Αστροφυσική. Οµάδα 2. v f = 0

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αστροφυσική. Οµάδα 2. v f = 0"

Transcript

1 Αστροφυσική Οµάδα 2 1 Η εξίσωση Boltzann αποτελεί τη ϐάση της κινητικής ϑεωρίας των αερίων και περιγράφει την εξέλιξη της συνάρτησης κατανοµής ταχυτήτων f x, v, t ενός αερίου πλάσµα, αστέρες, µόρια στο χώρο και το χρόνο, Df Dt + F v f όπου F είναι η δύναµη µε την οποία έλκονται τα συστατικά του αερίου µεταξύ τους και η µάζα τους. Αν ορίσουµε την πυκνότητα του αερίου και τη µέση ταχύτητα του ϱευστού µε τη σχέση ρ x,t n f x, v,td 3 v u 1 vfd 3 v n και την πίεση από τη σχέση P x,t v u v ufd 3 v είξτε ότι αν ολοκληρώσετε όλα τα µέλη της εξίσωσης Boltzann ως προς τις ταχύτητες ϑα καταλήξετε στην εξίσωση συνέχειας και αν πολλαπλασιάσετε όλα τα µελή της εξίσωσης Boltzann µε την ταχύτητα v και στη συνέχεια ολοκληρώσετε ως προς τις ταχύτητες από το ως το ϑα καταλήξετε στη εξίσωση κίνησης του ϱευστού. Λύση: Η πρώτη ϱοπή ϐρίσκεται πολλαπλασιάζοντας την εξίσωση Boltzann µε v ολοκληρώνοντας στον χώρο των ταχυτήτων: f t + v F xf + vf f t d3 v + v x fd 3 v + 1 F v fd 3 v fd 3 v + x f vd 3 v+ 1 v ffd t 3 v 1 1

2 Κάνοντας χρήση των εξισώσεων n fd 3 v 2 u 1 f vd 3 v 3 n και του ϑεωρήµατος Gauss, η τελευταία σχέση γράφεται: n t + x n u+ 1 ff ds 4 S Στο τελευταίο όρο της 4 η ολοκλήρωση νοείται σε επιφάνεια του χώρου των ταχυτήτωνs. Επειδή για οποιαδήποτε κατανοµή ταχυτήτων πεπερασµένης ενέργειας η συνάρτηση κατανοµής f καθώς v γρηγορότερα από οποιαδήποτε δύναµη της ταχύτητας v n, οι όροι αυτοί µηδενίζονται. Καταλήγουµε λοιπόν στην εξίσωση συνέχειας: n t + x n u 5 Στη συνέχεια πολλαπλασιάζουµε την εξίσωση Vlassov µε v 1 και ολοκληρώνουµε και πάλι στο χώρο των ταχυτήτων: v f t d3 v + f t + v F xf + vf v v x fd 3 v + 1 ] v[ F v f d 3 v 6 Ο πρώτος όρος της 6 µας δίνει: v f t d3 v t Ο δεύτερος όρος αναλύεται ως εξής: vfd 3 v n u 7 t v v x fd 3 v ê x v x 2 f x +v f xv y ê y v x v y f x +v2 y ê z v x v z f x +v yv z f y +v2 z y +v f xv z d 3 v + z f y +v f yv z d 3 v+ z f d 3 v z ή συνοπτικότερα, δεδοµένου ότι τα v δεν εξαρτώνται από τα x n : 2

3 v v x fd 3 v 1 fv n v d 3 v eˆ 8 Θεωρούµε ότι έχουµε µια κατανοµή η οποία κινείται µε µέση ταχύτητα u και ϑερµική ταχύτητα w. Τότε για τους όρους που περιέχουν µικτά γινόµενα συνιστωσών της ταχύτητας n ϑα ισχύει: ενώ για τους διαγώνιους όρους n : fv n v d 3 v nu u n 9 fvnd 2 3 v u 2 n fu n +w n 2 d 3 v fd 3 v + nv 2 n ++ nu 2 th 2u n w n fd 3 v + w 2 n fd3 v nu 2 n+ nu 2 th 1 όπου ϑέσαµεu 2 th w 2 n fd3 v. Συνεπώς το άθροισµα των διαγωνίων όρων ϑα µας δώσει: fvnd 2 3 v ê n nu 2 x n ê n + nu 2 n x th ê n n nu 2 x n ê n + nu 2 th n nu 2 x n ê n + 1 P 11 n όπου P nu 2 th η πίεση. Συνολικά εποµένως, η 8 γράφεται ως εξής: 3

4 v v x fd 3 v 1 1 n nu n u nu n u 1 nu n u eˆ + eˆ + eˆ + 1 P 1 nu 2 x n ê n + 1 n P u nu n eˆ + 1 P [ n u] u+n u u+ 1 P 12 Ο τρίτος όρος της 6 µπορεί να γραφεί ως εξής: v F [ ] v fd 3 v v Ff v d 3 v f v v Fd 3 v f F v vd 3 v Οι δύο πρώτοι όροι της παραπάνω εξίσωσης µηδενίζονται µε επιχειρηµατολογία όµοια µε εκείνη που χρησιµοποιήθηκε για τον µηδενισµό των ολοκληρωµάτων της 4, ενώ v v 1, οπότε: 1 Αντικαθιστώντας τις 7,12 και 13 στην 6 παίρνουµε: ] v[ F v f d 3 v n F 13 t n u+[ n u] u+n u u+ 1 P qn F 14 Κάνοντας χρήση της εξίσωσης συνέχειας εξίσωση 5, η τελευταία σχέση παίρνει τη µορφή: n u t +n u u P +n F 15 Η εξίσωση αυτή αποτελεί την εξίσωση κίνησης του ϱευστού. 2 Ενας δίσκος πάχους 2h και ακτίνας a αποτελείτε από ϱευστό µε οµοιόµορφη πυκνότητα ρ. Να υπολογισθεί η δυναµική του ενέργεια. Λύση: Θα ξεκινήσουµε µε τον τύπο που ϑα µας δώσει την δυναµική ενέργεια dw Gr,zdr,zsinθ r2 +z 2 4

5 υποθέτουµε ότι ο δίσκος είναι λεπτός και η ακτίνα του είναι πολύ µεγαλύτερη από το πάχος του, οπότε το ηµίτονο περιγράφει µόνο την ακτινική συνιστώσα της δύναµης ϐλέπε σχήµα, sinθ θ h/a. Με ϐάση αυτά ρ M/πa 2 2h r,z ρ πr 2 2z dr,z ρ 2πrdr2dz dw Gρ 2 8π2 r 2 drzdz h a a h h W 8π 2 Gρ 2 rdr zdz a W GM2 h 3a 2 3 Ενας αστέρας ϐρίσκεται σε κατάσταση ισορροπίας και υποθέτουµε ότι έχει σφαιρική συµµετρία και είναι οµογενής. είξτε ότι η ολική ϐαρυτική δυναµική ενέργεια του αστέρα W συνδέεται µε την εσωτερική του ενέργεια U µε το τύπο W +2U. Λύση: Η ισορροπία του αστέρα περιγράφεται από την εξίσωση dp dr ρg r 2 αν πολλαπλασιάσουµε και τα δύο µέλη της εξίσωσης µε τον όγκο V Η δυναµική ενέργεια και το αριστερό µέλος της εξίσωσης Pr P Γνωρίζουµε ότι dv d/ρ άρα VdP 1 Gd 3 r r Grd W r Vr VdP [PV] r PdV [PV] r Vr PdV r P ρ d Vr PdV 5

6 τελικά ϑα έχουµε αν συνδυάσουµε όλα τα παραπάνω [PV] r r P ρ d 1 3 Wr αν εφαρµόσουµε τη γενική αυτή σχέση για ολόκληρο τον αστέρα ϑα έχουµε M P ρ d 1 3 W απο την καταστατική εξίσωση των ιδανικών αερίων ή M P ρk BT µ H RT µ d 1 3 W όπου R k B / H. Για το µονοατοµικό αέριο η εσωτερική ενέργεια ανά σωµατίδιο είναι 3/2k B T και η εσωτερική ενέργεια αν µονάδα µάζας u 3/2RT/µ και επιστρέφοντας στην αρχική µας σχέση ϑα έχουµε ] M 2 3 ud 1 3 W U 1 2 W. 6

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 05 06 06 ΒΑΡΥΤΗΤΑ Νόμος της Βαρύτητας Βαρύτητα στο Εσωτερικό και Πάνω από

Διαβάστε περισσότερα

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Στατιστικές Συλλογές. Κατανομή Gibbs 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9 Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9 Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Η καµπύλη y = /x µε x >, περιστρέφεται γύρω από τον άξονα Ox και δηµιουργεί ένα στερεό µε επιφάνεια S και όγκο V. είξτε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή

Διαβάστε περισσότερα

Εισαγωγή στην αστρονοµία Μεταβλητοί Αστέρες

Εισαγωγή στην αστρονοµία Μεταβλητοί Αστέρες Εισαγωγή στην αστρονοµία Μεταβλητοί Αστέρες Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 20 εκεµβρίου 2009 Εισαγωγή στην αστρονοµία Μεταβλητοί Αστέρες Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 20 εκεµβρίου 2009 Γιατί µερικοί

Διαβάστε περισσότερα

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό Κεφάλαιο Η3 Ηλεκτρικό δυναµικό Ηλεκτρικό δυναµικό Σε προηγούµενα κεφάλαια συνδέσαµε τη µελέτη του ηλεκτροµαγνητισµού µε τις προγενέστερες γνώσεις µας σχετικά µε τις δυνάµεις. Σε αυτό το κεφάλαιο, θα συνδέσουµε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική.

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική. Ηλεκτρική δυναµική ενέργεια Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική. e o Έστω δοκιµαστικό φορτίο,

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

Υδροδυναμικές Ροές και Ωστικά Κύματα

Υδροδυναμικές Ροές και Ωστικά Κύματα Υδροδυναμικές Ροές και Ωστικά Κύματα 7 7.1 Εισαγωγή Οι διαδικασίες υψηλών ενεργειών που περιγράφηκαν στα προηγούμενα κεφάλαια, καθώς και η επιτάχυνση σωματιδίων σε υψηλές ενέργειες η οποία θα περιγραφεί

Διαβάστε περισσότερα

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km)

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km) ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>1 km) Οι αποστάσεις μεταξύ των μορίων είναι πολύ μεγάλες σχετικά με τον όγκο που κατέχουν Οι συγκρούσεις μεταξύ τους

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015

Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015 Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 215 Άσκηση 1: (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (ax+b)(x 2 +1) αν το a είναι ϑετικός αριθµός. (ϐ) Το µεσηµέρι, ένα σαλιγκάρι που ϐρίσκεται στο κέντρο ενός

Διαβάστε περισσότερα

x sin 3x 3 sin 3x dx = 3 + C = ln x = x2 ln x d 2 2 ln x 1 x 2 x2 x2 e x sin x dx) e 3x 2x dx = ( 1 3 )x2 e 3x x 2 e 3x 3 2x 3 8x 2 + 9x + 1 4x + 4

x sin 3x 3 sin 3x dx = 3 + C = ln x = x2 ln x d 2 2 ln x 1 x 2 x2 x2 e x sin x dx) e 3x 2x dx = ( 1 3 )x2 e 3x x 2 e 3x 3 2x 3 8x 2 + 9x + 1 4x + 4 ΦΥΕ4, 9- - η Εργασία Παράδοση 8.. Πρόβληµα. Υπολογίστε τα ακόλουθα ολοκληρώµατα (i cos d, (ii ln d, (iii e sin d, (iv e d (i cos d = = ( sin ( sin sin d = ( ( ( cos + C = ( ( sin + sin ( sin d ( cos +

Διαβάστε περισσότερα

u u u u u u u u u u u x x x x

u u u u u u u u u u u x x x x Βασικοί συµβολισµοί και σχέσεις ϕ ϕ ui & ϕ=, ϕ, i=, ui, j= t x x u1 u1 u1 x1 x2 x u 3 1, 1 ui, j ui, j u1, 1 ui, j ui, j u u u u u u u u u u u i 2 2 2 i, j= = i, j 2, 2 i, j = i, j 2, 2 i, j = x j x1 x2

Διαβάστε περισσότερα

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες 5 η Εργασία Παράδοση /5/7 Οι ασκήσεις είναι ισοδύναµες Για ένα συµµετρικό σώµα (για παράδειγµα, ϑεωρείστε ένα κυλινδρικό σώµα) που κυλά προς τα κάτω, χωρίς να ολισθαίνει, πάνω σε κεκλιµένο επίπεδο, να

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Method, Slab Analysis)

Η ΜΕΘΟ ΟΣ ΛΟΦΟΣ-ΤΡΙΒΗ ( Friction-Hill Method, Slab Analysis) Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Metod, Slab Analysis) Α. Προβλήµατα επίπεδης παραµορφωσιακής κατάστασης A. ιπλή συµµετρία γεωµετρίας και φόρτισης Θεωρούµε τη σφυρηλάτηση ορθογωνικής µπιγέτας µε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

( ) ) V(x, y, z) Παραδείγματα. dt + z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! p. T = 1 2 m (!x2 +!y 2 +!z 2 ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα

Διαβάστε περισσότερα

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Θεωρούµε ως χρονικό σηµείο αναφοράς τη στιγµή που

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών ΦΥΣ102 1 Πυκνότητα Πυκνότητα είναι η μάζα ανά μονάδα όγκου,

Διαβάστε περισσότερα

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο Ενδεικτικές Λύσεις Θέµα Α Α.1. Στην άκρη ενός τραπεζιού ϐρίσκονται δύο σφαίρες Σ 1 και Σ 2. Κάποια χρονική

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης

Διαβάστε περισσότερα

Λ υσεις του ιαγων ισµατος της Μηχανικ ης Ι Φε ρου αριος 2002

Λ υσεις του ιαγων ισµατος της Μηχανικ ης Ι Φε ρου αριος 2002 Λυσεις του ιαγωνισµατος της Μηχανικης Ι Φερουαριος 2002 ΘΕΜΑ 1: (α) Προκειµενου να κινειται ακτινικα ο πλανητης θα πρεπει να κινειται αρχικα ακτινικακαιηδυναµη που ασκειται πανω του να ειναι ακτινικη.

Διαβάστε περισσότερα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Κεφάλαιο Μ10 Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Άκαµπτο σώµα Τα µοντέλα ανάλυσης που παρουσιάσαµε µέχρι τώρα δεν µπορούν να χρησιµοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούµε να

Διαβάστε περισσότερα

Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Method, Slab Analysis)

Η ΜΕΘΟ ΟΣ ΛΟΦΟΣ-ΤΡΙΒΗ ( Friction-Hill Method, Slab Analysis) Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Metod, Slab Analysis) Α. Προβλήµατα επίπεδης παραµορφωσιακής κατάστασης A. ιπλή συµµετρία γεωµετρίας και φόρτισης Θεωρούµε τη σφυρηλάτηση ορθογωνικής µπιγέτας µε

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

Κινητική θεωρία ιδανικών αερίων

Κινητική θεωρία ιδανικών αερίων Κινητική θεωρία ιδανικών αερίων (γέφυρα μακροσκοπικών και μικροσκοπικών ποσοτήτων) Εμπειρικές σχέσεις Boyle, Gay-Lussac, Charles, υπόθεση Avogadro «όταν δυο ή περισσότερα αέρια έχουν τα ίδια V, P και Τ

Διαβάστε περισσότερα

Έργο παραγώμενο στο τοίχωμα

Έργο παραγώμενο στο τοίχωμα Έργο παραγώμενο στο τοίχωμα δw =F x dx= p S dx= pdv Εξαρτάται από την αρχική κατάσταση, την τελική κατάσταση και από το είδος της μεταβολής C:\Users\Nicholas\Documents\PhysicsIV-Lectures\Thermodynamics\gas-properties_en.jar

Διαβάστε περισσότερα

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg " L & $ !

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg  L & $ ! Παράδειγµα Ενέργειες Το ακόλουθο πρόβληµα µπορεί να λυθεί είτε µε χρήση των νόµων του Newton ( F=mα ) ή Διατήρηση ενέργειας. Ένα µικρό τµήµα σχοινιού κρέµεται προς τα κάτω µέσα από µια τρύπα σε λείο τραπέζι.

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Το πρόβλημά μας είναι να προσδιορίσουμε την περίοδο των ταλαντώσεων του εκκρεμούς στο πρόβλημα που απεικονίζεται στο παραπάνω σχήμα υπό την προϋπόθεση ότι η δύναμη

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι. Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι. Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου Απαντήστε και στα 4 θέματα. Καλή σας επιτυχία. Θέμα (20 μονάδες) α) Διατυπώστε με σαφήνεια

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε

Διαβάστε περισσότερα

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ ÊÏÌÏÔÇÍÇ + +

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ ÊÏÌÏÔÇÍÇ + + Επαναληπτικά Θέµατα ΟΕΦΕ 00 ΘΕΜΑ ο. β. γ. γ 4. γ. α. Λ β. Σ γ. Σ δ. Λ ε. Λ ΘΕΜΑ ο. Α. Σωστή η απάντηση () A B' ΤΑΞΗ ΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΙΚΗ ΚΑΤΕΥΘΥΝΣΗ B l w ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ F L Ε επ, K Λ - - F

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Αναπλ. Καθηγητής

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Αναπλ. Καθηγητής ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 10 ΥΔΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ ΚΑΙ ΔΥΝΑΜΗ ΣΕ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ ΥΔΡΟΣΤΑΤΙΚΗ

Διαβάστε περισσότερα

Ελεύθερη ενέργεια. Ελεύθερη ενέργεια Gibbs. Αποτελείται από δύο όρους: την ενθαλπία H και την εντροπία S.

Ελεύθερη ενέργεια. Ελεύθερη ενέργεια Gibbs. Αποτελείται από δύο όρους: την ενθαλπία H και την εντροπία S. Κεφάλαιο 5: Θερµοδυναµικές και κινητικές έννοιες Οι µεταβολές στα στερεά άρα και στα κεραµικά, κυρίως αυτές που προέρχονται από θέρµανση ή ψύξη, προκύπτουν επειδή οδηγούν σε µείωση της ελεύθερης ενέργειας

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση

Διαβάστε περισσότερα

Φυσική Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

Φυσική Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001 Φυσική Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου Ζήτηµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Από

Διαβάστε περισσότερα

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό.

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ- ΠΑΠΑΤΣΑΚΩΝΑΣ ΗΜΗΤΡΗΣ ΘΕΜΑ 1 ο Επιλέξτε τη σωστή απάντηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα ΦΥΣ 11 - Διαλ.3 1 Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα q Το παρακάτω σύστημα είναι ανάλογο με το σύστημα των δύο εκκρεμών. q Οι δυο ιδιοσυχνότητες του συστήματος είναι ίδιες με τις ιδιοσυχνότητες

Διαβάστε περισσότερα

Τί είδαµε και τι θα δούµε σήµερα

Τί είδαµε και τι θα δούµε σήµερα Τί είδαµε και τι θα δούµε σήµερα q Κίνηση σωμάτων σε κεντρικό δυναμικό Ø Το πρόβλημα ανάγεται σε κίνηση με 1 DoF: µ r = l µr + F( r) 3 q Είδαμε ποιοτική συμπεριφορά Ø Μη φραγμένες, φραγμένες και κυκλικές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09 ΕΡΓΑΣΙΑ 6 Ημερομηνία Παράδοσης: 9/6/9 1. Ένας ομογενώς φορτισμένος μονωτικός κυκλικός δίσκος ακτίνας με συνολικό φορτίο τοποθετείται στο επίπεδο xy. Να βρείτε το ηλεκτρικό πεδίο σε σημείο P που βρίσκεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ-ΟΠΤΙΚΗ, ΑΠΑΝΤΗΣΕΙΣ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗΝ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ-ΟΠΤΙΚΗ, ΑΠΑΝΤΗΣΕΙΣ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗΝ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ-ΟΠΤΙΚΗ, ΑΠΑΝΤΗΣΕΙΣ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗΝ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ Ανδρέας Ζούπας 2 Αυγούστου 212 Οι λύσεις απλώς προτείνονται και σαφώς οποιαδήποτε σωστή λύση είναι αποδεκτή! Θέµα-1

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου B Λυκείου Θεωρητικό Μέρος Θέμα ο 0 Μαρτίου 0 A. Ποια από τις παρακάτω προτάσεις για μια μπαταρία είναι σωστή; Να εξηγήσετε πλήρως την απάντησή σας. α) Η μπαταρία εξαντλείται πιο γρήγορα όταν τη συνδέσουμε

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (x+)(x 2 +) (ϐ) Να υπολογισθεί το ολοκλήρωµα f(x) f(x)+f(x+) για κάθε

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

ιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ

ιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ 1 ιανύσµατα Ο ϕυσικός χώρος µέσα στον οποίο Ϲούµε και κινούµαστε είναι ένας τρισδιάστατος ευκλείδειος γραµµικός χώ- ϱος. Ισχύουν λοιπόν τα αξιώµατα της Γεωµετρίας του Ευκλείδη, το πυθαγόρειο ϑεώρηµα και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

1. Δύναμη. Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του.

1. Δύναμη. Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του. . Δύναμη Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του. Υπάρχουν δυνάμεις οι οποίες ασκούνται ακόμη και όταν

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) Υπενθύμιση/Εισαγωγή: Λέμε ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος από μία

Διαβάστε περισσότερα

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία Στατικός Ηλεκτρισµός, Ηλεκτρικό Φορτίο και η διατήρηση αυτού Ηλεκτρικό φορτίο στο άτοµο Αγωγοί και Μονωτές Επαγόµενα Φορτία Ο Νόµος του Coulomb Το Ηλεκτρικό

Διαβάστε περισσότερα

) A a r a. Κίνηση σωματιδίου κάτω από επίδραση δύναμης. T = 1 2 m (!r 2 + r 2!θ 2. A a r a + C. = Ar a 1 dr V = F = V r V = Fdr

) A a r a. Κίνηση σωματιδίου κάτω από επίδραση δύναμης. T = 1 2 m (!r 2 + r 2!θ 2. A a r a + C. = Ar a 1 dr V = F = V r V = Fdr Κίνηση σωματιδίου κάτω από επίδραση δύναμης ΦΥΣ 211 - Διαλ.05 1 Έστω ένα σωματίδιο κινείται κάτω από την επίδραση μιας δύναμης F = Ar α 1 που έχει διεύθυνση προς την αρχή των αξόνων. Τα Α και α είναι σταθερές.

Διαβάστε περισσότερα

Οι τροχαλίες θεωρούνται κυλινδρικά σώµατα µε ροπή αδράνειας ως προς τον άξονα περιστροφής τους I. = mr και g=10m/s 2.

Οι τροχαλίες θεωρούνται κυλινδρικά σώµατα µε ροπή αδράνειας ως προς τον άξονα περιστροφής τους I. = mr και g=10m/s 2. Γιο Γιο σε Τροχαλία και µια Ολίσθηση που µετατρέπεται σε Κύλιση Η µεγάλη τροχαλία του διπλανού σχήµατος έχει µάζα Μ=4kg, ακτίνα R=0, και κρέµεται από σταθερό σηµείο. Η µικρή τροχαλία έχει µάζα =kg και

Διαβάστε περισσότερα

Πληροφορίες για τον Ήλιο:

Πληροφορίες για τον Ήλιο: Πληροφορίες για τον Ήλιο: 1) Ηλιακή σταθερά: F ʘ =1.37 kw m -2 =1.37 10 6 erg sec -1 cm -2 2) Απόσταση Γης Ήλιου: 1AU (~150 10 6 km) 3) L ʘ = 3.839 10 26 W = 3.839 10 33 erg sec -1 4) Διαστάσεις: Η διάμετρος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 4

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 4 Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 4 Λουκάς Βλάχος και Μανώλης Πλειώνης (Λύσεις Άσκηση 1: Μία έλλειψη µε µεγάλο ηµιάξονα 5m και µικρό 3m έχει κέντρο την αρχή των αξόνων. Να υπολογισθούν τα ακρότατα στην

Διαβάστε περισσότερα

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων;

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων; ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ Είδαµε ότι η φυσική κίνηση ενός σωµατιδίου σε συντηρητικό πεδίο ικανοποιεί την αρχή ελάχιστης δράσης του Hamilton µε Λαγκρανζιανή, όπου η κινητική ενέργεια του

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα