovisno o razini, uvidjeli smo neke probleme pri rješavanju zadataka. Ovdje želimo navesti

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Skupovi brojeva Materijali za nastavu iz Matematike 1

Skupovi brojeva Materijali za nastavu iz Matematike 1 Skupovi brojeva Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 32 Podsjetnik teorije skupova Operacije sa skupovima: A B = {x : x A x B} A B = {x : x A

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

KORISNIČKE UPUTE. Midea klima uređaji. (uz daljinski upravljač R51)

KORISNIČKE UPUTE. Midea klima uređaji. (uz daljinski upravljač R51) KORISNIČKE UPUTE Midea klima uređaji (uz daljinski upravljač R51) www.frigo-kor.hr SPECIFIKACIJA DALJINSKOG UPRAVLJAČA Model R51D/E,R51D/CE,R51/E,R51/ BGE, 51/CBGE Nominalni napon 3.0V (Alkalne suhe baterije

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

1. Skup kompleksnih brojeva

1. Skup kompleksnih brojeva 1. Skup kompleksnih brojeva 1. Skupovibrojeva... 2 2. Skup kompleksnih brojeva................................. 5 3. Zbrajanje i množenje kompleksnih brojeva..................... 8 4. Kompleksno konjugirani

Διαβάστε περισσότερα

Koordinatni sistemi. Za određivanje položaja u ravni koriste se dva glavna koordinatna sistema:

Koordinatni sistemi. Za određivanje položaja u ravni koriste se dva glavna koordinatna sistema: Koordinatni sistemi Za određivanje položaja u ravni koriste se dva glavna koordinatna sistema: Kartezijeve koordinate Korištenjem Kartezijevih koordinata položaj tačke u ravni se definiše sa dva broja,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

2. POJAM KOMPLEMENTA, BINARNI BROJNI SISTEM I BINARNI BROJEVI SA ZNAKOM

2. POJAM KOMPLEMENTA, BINARNI BROJNI SISTEM I BINARNI BROJEVI SA ZNAKOM 2. POJAM KOMPLEMENTA, BINARNI BROJNI SISTEM I BINARNI BROJEVI SA ZNAKOM TEORIJA: KOMPLEMENT je dopuna datog broja do neke unapred definisane vrednosti. Koristi se za prikazivanje negativnih brojeva. Primenjuju

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Najjednostavnija metoda upravljanja slijedom instrukcija:

Najjednostavnija metoda upravljanja slijedom instrukcija: 4. Upravljačka jedinica Funkcija upravljačke jedinice Prijenos upravljanja između programa Rekurzivni programi LIFO ili stožna struktura Uporaba stoga AIOR, S. Ribarić 1 Funkcije upravljačke jedinice:

Διαβάστε περισσότερα

1 Uvod Zbrajanje i oduzimanje u binarnom sustavu Zbrajanje i oduzimanje u heksadecimalnom sustavu... 31

1 Uvod Zbrajanje i oduzimanje u binarnom sustavu Zbrajanje i oduzimanje u heksadecimalnom sustavu... 31 Sadržaj 1 Uvod 5 2 Povijesni razvoj računalnih sustava 7 2.1 Prva računalna pomagala....................... 7 2.2 Mehanička računalna.......................... 7 2.3 Moderna računala...........................

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

4.4.1 Zbrajanje i oduzimanje u binarnom sustavu Zbrajanje i oduzimanje u heksadecimalnom sustavu

4.4.1 Zbrajanje i oduzimanje u binarnom sustavu Zbrajanje i oduzimanje u heksadecimalnom sustavu Sadržaj 1 Uvod 5 2 Povijesni razvoj računalnih sustava 7 2.1 Prva računalna pomagala................ 7 2.2 Mehanička računalna................... 8 2.3 Moderna računala..................... 11 2.4 Komercijalna

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

Mobilni telefon s kojim se osjećate sigurno!

Mobilni telefon s kojim se osjećate sigurno! Mobilni telefon s kojim se osjećate sigurno! emporia Life - Uputstva za korištenje emporialife_userguide_cro_v1c.in1 1 24.05.2007 12:44:15 Uhr U PROAJNOM PAKETU NALAZI SE: Mobilni telefon Punjač za bateriju

Διαβάστε περισσότερα

Priručnik za ugradnju i uporabu living eco Elektronički radijatorski termostat

Priručnik za ugradnju i uporabu living eco Elektronički radijatorski termostat Priručnik za ugradnju i uporabu living eco Elektronički radijatorski termostat Danfoss Heating Solutions VIIDB237 09/2013 1 Priručnik za ugradnju Priručnik za ugradnju 1. Ugradnja 1.1 Provjerite verziju

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

Upute za upotrebu.

Upute za upotrebu. Upute za upotrebu www.uebe.com Sadržaj A Upute za sigurnost B Rukovanje uređajem 1. Prednosti infracrvenog termometra za uho 2. Klasifikacija vrućice 3. Opis jedinice 4. Prikazi kontrola i simboli 5. Pokretanje

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

Skup prirodnih brojeva označavamo s N. N = {1, 2, 3, 4, 5,...,n,...}.

Skup prirodnih brojeva označavamo s N. N = {1, 2, 3, 4, 5,...,n,...}. 1 REALNI BROJEVI 1.1. Skupovi brojeva Upitamo li nekoga tko nije matematičar, ili mu matematika barem nije osobito bliska, čime se bavi ta znanost, vjerojatno će odgovoriti brojevima. Premda odgovor baš

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

LEKCIJE IZ MATEMATIKE 1

LEKCIJE IZ MATEMATIKE 1 LEKCIJE IZ MATEMATIKE 1 Ivica Gusić Lekcija 1 Realni i kompleksni brojevi Lekcije iz Matematike 1. 1. Realni i kompleksni brojevi I. Naslov i obja²njenje naslova U lekciji se ponavljaju osnovna svojstva

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika 2 Mathematica Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Mathematica Programski paket Mathematica

Διαβάστε περισσότερα

Periodične funkcije. Branimir Dakić, Zagreb

Periodične funkcije. Branimir Dakić, Zagreb Periodične funkcije Branimir Dakić, Zagreb Periodičnost 1 je pojava koju susrećemo na svakom koraku. Periodične su mnoge prirodne pojave, primjerice izmjena dana i noći ili izmjena godišnjih doba, pojava

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LIMES NIZOVA LIMES MONOTONIH NIZOVA GEOMETRIJSKOG REDA LIMES FUNKCIJA 1 2.4. LIMES NIZA I TEOREMI O LIMESIMA 2.4.1. Definicija limesa i konvergentnog niza 2.4.1.1 Riješeni

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Celi brojevi su svi nerazlomljeni brojevi, pozitivni, negativni i nula. To su

Celi brojevi su svi nerazlomljeni brojevi, pozitivni, negativni i nula. To su Poglavlje 1 Brojevi i brojni sistemi Cvetana Krstev 1.1 O brojevima Prirodni brojevi su brojevi sa kojima se broji, uključujući i nulu: 0, 1, 2, 3,.... Pojam pozitivnih i negativnih brojeva nije definisan

Διαβάστε περισσότερα

Vježbe iz matematike 1

Vježbe iz matematike 1 Vježbe iz matematike B. Ivanković N. Kapetanović 8. rujna 005. Uvod Vježbe su tijekom dugog niza održavanja nadopunjavane. Osnovu vježbi napravila je Nataša Kapetanović, ing. matematike, a podebljao ih

Διαβάστε περισσότερα

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= *

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= * POPIS ZADATAKA:.Odredi modul IZI iz kompleksnog broja Z=+i i i.riješi zadatak:izi= * i i.izračunaj:(8+6i)(8-6i)=.odredi realne brojeve i y za koje vrijedi:(-i)+(+i)y=i.riješi kvadratnu jednadžbu :9²-=0

Διαβάστε περισσότερα

Forehead & Ear Thermometer SSOT 6 A1

Forehead & Ear Thermometer SSOT 6 A1 PERSONAL CARE Forehead & Ear Thermometer SSOT 6 A1 Before reading, unfold both pages containing illustrations and familiarise yourself with all functions of the device. Rasklopite prije čitanja obije stranice

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler Matrice linearnih operatora i množenje matrica Franka Miriam Brückler Kako je svaki vektorski prostor konačne dimenzije izomorfan nekom R n (odnosno C n ), pri čemu se ta izomorfnost očituje odabirom baze,

Διαβάστε περισσότερα

b = k a. Govorimo jošda a dijeli b ipišemo a b.

b = k a. Govorimo jošda a dijeli b ipišemo a b. 1 DJELJIVOST 1.1. Djeljivost. Prosti brojevi Količnik dvaju prirodnih brojeva nije uvijek prirodni broj. Tako na primjer, broj 54 8 nije prirodan, jer 54 nije djeljiv s 8. Broj 221 jest prirodan, jer 221

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter USB Charger Battery charger/power supply via 12 or 24V cigarette lighter Compact charger for devices chargeable via USB For example ipod, iphone, MP3 player, etc. Output voltage: 5V; up to 1.2A; short-circuit

Διαβάστε περισσότερα

Realni brojevi u pokretnom zarezu

Realni brojevi u pokretnom zarezu Realni brojevi u pokretnom zarezu Predstavljaju se pomoću osnove β (koja je uvek parna) i preciznosti p. Primer: β=10, p=4: broj 0.4 se predstavlja kao 4.000 10 1 β=10, p=4: broj broj 564000000000000000000000000

Διαβάστε περισσότερα

Mladen Rogina, Sanja Singer i Saša Singer. Numerička analiza. Predavanja i vježbe. Zagreb, 2003.

Mladen Rogina, Sanja Singer i Saša Singer. Numerička analiza. Predavanja i vježbe. Zagreb, 2003. SVEUČILIŠTE U ZAGREBU PMF MATEMATIČKI ODJEL Mladen Rogina, Sanja Singer i Saša Singer Numerička analiza Predavanja i vježbe Zagreb, 2003. Sadržaj 1. Mogućnosti današnjih računala.................... 1

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

FM Radiosat. Upute za uporabu ICF-C05iP (1) Sony Corporation. Dream Machine je zaštićeni naziv tvrtke Sony Corporation.

FM Radiosat. Upute za uporabu ICF-C05iP (1) Sony Corporation. Dream Machine je zaštićeni naziv tvrtke Sony Corporation. 4-174-732-33(1) FM Radiosat Upute za uporabu ICF-C05iP Dream Machine je zaštićeni naziv tvrtke Sony Corporation. No Power No Problem je zaštićeni naziv tvrtke Sony Corporation. 2010. Sony Corporation Sadržaj

Διαβάστε περισσότερα

Z31222 LCD SPORTS WATCH LCD SPORTSKI SAT ΑΘΛΗΤΙΚΟ ΡΟΛΟΪ-LCD. Operation and Safety Notes. Upute za posluživanje i za Vašu sigurnost

Z31222 LCD SPORTS WATCH LCD SPORTSKI SAT ΑΘΛΗΤΙΚΟ ΡΟΛΟΪ-LCD. Operation and Safety Notes. Upute za posluživanje i za Vašu sigurnost LCD SPORTS WATCH Operation and Safety Notes LCD SPORTSKI SAT Upute za posluživanje i za Vašu sigurnost ΑΘΛΗΤΙΚΟ ΡΟΛΟΪ-LCD Υποδείξεις χειρισμού και ασφαλείας Z31222 GB / CY Operation and Safety Notes Page

Διαβάστε περισσότερα

Parser primer kalkulatora

Parser primer kalkulatora Parser primer kalkulatora Primer gramatike za jednostavni kalkulator lines ε lines NEWLINE lines e NEWLINE e e "+" NUMBER e " " NUMBER NUMBER (podrazumeva se da su NUMBER i NEWLINE simboli) Ulaz: Izlaz:

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V?

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? a) b) c) d) e) Odgovor: a), c), d) Objašnjenje: [1] Ohmov zakon: U R =I R; ako je U R 0 (za neki realni, ne ekstremno

Διαβάστε περισσότερα

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike Osnovne akademske studije PREDMET: Upravljanje sistemima TEMA: Frekvencijske karakteristike Predmetni nastavnik: Prof. dr Milorad Stanojević Asistent: mr Marko Đogatović Kompleksna funkcija prenosa Ukoliko

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα