Electronic Devices and Circuit Theory

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Electronic Devices and Circuit Theory"

Transcript

1 nstructor s Resource Manual to accompany Electronic Devices and Circuit Theory Tenth Edition Robert L. Boylestad Louis Nashelsky Upper Saddle River, New Jersey Columbus, Ohio

2 Copyright 009 by Pearson Education, nc., Upper Saddle River, New Jersey Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department. Pearson Prentice Hall is a trademark of Pearson Education, nc. Pearson is a registered trademark of Pearson plc Prentice Hall is a registered trademark of Pearson Education, nc. nstructors of classes using Boylestad/Nashelsky, Electronic Devices and Circuit Theory, 0 th edition, may reproduce material from the instructor s text solutions manual for classroom use SBN-3: SBN-0:

3 Contents Solutions to Problems in Text Solutions for Laboratory Manual 85 iii

4 Chapter. Copper has 0 orbiting electrons with only one electron in the outermost shell. The fact that the outermost shell with its 9 th electron is incomplete (subshell can contain electrons) and distant from the nucleus reveals that this electron is loosely bound to its parent atom. The application of an external electric field of the correct polarity can easily draw this loosely bound electron from its atomic structure for conduction. Both intrinsic silicon and germanium have complete outer shells due to the sharing (covalent bonding) of electrons between atoms. Electrons that are part of a complete shell structure require increased levels of applied attractive forces to be removed from their parent atom.. ntrinsic material: an intrinsic semiconductor is one that has been refined to be as pure as physically possible. That is, one with the fewest possible number of impurities. 3. Negative temperature coefficient: materials with negative temperature coefficients have decreasing resistance levels as the temperature increases. Covalent bonding: covalent bonding is the sharing of electrons between neighboring atoms to form complete outermost shells and a more stable lattice structure. 4. W Q (6 C)(3 ) 8 J e 48( J) J Q W J C C is the charge associated with 4 electrons. 6. GaP Gallium Phosphide E g.4 e ZnS Zinc Sulfide E g 3.67 e 7. An n-type semiconductor material has an excess of electrons for conduction established by doping an intrinsic material with donor atoms having more valence electrons than needed to establish the covalent bonding. The majority carrier is the electron while the minority carrier is the hole. A p-type semiconductor material is formed by doping an intrinsic material with acceptor atoms having an insufficient number of electrons in the valence shell to complete the covalent bonding thereby creating a hole in the covalent structure. The majority carrier is the hole while the minority carrier is the electron. 8. A donor atom has five electrons in its outermost valence shell while an acceptor atom has only 3 electrons in the valence shell. 9. Majority carriers are those carriers of a material that far exceed the number of any other carriers in the material. Minority carriers are those carriers of a material that are less in number than any other carrier of the material.

5 0. Same basic appearance as Fig..7 since arsenic also has 5 valence electrons (pentavalent).. Same basic appearance as Fig..9 since boron also has 3 valence electrons (trivalent) For forward bias, the positive potential is applied to the p-type material and the negative potential to the n-type material. 5. T K k,600/n,600/ (low value of D ) 5800 (5800)(0.6) kd TK D s e e (e.877 ) 7.97 ma 6. k,600/n,600/ 5800 (n for D 0.6 ) T K T C (5800)(0.6 ) k / T K e e e e 5 μa( ) ma / ( k T K s ) 7. (a) T K k,600/n,600/ 5800 kd (5800)( 0 ) T K 93 D s e 0.μA e (e ) ( ) μA D s 0. μa (b) The result is expected since the diode current under reverse-bias conditions should equal the saturation value. 8. (a) x y e x (b) y e 0 (c) For 0, e 0 and s ( ) 0 ma

6 9. T 0 C: s 0. μa T 30 C: s (0. μa) 0. μa (Doubles every 0 C rise in temperature) T 40 C: s (0. μa) 0.4 μa T 50 C: s (0.4 μa) 0.8 μa T 60 C: s (0.8 μa).6 μa.6 μa: 0. μa 6: increase due to rise in temperature of 40 C. 0. For most applications the silicon diode is the device of choice due to its higher temperature capability. Ge typically has a working limit of about 85 degrees centigrade while Si can be used at temperatures approaching 00 degrees centigrade. Silicon diodes also have a higher current handling capability. Germanium diodes are the better device for some RF small signal applications, where the smaller threshold voltage may prove advantageous.. From.9: 0 ma s 75 C 5 C 5 C pa pa.05 μa F decreased with increase in temperature. : : s increased with increase in temperature.05 μa: 0.0 pa :. An ideal device or system is one that has the characteristics we would prefer to have when using a device or system in a practical application. Usually, however, technology only permits a close replica of the desired characteristics. The ideal characteristics provide an excellent basis for comparison with the actual device characteristics permitting an estimate of how well the device or system will perform. On occasion, the ideal device or system can be assumed to obtain a good estimate of the overall response of the design. When assuming an ideal device or system there is no regard for component or manufacturing tolerances or any variation from device to device of a particular lot. 3. n the forward-bias region the 0 drop across the diode at any level of current results in a resistance level of zero ohms the on state conduction is established. n the reverse-bias region the zero current level at any reverse-bias voltage assures a very high resistance level the open circuit or off state conduction is interrupted. 4. The most important difference between the characteristics of a diode and a simple switch is that the switch, being mechanical, is capable of conducting current in either direction while the diode only allows charge to flow through the element in one direction (specifically the direction defined by the arrow of the symbol using conventional current flow). 5. D 0.66, D ma D 0.65 R DC 35 Ω ma D 3

7 6. At D 5 ma, D 0.8 D 0.8 R DC Ω D 5 ma As the forward diode current increases, the static resistance decreases. 7. D 0, D s 0. μa D 0 R DC D 0. μa 00 MΩ D 30, D s 0. μa D 30 R DC 300 MΩ 0.μA D As the reverse voltage increases, the reverse resistance increases directly (since the diode leakage current remains constant). 8. (a) r d (b) r d Δ Δ d d ma 5 ma 0 ma 6 m 6 m.6 Ω 0 ma D 3 Ω (c) quite close 9. D 0 ma, D 0.76 D 0.76 R DC 76 Ω 0 ma r d Δ Δ D d d R DC >> r d ma 5 ma 0 ma 3 Ω 30. D ma, r d D 5 ma, r d Δ Δ d d Δ Δ Ω ma 0 ma d d Ω 0 ma 0 ma 6 m 3. D ma, r d (6 Ω) 5 Ω vs 55 Ω (#30) D 6 m 6 m D 5 ma, r d.73 Ω vs Ω (#30) 5 ma D 3. r av Δ Δ d d Ω 3.5 ma. ma 4

8 33. r d Δ Δ d d Ω 7 ma 3 ma 4 ma (relatively close to average value of 4.4 Ω (#3)) 34. r av Δ Δ d d ma 0 ma 4 ma 4.9 Ω 35. Using the best approximation to the curve beyond D 0.7 : Δd r av 4 Ω Δ 5 ma 0 ma 5 ma d 36. (a) R 5 : C T 0.75 pf R 0 : C T.5 pf ΔC Δ T R.5 pf 0.75 pf 0.5 pf pf/ (b) R 0 : C T.5 pf R : C T 3 pf ΔC Δ T R.5 pf 3 pf.75 pf pf/ (c) 0.94 pf/: pf/ 5.88: 6: ncreased sensitivity near D From Fig..33 D 0, C D 3.3 pf D 0.5, C D 9 pf 38. The transition capacitance is due to the depletion region acting like a dielectric in the reversebias region, while the diffusion capacitance is determined by the rate of charge injection into the region just outside the depletion boundaries of a forward-biased device. Both capacitances are present in both the reverse- and forward-bias directions, but the transition capacitance is the dominant effect for reverse-biased diodes and the diffusion capacitance is the dominant effect for forward-biased conditions. 5

9 39. D 0., C D 7.3 pf X C 3.64 kω π fc π(6 MHz)(7.3 pf) D 0, C T 0.9 pf X C 9.47 kω π fc π(6 MHz)(0.9 pf) 40. f 0 0 kω ma t s + t t t rr 9 ns t s + t s 9 ns t s 3 ns t t t s 6 ns As the magnitude of the reverse-bias potential increases, the capacitance drops rapidly from a level of about 5 pf with no bias. For reverse-bias potentials in excess of 0 the capacitance levels off at about.5 pf. 43. At D 5, D 0. na and at D 00, D 0.45 na. Although the change in R is more than 00%, the level of R and the resulting change is relatively small for most applications. 44. Log scale: T A 5 C, R 0.5 na T A 00 C, R 60 na The change is significant. 60 na: 0.5 na 0: Yes, at 95 C R would increase to 64 na starting with 0.5 na (at 5 C) (and double the level every 0 C). 6

10 45. F 0. ma: r d 700 Ω F.5 ma: r d 70 Ω F 0 ma: r d 6 Ω The results support the fact that the dynamic or ac resistance decreases rapidly with increasing current levels. 46. T 5 C: P max 500 mw T 00 C: P max 60 mw P max F F Pmax 500 mw F 74.9 ma F 0.7 Pmax 60 mw F ma 0.7 F 74.9 ma: ma.9: : 47. Using the bottom right graph of Fig..37: F 500 T 5 C At F 50 ma, T 04 C 48. ΔZ 49. T C +0.07% 00% Z ( T T0) ( T 5) T T T T C ΔZ 00% ( T T ) Z 0 (5 4.8 ) 00% 0.053%/ C 5 (00 5 ) 7

11 5. (0 6.8 ) 00% 77% (4 6.8 ) The 0 Zener is therefore 77% of the distance between 6.8 and 4 measured from the 6.8 characteristic. At Z 0. ma, T C 0.06%/ C (5 3.6 ) 00% 44% ( ) The 5 Zener is therefore 44% of the distance between 3.6 and 6.8 measured from the 3.6 characteristic. At Z 0. ma, T C 0.05%/ C Zener: 0. ma: 400 Ω ma: 95 Ω 0 ma: 3 Ω The steeper the curve (higher d/d) the less the dynamic resistance. 54. T.0, which is considerably higher than germanium ( 0.3 ) or silicon ( 0.7 ). For germanium it is a 6.7: ratio, and for silicon a.86: ratio. 55. Fig..53 (f) F 3 ma Fig..53 (e) F (a) Relative 5 ma 0 ma % 4.4% increase 0.8 ratio: (b) Relative ma %.9% increase.38 ratio: (c) For currents greater than about 30 ma the percent increase is significantly less than for increasing currents of lesser magnitude. 8

12 57. (a) From Fig..53 (i) 75 (b) For the high-efficiency red unit of Fig..53: 0. ma 0 ma C x 0 ma x 00 C 0. ma/ C 9

13 Chapter. The load line will intersect at D E 8 R 330 Ω 4.4 ma and D 8. (a) (b) (c) D Q 0.9 D Q.5 ma R E D Q D Q 0.7 D Q. ma R E D Q D Q 0 D Q 4.4 ma R E D Q For (a) and (b), levels of D Q and D Q are quite close. Levels of part (c) are reasonably close but as expected due to level of applied voltage E. E 5. (a) D R.7 ma. kω The load line extends from D.7 ma to D , ma D Q D Q E 5 (b) D R 0.64 ma 0.47 kω The load line extends from D 0.64 ma to D , 9 ma D Q D Q E 5 (c) D R 7.78 ma 0.8 kω The load line extends from D 7.78 ma to D ,.5 ma D Q D Q The resulting values of 3. Load line through.5 ma. D.5 ma with R D Q are quite close, while D Q extends from ma to.5 ma. D Q 0 ma of characteristics and D 7 will intersect D axis as E 7 R R 7.5 ma 0.6 kω 0

14 E (a) D R D 3.3 ma R. kω D 0.7, R E D E 30 0 (b) D D R. kω D 0, R ma Yes, since E T the levels of D and R are quite close. 5. (a) 0 ma; diode reverse-biased. (b) 0Ω (Kirchhoff s voltage law) Ω A (c) 0 A; center branch open 0 Ω 6. (a) Diode forward-biased, Kirchhoff s voltage law (CW): o 0 o R D o R.955 ma. kω (b) Diode forward-biased, D.4 ma. kω+ 4.7 kω o 4.7 kω + D (.4 ma)(4.7 kω) (a) o k Ω( ) kω+ kω (0 ) (9 ) ).3 (b).95 ma. kω+ 4.7 kω 5.9 kω R (.95 ma)(4.7 kω) 9 o 9 7

15 8. (a) Determine the Thevenin equivalent circuit for the 0 ma source and. kω resistor. E Th R (0 ma)(. kω) R Th. kω (b) Diode forward-biased D ma 6.8 kω Kirchhoff s voltage law (CW): + o o 4.3 Diode forward-biased 0.7 D 6.6 ma. kω +. kω o D (. kω) (6.6 ma)(. kω) (a) (b) o o 0.3 o kω+ 3.3 kω 4.5 kω ma, o ( ma)(3.3 kω) (a) Both diodes forward-biased R ma 4.7 kω Assuming identical diodes: 4.06 ma D R.05 ma o (b) Right diode forward-biased: D ma. kω o (a) Ge diode on preventing Si diode from turning on : ma kω kω (b) ma 4.7 kω 4.7 kω o + (0.553 ma)(4.7 kω) 4.6

16 . Both diodes forward-biased: 0.7, 0.3 o o kω ma kω kω 0.47 kω ma 0.47 kω (Si diode) kω 0.47 kω 9.3 ma 0.85 ma 8.45 ma 3. For the parallel Si kω branches a Thevenin equivalent will result (for on diodes) in a single series branch of 0.7 and kω resistor as shown below: kω ma kω k 3. ma D Ω.55 ma 4. Both diodes off. The threshold voltage of 0.7 is unavailable for either diode. o 0 5. Both diodes on, o Both diodes on. o Both diodes off, o 0 8. The Si diode with 5 at the cathode is on while the other is off. The result is o at one terminal is more positive than 5 at the other input terminal. Therefore assume lower diode on and upper diode off. The result: o The result supports the above assumptions. 0. Since all the system terminals are at 0 the required difference of 0.7 across either diode cannot be established. Therefore, both diodes are off and o +0 as established by 0 supply connected to kω resistor. 3

17 . The Si diode requires more terminal voltage than the Ge diode to turn on. Therefore, with 5 at both input terminals, assume Si diode off and Ge diode on. The result: o The result supports the above assumptions. dc. dc 0.38 m m m m 6.8 R. kω.85 ma 3. Using dc 0.38( m T ) 0.38( m 0.7 ) Solving: m : for m : T dc 4. m L max kω 0.94 ma 4

18 max (. kω) ma. kω + max (. kω) 0.94 ma ma 3.78 ma Dmax Lmax 5. m (0 ) dc 0.38 m 0.38(55.56 ) Diode will conduct when v o 0.7 ; that is, 0 k Ω( v ) v o 0.7 i 0 kω+ kω Solving: v i 0.77 For v i 0.77 Si diode is on and v o 0.7. For v i < 0.77 Si diode is open and level of v o is determined by voltage divider rule: 0 k Ω( v ) v o i 0 kω+ kω v i For v i 0 : v o 0.909( 0 ) 9.09 When v o 0.7, vr v max i 0.7 max R 9.3 ma max kω 0 max (reverse) ma kω+ 0 kω 5

19 7. (a) P max 4 mw (0.7 ) D 4 mw D 0 ma 0.7 (b) 4.7 kω 56 kω 4.34 kω R max ma 4.34 kω max 36.7 ma (c) diode 8.36 ma (d) Yes, D 0 ma > 8.36 ma (e) diode 36.7 ma max 0 ma 8. (a) m (0 ) 69.7 L m i m D 69.7 (0.7 ) dc 0.636(68.3 ) (b) P m (load) + D (c) D (max) L m 68.3 R kω L 68.3 ma (d) P max D D (0.7 ) max (0.7 )(68.3 ma) 7.8 mw 9. 6

20 30. Positive half-cycle of v i : oltage-divider rule:. k Ω( i ) max o max. kω+. kω ( imax ) (00 ) Positive pulse of v i : Top left diode off, bottom left diode on. kω. kω. kω. k Ω(70 ) o peak. kω +. kω Negative pulse of v i : Top left diode on, bottom left diode off. k Ω(70 ) o peak. kω +. kω dc 0.636(56.67 ) dc m (50 ) (a) Si diode open for positive pulse of v i and v o 0 For 0 < v i 0.7 diode on and v o v i For v i 0, v o For v i 0.7, v o Polarity of v o across the. kω resistor acting as a load is the same. oltage-divider rule:. k Ω( i ) max o max. kω+. kω ( imax ) (00 ) 50 7

21 (b) For v i 5 the 5 battery will ensure the diode is forward-biased and v o v i 5. At v i 5 v o At v i 0 v o For v i > 5 the diode is reverse-biased and v o (a) Positive pulse of v i :. k Ω(0 0.7 ) o. kω+. kω Negative pulse of v i : diode open, v o (b) Positive pulse of v i : o Negative pulse of v i : diode open, v o (a) For v i 0 the diode is reverse-biased and v o 0. For v i 5, v i overpowers the battery and the diode is on. Applying Kirchhoff s voltage law in the clockwise direction: 5 + v o 0 v o 3 (b) For v i 0 the 0 level overpowers the 5 supply and the diode is on. Using the short-circuit equivalent for the diode we find v o v i 0. For v i 5, both v i and the 5 supply reverse-bias the diode and separate v i from v o. However, v o is connected directly through the. kω resistor to the 5 supply and v o 5. 8

22 35. (a) Diode on for v i 4.7 For v i > 4.7, o For v i < 4.7, diode off and v o v i (b) Again, diode on for v i 4.7 but v o now defined as the voltage across the diode For v i 4.7, v o 0.7 For v i < 4.7, diode off, D R 0 ma and. kω R (0 ma)r 0 Therefore, v o v i 4 At v i 0, v o 4 v i 8, v o For the positive region of v i : The right Si diode is reverse-biased. The left Si diode is on for levels of v i greater than n fact, v o 6 for v i 6. For v i < 6 both diodes are reverse-biased and v o v i. For the negative region of v i : The left Si diode is reverse-biased. The right Si diode is on for levels of v i more negative than n fact, v o 8 for v i 8. For v i > 8 both diodes are reverse-biased and v o v i. i R : For 8 < v i < 6 there is no conduction through the 0 kω resistor due to the lack of a complete circuit. Therefore, i R 0 ma. For v i 6 v R v i v o v i 6 For v i 0, v R and i R 4 0 kω 0.4 ma For v i 8 v R v i v o v i + 8 9

23 For v i 0 v R and i R 0. ma 0 kω 37. (a) Starting with v i 0, the diode is in the on state and the capacitor quickly charges to 0 +. During this interval of time v o is across the on diode (short-current equivalent) and v o 0. When v i switches to the +0 level the diode enters the off state (open-circuit equivalent) and v o v i + v C (b) Starting with v i 0, the diode is in the on state and the capacitor quickly charges up to 5 +. Note that v i +0 and the 5 supply are additive across the capacitor. During this time interval v o is across on diode and 5 supply and v o 5. When v i switches to the +0 level the diode enters the off state and v o v i + v C

24 38. (a) For negative half cycle capacitor charges to peak value of with polarity. The output v o is directly across the on diode resulting in v o 0.7 as a negative peak value. For next positive half cycle v o v i with peak value of v o (b) For positive half cycle capacitor charges to peak value of with polarity. The output v o For next negative half cycle v o v i 99.3 with negative peak value of v o Using the ideal diode approximation the vertical shift of part (a) would be 0 rather than 9.3 and 00 rather than 99.3 for part (b). Using the ideal diode approximation would certainly be appropriate in this case. 39. (a) τ RC (56 kω)(0. μf) 5.6 ms 5τ 8 ms (b) 5τ 8 ms T ms 0.5 ms, 56: (c) Positive pulse of v i : Diode on and v o Capacitor charges to Negative pulse of v i : Diode off and v o 0.3.3

25 40. Solution is network of Fig..76(b) using a 0 supply in place of the 5 source. 4. Network of Fig..78 with battery reversed. 4. (a) n the absence of the Zener diode 80 Ω(0 ) L 80 Ω+ 0 Ω 9 L 9 < Z 0 and diode non-conducting 0 Therefore, L R 0 Ω+ 80 Ω with Z 0 ma and L 9 50 ma (b) n the absence of the Zener diode 470 Ω(0 ) L 470 Ω+ 0 Ω 3.6 L 3.6 > Z 0 and Zener diode on Therefore, L 0 and R s 0 / R 0 /0 Ω ma Rs Rs s L L /R L 0 /470 Ω.8 ma and Z L ma.8 ma 4.7 ma R s (c) P Z max 400 mw Z Z (0 )( Z ) 400 mw Z 40 ma 0 L min R s Z ma 40 ma 5.45 ma max L 0 R L, Ω 5.45 ma Lmin Large R L reduces L and forces more of R s to pass through Zener diode. (d) n the absence of the Zener diode RL (0 ) L 0 R L + 0 Ω 0R L R L 0R L 00 R L 0 Ω

26 L 43. (a) Z, R L 60 Ω L 00 ma R L i 60 Ω(6 ) L Z RL + Rs 60 Ω+ Rs 70 + R s 960 R s 40 R s 0 Ω (b) P Z max Z Zmax ( )(00 ma).4 W L Z 44. Since L is fixed in magnitude the maximum value of RL RL maximum. The maximum level of of i. PZ 400 mw max Z 50 ma max Z 8 L Z 8 L ma RL RL 0 Ω R s Z + L 50 ma ma ma i Z R s Rs or i R R s s + Z (86.36 ma)(9 Ω) R s will occur when Z is a R s will in turn determine the maximum permissible level Any value of v i that exceeds 5.86 will result in a current Z that will exceed the maximum value. 45. At 30 we have to be sure Zener diode is on. R L i k Ω(30 ) L 0 RL + Rs kω+ Rs Solving, R s 0.5 kω At 50, ZM RS kω 60 ma, L 0 kω R S L 60 ma 0 ma 40 ma 0 ma 46. For v i +50 : Z forward-biased at 0.7 Z reverse-biased at the Zener potential and Z 0. Therefore, o Z Z 3

27 For v i 50 : Z reverse-biased at the Zener potential and Z 0. Z forward-biased at 0.7. Therefore, o Z Z For a 5 square wave neither Zener diode will reach its Zener potential. n fact, for either polarity of v i one Zener diode will be in an open-circuit state resulting in v o v i. 47. m.44(0 ) m (69.68 ) The P for each diode is m P (.44)( rms ) 4

28 Chapter 3.. A bipolar transistor utilizes holes and electrons in the injection or charge flow process, while unipolar devices utilize either electrons or holes, but not both, in the charge flow process. 3. Forward- and reverse-biased. 4. The leakage current CO is the minority carrier current in the collector E the largest B the smallest C E 9. B 00 C C 00 B E C + B 00 B + B 0 B 8 ma B E 79. μa 0 0 C 00 B 00(79. μa) 7.9 ma 0.. E 5 ma, CB : BE 800 m CB 0 : BE 770 m CB 0 : BE 750 m The change in CB is 0 : 0: The resulting change in BE is 800 m:750 m.07: (very slight) Δ (a) r av 5 Ω Δ 8 ma 0 (b) Yes, since 5 Ω is often negligible compared to the other resistance levels of the network. 3. (a) C E 4.5 ma (b) C E 4.5 ma (c) negligible: change cannot be detected on this set of characteristics. (d) C E 5

29 4. (a) Using Fig. 3.7 first, E 7 ma Then Fig. 3.8 results in C 7 ma (b) Using Fig. 3.8 first, E 5 ma Then Fig. 3.7 results in BE 0.78 (c) Using Fig. 3.0(b) E 5 ma results in BE 0.8 (d) Using Fig. 3.0(c) E 5 ma results in BE 0.7 (e) Yes, the difference in levels of BE can be ignored for most applications if voltages of several volts are present in the network. 5. (a) C α E (0.998)(4 ma) 3.99 ma 6. (b) E C + B C E B.8 ma 0.0 ma.78 ma C.78 ma α dc ma E α 0.98 (c) C β B B (40 μa).96 ma α ma E C α ma 7. i i /R i 500 m/0 Ω 5 ma L i 5 ma L L R L (5 ma)( kω) 5 o 5 A v i i 00 m 00 m 8. i Ri + R s 0 Ω+ 00 Ω 0 Ω L i.67 ma L L R (.67 ma)(5 kω) 8.35 o 8.35 A v i.67 ma (a) Fig. 3.4(b): B 35μA Fig. 3.4(a): C 3.6 ma (b) Fig. 3.4(a): CE.5 Fig. 3.4(b): BE 0.7 6

30 C ma. (a) β B 7 μa 7.65 β 7.65 (b) α β (c) CEO 0.3 ma (d) CBO ( α) CEO ( 0.99)(0.3 ma).4 μa. (a) Fig. 3.4(a): CEO 0.3 ma (b) Fig. 3.4(a): C.35 ma C.35 ma β dc 0 μa 35 B (c) α β 35 β CBO ( α) CEO ( 0.996)(0.3 ma). μa C 6.7 ma 3. (a) β dc B 80 μa C 0.85 ma (b) β dc 70 B 5 μa C 3.4 ma (c) β dc B 30 μa 3.33 (d) β dc does change from pt. to pt. on the characteristics. Low B, high CE higher betas High B, low CE lower betas 4. (a) β ac (b) β ac Δ Δ Δ Δ C B C B CE CE ma 6 ma.3 ma μa 70 μa 0 μa.4 ma 0.3 ma. ma μa 0 μa 0 μa ΔC 4.5 ma.35 ma.9 ma (c) β ac 95 Δ B CE 0 40 μa 0 μa 0 μa (d) β ac does change from point to point on the characteristics. The highest value was obtained at a higher level of CE and lower level of C. The separation between B curves is the greatest in this region. 7

31 (e) CE B β dc β ac C β dc /β ac 5 80 μa ma μa ma μa ma.55 As C decreased, the level of β dc and β ac increased. Note that the level of β dc and β ac in the center of the active region is close to the average value of the levels obtained. n each case β dc is larger than β ac, with the least difference occurring in the center of the active region. C.9 ma 5. β dc 6 B 5 μa β 6 α β E C /α.9 ma/ ma α (a) β α β 0 0 (b) α 0.99 β ma (c) B C. μa β 80 E C + B ma +. μa.0 ma e i be 0..9 o.9 A v i 0.95 E.9 e R.9 ma (rms) kω E 9. Output characteristics: Curves are essentially the same with new scales as shown. nput characteristics: Common-emitter input characteristics may be used directly for common-collector calculations. 8

32 30. P C max 30 mw CE C PC 30 mw max C C max, CE C 7 ma 4.9 max PC 30 mw max CE CE max, C.5 ma CE 0 max PC 30 mw max CE 0, C 3 ma CE 0 PC 30 mw max C 4 ma, CE C 4 ma 7.5 PC 30 mw max CE 5, C ma 5 CE 3. C PC max C max, CE Cmax PC max CB CB max, C CBmax 30 mw 5 6 ma 30 mw ma 5 PC 30 mw max C 4 ma, CB ma C PC 30 mw max CB 0, C 3 ma 0 CB 9

33 3. The operating temperature range is 55 C T J 50 C F 9 C ( 55 C) F 5 F 9 (50 C) F 5 67 F T J 30 F 33. C max 00 ma, CE max 30, P P D max 65 mw D 65 mw max C C max, CE C 00 ma 3.5 max PD 65 mw max CE CE max, C 0.83 ma CE 30 max PD 65 mw max C 00 ma, CE 6.5 C 00 ma PD 65 mw max CE 0, C 3.5 ma 0 CE 34. From Fig. 3.3 (a) CBO 50 na max βmin + βmax β avg CEO β CBO (00)(50 na) 5 μa 30

34 35. h FE (β dc ) with CE, T 5 C C 0. ma, h FE 0.43(00) 43 C 0 ma, h FE 0.98(00) 98 h fe (β ac ) with CE 0, T 5 C C 0. ma, h fe 7 C 0 ma, h fe 60 For both h FE and h fe the same increase in collector current resulted in a similar increase (relatively speaking) in the gain parameter. The levels are higher for h fe but note that CE is higher also. 36. As the reverse-bias potential increases in magnitude the input capacitance C ibo decreases (Fig. 3.3(b)). ncreasing reverse-bias potentials causes the width of the depletion region to A increase, thereby reducing the capacitance C d. 37. (a) At C ma, h fe 0 At C 0 ma, h fe 60 (b) The results confirm the conclusions of problems 3 and 4 that beta tends to increase with increasing collector current. 39. (a) β ac Δ Δ C B CE 3 6 ma. ma 3.8 ma 80 μa 60 μa 0 μa 90 (b) β dc C B ma μa (c) β ac 4 ma ma ma 8 μa 8 μa 0 μa 00 (d) β dc C B 3 ma μa (e) n both cases β dc is slightly higher than β ac ( 0%) (f)(g) n general β dc and β ac increase with increasing C for fixed CE and both decrease for decreasing levels of CE for a fixed E. However, if C increases while CE decreases when moving between two points on the characteristics, chances are the level of β dc or β ac may not change significantly. n other words, the expected increase due to an increase in collector current may be offset by a decrease in CE. The above data reveals that this is a strong possibility since the levels of β are relatively close. 3

35 Chapter 4. (a) BQ CC BE R 470 kω 470 kω B 3.55 μa (b) CQ β (90)(3.55 μa).93 ma BQ (c) R 6 (.93 ma)(.7 kω) 8.09 CEQ CC CQ C (d) C CE Q 8.09 (e) B BE 0.7 (f) E 0. (a) C β B 80(40 μa) 3. ma (b) R C (c) R B R 6 6 C CC C.875 kω 3. ma 3. ma C C R B kω 40 μa 40 μa B (d) CE C 6 3. (a) C E B 4 ma 0 μa 3.98 ma 4 ma (b) CC CE + C R C 7. + (3.98 ma)(. kω) (c) β C B 3.98 ma μa (d) R B R B CC BE 763 kω 0 μa B B 4. C sat CC 6 R.7 kω C 5.93 ma 5. (a) Load line intersects vertical axis at C 3 kω 7 ma and horizontal axis at CE. CC BE 0.7 (b) B 5 μa: R B 8 kω 5 μa B (c) C Q 3.4 ma, CE Q

36 (d) β C B 3.4 ma 36 5 μa (e) α β β (f) C sat CC R 3 kω 7 ma C (g) (h) P D (0.75 )(3.4 ma) mw CEQ CQ (i) (j) 6. (a) P s CC ( C + B ) (3.4 ma + 5 μa) 7.9 mw P R P s P D 7.9 mw mw mw BQ CC BE R + ( β + ) R 50 k Ω+ (0).5 kω kω B 9.8 μa E (b) CQ β (00)(9.8 μa).9 ma BQ (c) CE Q CC C (R C + R E ) 0 (.9 ma)(.4 kω +.5 kω) (d) C CC C R C 0 (.9 ma)(.4 kω) (e) B CC B R B 0 (9.8 μa)(50 kω) (f) E C CE (a) R C CC C C kω ma ma (b) E C : R E E E.4. kω ma (c) R B R B CC BE E 356 kω ma/80 5 μa B B (d) CE C E (e) B BE + E

37 E. 8. (a) C E R 3.09 ma E 0.68 kω C 3.09 ma β B 0 μa 54.5 (b) CC R C + CE + E (3.09 ma)(.7 kω) R B CC BE E (c) R B 0 μa B A μ B 747 kω 9. Csot CC 0 0 R + R.4 kω+.5 kω 3.9 kω C E 5.3 ma 0. (a) CC 4 C sat 6.8 ma RC + RE RC +. kω 4 R C +. kω 3.59 kω 6.8 ma R C.33 kω (b) β C B 4 ma μa R (4 ma)(. k ) B CC BE E Ω (c) R B 30 μa B A μ B kω (d) P D CE Q CQ (0 )(4 ma) 40 mw (e) P CR C (4 ma) (.33 kω) 37.8 mw. (a) Problem : C Q.93 ma, CE Q 8.09 (b) B Q 3.55 μa (the same) C β Q B (35)(3.55 μa) 4.39 ma Q R 6 (4.39 ma)(.7 kω) 4.5 CEQ CC CQ C 34

38 4.39 ma.93 ma (c) %Δ C 00% 49.83%.93 ma %Δ CE % 48.70% 8.09 Less than 50% due to level of accuracy carried through calculations. (d) Problem 6: C Q.9 ma, 8.6 ( 9.8 μa) CE Q (e) CC BE B Q RB + ( β + ) RE 50 k Ω+ (50 + )(.5 k Ω ) 6. μa C β Q B (50)(6. μa) 3.93 ma Q CE Q CC C (R C + R E ) 0 (3.93 ma)(.4 kω +.5 kω) ma.9 ma (f) %Δ C.9 ma 00% 34.59% %Δ CE % 46.76% (g) For both C and CE the % change is less for the emitter-stabilized.?. βr E 0R (80)(0.68 kω) 0(9. kω) 54.4 kω 9 kω (No!) (a) Use exact approach: R Th R R 6 kω 9. kω 7.94 kω R E Th CC (9. k Ω)(6 ) R + R 9. kω+ 6 kω.05 ETh BE B Q RTh + ( β + ) RE 7.94 k Ω+ (8)(0.68 k Ω).4 μa (b) β (80)(.4 μa).7 ma CQ BQ B Q (c) CE Q CC C Q (R C + R E ) 6 (.7 ma)(3.9 kω kω) 8.7 (d) C CC C R C 6 (.7 ma)(3.9 kω) 9.33 (e) E E R E C R E (.7 ma)(0.68 kω).6 (f) B E + BE

39 3. (a) C CC R C C kω.8 ma (b) E E R E C R E (.8 ma)(. kω).54 (c) B BE + E R (d) R : R R R R R CC B R R ma B ma R 5.6 kω 39.4 kω 4. (a) C β B (00)(0 μa) ma (b) E C + B ma + 0 μa.0 ma E E R E (.0 ma)(. kω).4 (c) CC C + C R C ( ma)(.7 kω) (d) CE C E (e) B E + BE (f) + R R B kω CC B R R + 0 μa μa + 0 μa μa kω μa 5. C sat CC 6 R + R 3.9 kω kω ma 4.58 kω C E 36

40 6. (a) βr E 0R (0)( kω) 0(8. kω) 0 kω 8 kω (checks) R B CC (8. k Ω)(8 ) R + R 39 kω+ 8. kω 3.3 E B BE E.43 C E R.43 ma kω E (b) CE CC C (R C + R E ) 8 (.43 ma)(3.3 kω + kω) 7.55 (c) B C.43 ma β μa (d) E E R E C R E (.43 ma)( kω).43 (e) B (a) R Th R R 39 kω 8. kω 6.78 kω R C CC 8. k Ω(8 ) E Th R + R 39 kω+ 8. kω 3.3 ETh BE B R + ( β + ) R 6.78 k Ω+ ()( k Ω) Th E μa 7.78 kω C β B (0)(9.0 μa).8 ma (vs..43 ma #6) (b) CE CC C (R C + R E ) 8 (.8 ma)(3.3 kω + kω) (vs #6) (c) 9.0 μa (vs. 0.5 μa #6) (d) E E R E C R E (.8 ma)( kω).8 (vs..43 #6) (e) B BE + E (vs. 3.3 #6) The results suggest that the approximate approach is valid if Eq is satisfied. R 9. k Ω(6 ) 8. (a) B CC R + R 6 kω+ 9. kω.05 E B BE E.35 E R.99 ma E 0.68 kω E.99 ma C Q 37

41 CE Q CC C (R C + R E ) 6 (.99 ma)(3.9 kω kω) B Q CQ.99 ma 4.88 μa β 80 (b) From Problem :.7 ma, 8.7, C Q CE Q B Q.4 μa (c) The differences of about 4% suggest that the exact approach should be employed when appropriate. 9. (a) Csat CC ma RC + RE 3RE + RE 4RE 4 4 R E 0.8 kω 4(7.5 ma) 30 ma R C 3R E 3(0.8 kω).4 kω (b) E E R E C R E (5 ma)(0.8 kω) 4 (c) B E + BE R (d) B CC R (4 ), 4.7 R + R R + 4 kω (e) β dc C B R 5.84 kω 5 ma 38.5 μa 9.8 (f) βr E 0R (9.8)(0.8 kω) 0(5.84 kω) kω 58.4 kω (checks) 0. (a) From problem b, C.7 ma From problem c, CE 8.7 (b) β changed to 0: From problem a, E Th.05, R Th 7.94 kω ETh BE B RTh + ( β + ) RE 7.94 k Ω + ()(0.68 k Ω) 4.96 μa C β B (0)(4.96 μa).8 ma CE CC C (R C + R E ) 6 (.8 ma)(3.9 kω kω)

42 (c).8 ma.7 ma % Δ C 00% 5.6%.7 ma % Δ CE 00% 5.0% 8.7 (d) c f 0c %Δ C 49.83% 34.59% 5.6% %Δ CE 48.70% 46.76% 5.0% Fixed-bias Emitter feedback oltagedivider (e) Quite obviously, the voltage-divider configuration is the least sensitive to changes in β...(a) Problem 6: Approximation approach: Problem 7: Exact analysis: C Q.8 ma, C Q.43 ma, CE Q 7.55 CE Q 8. The exact solution will be employed to demonstrate the effect of the change of β. Using the approximate approach would result in %Δ C 0% and %Δ CE 0%. (b) Problem 7: E Th 3.3, R Th 6.78 kω ETH BE B R + ( β + ) R 6.78 k Ω+ (80 + ) kω kω Th E.94 μa C β B (80)(.94 μa).33 ma CE CC C (R C + R E ) 8 (.33 ma)(3.3 kω + kω) ma.8 ma (c) %Δ C 00%.9%.8 ma %Δ CE %.68% 8. For situations where βr E > 0R the change in C and/or CE due to significant change in β will be relatively small. (d) %Δ C.9% vs % for problem. %Δ CE.68% vs % for problem. (e) oltage-divider configuration considerably less sensitive.. The resulting %Δ C and %Δ CE will be quite small. 39

43 CC BE (a) B RB + β ( RC + RE) 470 k Ω + (0)(3.6 kω+ 0.5 k Ω) 5.88 μa (b) C β B (0)(5.88 μa).9 ma (c) C CC C R C 6 (.9 ma)(3.6 kω) (a) B CC BE R + β ( R + R ) 6.90 kω+ 00(6. kω+.5 k Ω ) B C E 0.07 μa C β B (00)(0.07 μa).0 ma (b) C CC C R C 30 (.0 ma)(6. kω) (c) E E R E C R E (.0 ma)(.5 kω) 3.0 (d) CE CC C (R C + R E ) 30 (.0 ma)(6. kω +.5 kω) 4.5 CC BE (a) B RB + β ( RC + RE) 470 k Ω+ (90)(9. kω+ 9. k Ω) 0.09 μa C β B (90)(0.09 μa) 0.9 ma CE CC C (R C + R E ) (0.9 ma)(9. kω + 9. kω) 5.44 CC BE 0.7 (b) β 35, B RB + β ( RC + RE) 470 k Ω+ (35)(9. kω+ 9. k Ω) 7.8 μa C β B (35)(7.8 μa) ma CE CC C (R C + R E ) (0.983 ma)(9. kω + 9. kω) 4. (c) ma 0.9 ma % Δ C 00% 8.0% 0.9 ma % Δ CE 00% 4.45% 5.44 (d) The results for the collector feedback configuration are closer to the voltage-divider configuration than to the other two. However, the voltage-divider configuration continues to have the least sensitivities to change in β. 40

44 5. MΩ 0 Ω, R B 50 kω CC BE 0.7 B RB + β ( RC + RE) 50 k Ω+ (80)(4.7 kω+ 3.3 k Ω) 7. μa C β B (80)(7. μa).8 ma C CC C R C (.8 ma)(4.7 kω) 5.98 Full MΩ: R B,000 kω + 50 kω,50 kω.5 MΩ CC BE 0.7 B R + β ( R + R ).5 M Ω+ (80)(4.7 kω+ 3.3 k Ω) B C E 4.36 μa C β B (80)(4.36 μa) ma C CC C R C (0.785 ma)(4.7 kω) 8.3 C ranges from 5.98 to (a) E B BE E 3.3 (b) C E R.75 ma E. kω (c) C CC C R C 8 (.75 ma)(. kω).95 (d) CE C E R.95 4 B C B (e) B 4.09 μa RB RB 330 kω C.75 ma (f) β μa B CC + EE BE (a) B RB + ( β + ) RE 330 k Ω+ ()(. k Ω) 3.78 μa E (β + ) B ()(3.78 μa).88 ma EE + E R E E 0 E EE + E R E 6 + (.88 ma)(. kω).54 EE BE (a) B RB + ( β + ) RE 9. k Ω+ (0 + )5 kω 6. μa (b) C β B (0)(6. μa) ma (c) CE CC + EE C (R C + R E ) 6 + (0.744 ma)(7 kω) 7.9 (d) C CC C R C 6 (0.744 ma)( kω)

45 9. (a) E kω. kω 3.3 ma (b) C 0 (3.3 ma)(.8 kω) (c) CE (3.3 ma)(. kω +.8 kω) (a) βr E > 0R not satisfied Use exact approach: Network redrawn to determine the Thevenin equivalent: (b) C β B (30)(3.95 μa).8 ma R Th 50 k Ω 55 kω μa 50 kω + 50 kω E Th 8 + (35.9 μa)(50 kω) B 55 k Ω + (30 + )(7.5 k Ω) 3.95 μa (c) E 8 + (.8 ma)(7.5 kω) (d) CE (.8 ma)(9. kω kω) (a) B R B C BE R R 560 kω B B 3.04 μa CC (b) C R C C kω 3.9 kω.56 ma (c) β C B.56 ma 3.04 μa 96.3 (d) CE C 8 4

46 .5 ma 3. B C β μa R 0.7 B CC BE R B 36.6 kω B B 3.5 μa R 6 6 C CC CC C CEQ R C.5 ma.5 ma C C CQ.4 kω Standard values: R B 360 kω R C.4 kω 33. CC C sat R + R C 0 R + R 4 E E E 0 ma 0 ma 0 5R E 0 ma 5R E 0 0 ma kω R E k 5Ω 400 Ω R C 4R E.6 kω 5 ma B C β μa ma(0.4 k Ω) 9.3 R B RB / B 4.67 μa 4.67 μa 45.7 kω Standard values: R E 390 Ω, R C.6 kω, R B 430 kω E E R E 0.75 kω E C 4 ma ( ) R C CC CC C CE + Q E R C C C C 4 (8 + 3 ) kω 4 ma 4 ma 4 ma B E + BE R CC R (4 ) B 3.7 unknowns! R + R R + R use βr E 0R for increased stability (0)(0.75 kω) 0R R 8.5 kω Choose R 7.5 kω 43

47 Substituting in the above equation: 7.5 k Ω(4 ) kω+ R R 4.5 kω Standard values: R E 0.75 kω, R C 3.3 kω, R 7.5 kω, R 43 kω 35. E (8 ) CC 5 E 5.6 R E. kω (use. kω) E 5 ma CC 8 C + E R C CC C R 8.4 R C C.68 kω (use.6 kω) C 5 ma B BE + E R B CC R (8 ) 6.3 ( unknowns) R + R R + R C 5 ma β 35.4 B 37 μa βr E 0R (35.4)(. kω) 0(R ) R 5.4 kω (use 5 kω) (5.4 k Ω)(8 ) Substituting: kω+ R Solving, R 5.5 kω (use 5 kω) Standard values: R E. kω R C.6 kω R 5 kω R 5 kω 36. kω kω 8.65 ma 37. For current mirror: (3 kω) (.4 kω) ma 38. DQ 6 ma DSS 44

48 4.3 kω 39. B ( 8 ) kω+ 4.3 kω E ( 9.7 ) E 4.6 ma.8 kω 40. E Z R E BE kω 3.67 ma 4. CC 0 C 4.67 ma sat RC.4 kω From characteristics B max 3 μa i BE B 5.67 μa R 80 kω B 5.67 μa 3 μa, well saturated o 0 (0. ma)(.4 kω) C sat 8 ma 5 RC 5 R C 0.65 kω 8 ma C 8 ma sat B max 80 μa β 00 Use. (80 μa) 96 μa R B kω 96 μa Standard values: R B 43 kω R C 0.6 kω 45

49 43. (a) From Fig. 3.3c: C ma: t f 38 ns, t r 48 ns, t d 0 ns, t s 0 ns t on t r + t d 48 ns + 0 ns 68 ns t off t s + t f 0 ns + 38 ns 48 ns (b) C 0 ma: t f ns, t r 5 ns, t d ns, t s 0 ns t on t r + t d 5 ns + ns 37 ns t off t s + t f 0 ns + ns 3 ns The turn-on time has dropped dramatically 68 ns:37 ns 4.54: while the turn-off time is only slightly smaller 48 ns:3 ns.: 44. (a) Open-circuit in the base circuit Bad connection of emitter terminal Damaged transistor (b) Shorted base-emitter junction Open at collector terminal (c) Open-circuit in base circuit Open transistor 45. (a) The base voltage of 9.4 reveals that the 8 kω resistor is not making contact with the base terminal of the transistor. f operating properly: B 8 k Ω(6 ) 8 kω+ 9 kω.64 vs. 9.4 As an emitter feedback bias circuit: CC BE B R + ( β + ) RE 9 k Ω+ (00 + ). kω 7. μa B CC B (R ) 6 (7. μa)(9 kω)

50 (b) Since E > B the transistor should be off 8 k Ω(6 ) With B 0 μa, B 8 kω + 9 kω.64 Assume base circuit open The 4 at the emitter is the voltage that would exist if the transistor were shorted collector to emitter.. k Ω(6 ) E. kω+ 3.6 kω (a) R B, B, C, C (b) β, C (c) Unchanged, C sat not a function of β (d) CC, B, C (e) β, C,, R C R E, CE ETh BE ETh BE 47. (a) B RTh + ( β + ) RE RTh + βre ETh BE ETh BE C β B β R R Th + β RE Th + RE β RTh As β, β, C, C CC and C R C R C (b) R open, B, C CE CC C (R C + R E ) and CE (c) CC, B, E, E, C (d) B 0 μa, C CEO and C (R C + R E ) negligible with CE CC 0 (e) Base-emitter junction short B but transistor action lost and C 0 ma with CE CC (a) R B open, B 0 μa, C CEO 0 ma and C CC 8 (b) β, C,,, CE R C R E (c) R C, B, C, E (d) Drop to a relatively low voltage 0.06 (e) Open in the base circuit 47

51 49. B CC R B BE μa 50 kω 50 kω C β B (00)(.6 μa).6 ma C CC + C R C + (.6 ma)(3.3 kω) 4.69 CE C βr E 0R (0)(0.75 kω) 0(6 kω) 65 kω 60 kω (checks) Use approximate approach: 6 k Ω ( ) B 6 k Ω + 8 kω 3.59 E B C E E /R E.89/0.75 kω 3.85 ma 3.85 ma B C 7.5 μa β 0 C CC + C R C + (3.85 ma)(. kω) E R E BE ma 3.3 kω 3.3 kω C CC + C R C + (. ma)(3.9 kω) (a) S( CO ) β + 9 (b) S( BE ) C β kω S R B.93 ma (c) S(β) β A (d) Δ C S( CO )Δ CO + S( BE )Δ BE + S(β)Δβ (9)(0 μa 0. μa) + ( S)( ) + ( A)(.5 90) (9)(9.8 μa) + ( S)(0. ) + ( A)(.5) A A A A.66 ma 48

52 53. For the emitter-bias: ( + RB / RE) ( + 50 k Ω/.5 k Ω) (a) S( CO ) (β + ) (00 + ) ( β + ) + RB / RE (00 + ) + 50 k Ω/.5 kω 78. (b) S( BE ) R B β 00 + ( β + ) R 50 k Ω+ (00 + ).5 kω E S C ( + R / ).9 ma( + 340) B RE (c) S(β) β ( + β + R / R ) 00( ) B A E (d) Δ C S( CO )Δ CO + S( BE )Δ BE + S(β)Δβ (78.)(9.8 μa) + ( S)( 0. ) + ( A)(5) ma ma ma.33 ma 54. (a) R Th 6 kω 9. kω 7.94 kω + RTh / RE ( k Ω/ 0.68 k Ω) S( CO ) (β + ) (80 + ) ( β + ) + RTh / RE (80+ ) k Ω/0.68 kω (8)( +.68) β 80 (b) S( BE ) RTh + ( β + ) RE 7.94 k Ω+ (8)(0.68 k Ω) kω kω S C ( + R / ).7 ma( k / 0.68 k ) Th RE Ω Ω (c) S(β) β ( + β + R / R ) 80( k Ω/ 0.68 k Ω) Th.7 ma(.68) 80(.68) E A (d) Δ C S( CO )Δ CO + S( BE ) Δ BE + S(β)Δβ (.08)(0 μa 0. μa) + ( S)( ) + ( A)(00 80) (.08)(9.8 μa) + ( S)( 0. ) + ( A)(0) A A A A 0.4 ma 49

53 55. For collector-feedback bias: ( + RB / RC) ( k Ω/3.9 k Ω) (a) S( CO ) (β + ) ( ) ( β + ) + RB / RC ( ) k Ω/3.9 kω (97.3) ( ) (b) S( BE ) R B β ( β + ) R 560 k Ω+ ( )3.9 kω C S C ( R ).56 ma(560 k 3.9 k ) B + RC Ω+ Ω (c) S(β) β ( R + R ( β + )) 96.3(560 kω+ 3.9 k Ω ( )) B C A (d) Δ C S( CO )Δ CO + S( BE ) Δ BE + S(β)Δβ (83.69)(9.8 μa) + ( S)( 0. ) + ( A)(49.) A A A A.087 ma 56. Type S( CO ) S( BE ) S(β) Collector feedback S A Emitter-bias S A oltage-divider S A Fixed-bias S A S( CO ): Considerably less for the voltage-divider configuration compared to the other three. S( BE ): The voltage-divider configuration is more sensitive than the other three (which have similar levels of sensitivity). S(β): The voltage-divider configuration is the least sensitive with the fixed-bias configuration very sensitive. n general, the voltage-divider configuration is the least sensitive with the fixed-bias the most sensitive. 57. (a) Fixed-bias: S( CO ) 9, Δ C 0.89 ma S( BE ) S, Δ C ma S(β) A, Δ C ma (b) oltage-divider bias: S( CO ).08, Δ C ma S( BE ) S, Δ C ma S(β) A, Δ C ma 50

54 (c) For the fixed-bias configuration there is a strong sensitivity to changes in CO and β and less to changes in BE. For the voltage-divider configuration the opposite occurs with a high sensitivity to changes in BE and less to changes in CO and β. n total the voltage-divider configuration is considerably more stable than the fixed-bias configuration. 5

55 Chapter 5. (a) f the dc power supply is set to zero volts, the amplification will be zero.. (b) Too low a dc level will result in a clipped output waveform. (c) P o R (5 ma). kω 55 mw P i CC (8 )(3.8 ma) 68.4 mw Po (ac) 55 mw η % P (dc) 68.4 mw i 3. x C 5.9 Ω π fc π( khz)(0μf) f 00 khz: x C 0.59 Ω Yes, better at 00 khz 4. i 0 m 5. (a) Z i i 0.5 ma 0 Ω (r e ) (b) o c R L α c R L (0.98)(0.5 ma)(. kω) o (c) A v i 58.8 (d) Z o Ω m o (e) A i i α e e α 0.98 (f) b e c 0.5 ma 0.49 ma 0 μa 5

56 6. (a) r e i i 48 m 5 Ω 3. ma (b) Z i r e 5 Ω (c) C α e (0.99)(3. ma) 3.68 ma (d) o C R L (3.68 ma)(. kω) 6.97 (e) A v o m 45. i (f) b ( α) e ( 0.99) e (0.0)(3. ma) 3 μa 7. (a) r e (b) b 6 m 6 m 3 Ω E (dc) ma Z i βr e (80)(3 Ω).04 kω C α β e e e β β β + β β + ma μa o L (c) A i i b ro( β b) L ro + RL ro β b ro + RL ro A i β r + R (d) A v b o L 40 kω (80) 40 kω+. kω RL ro. kω 40 kω r 3 Ω.65 kω 3 Ω 89.6 e 53

57 8. (a) Z i βr e (40)r e 00 r e Ω i 30 m (b) b Z 5 μa. kω i (c) c β b (40)(5 μa) 3.5 ma (d) L A i r o c (50 k Ω)(3.5 ma) r + R 50 kω+.7 kω o L i L 3.3 ma 5 μa ma o AR i L (e) A v Z i i (.7 k Ω) (3.84). k Ω CC BE (a) r e : B 5.36 μa RB 0 kω E (β + ) B (60 + )(5.36 μa) 3.3 ma 6 m 6 m r e 8.3 Ω 3.3 ma E Z i R B βr e 0 kω (60)(8.3 Ω) 0 kω Ω Ω r o 0R C Z o R C. kω (b) A v RC. kω r 8.3 Ω e (c) Z i Ω (the same) Z o r o R C 0 kω. kω.98 kω (d) A v RC ro.98 kω r 8.3 Ω 38.7 e A i A v Z i /R C ( 38.7)( Ω)/. kω

58 RC 0. A v r e r r e. (a) B e RC 4.7 kω 3.5 Ω A ( 00) v 6 m 6 m 6 m E.06 ma E r e 3.5 Ω.06 ma B E.5 μa β + 9 CC BE B CC B R B + BE RB (.5 μa)( MΩ) CC R B BE μa 390 kω E (β + ) B (0)(3.85 μa).4 ma 6 m 6 m r e 0.79 Ω E.4 ma C β B (00)(3.85 μa).38 ma (b) Z i R B βr e 390 kω (00)(0.79 Ω) 390 kω.08 kω.08 kω r o 0R C Z o R C 4.3 kω (c) A v (d) A v RC 4.3 kω r 0.79 Ω e RC ro (4.3 k Ω) (30 k Ω) 3.76 kω r 0.79 Ω 0.79 Ω e. (a) Test βr E 0R? (00)(. kω) 0(4.7 kω) 0 kω > 47 kω (satisfied) Use approximate approach: R 4.7 k (6 ) B CC Ω R + R 39 kω+ 4.7 kω.7 E B BE E.0 E R ma. kω r e E 6 m 6 m Ω ma E 55

59 (b) Z i R R β r e 4.7 kω 39 kω (00)(30.56 Ω).768 kω r o 0R C Z o R C 3.9 kω (c) A v RC 3.9 kω r Ω 7.6 e (d) r o 5 kω (b) Z i (unchanged).768 kω Z o R C r o 3.9 kω 5 kω 3.37 kω (c) A v ( RC ro) (3.9 k Ω) (5 k Ω) 3.37 kω r Ω Ω e 0.8 (vs. 7.6)? 3. βr E 0R (00)( kω) 0(5.6 kω) 00 kω > 56 kω (checks!) & r o 0R C Use approximate approach: RC RC 3.3 kω A v re 0.65 Ω r A 60 e v 6 m 6 m 6 m r e E.6 ma E re 0.65 Ω E E R E E R E (.6 ma)( kω).6 E B BE + E kω B CC 5.6 kω+ 8 kω kω CC (.96 )(87.6 kω) CC Test βr E 0R? (80)(. kω) 0(56 kω) 396 kω < 560 kω (not satisfied) Use exact analysis: (a) R Th 56 kω 0 kω kω 56 k Ω(0 ) E Th 0 kω + 56 kω ETh BE B R + ( β + ) R k Ω+ (8)(. k Ω) Th E 56

60 7.58 μa E (β + ) B (8)(7.58 μa).37 ma 6 m 6 m r e 8.95 Ω.37 ma E (b) E E R E (.37 ma)(. kω) 3.0 B E + BE C CC C R C 0 β B R C 0 (80)(7.58 μa)(6.8 kω) 0.7 (c) Z i R R βr e 56 kω 0 kω (80)(8.95 kω) kω 3.4 kω 3.7 kω RC ro r o < 0R C A v re (6.8 k Ω) (50 k Ω) 8.95 Ω CC BE (a) B RB + ( β + ) RE 390 k Ω+ (4)(. k Ω) μa 559. kω E (β + ) B (40 + )(34.5 μa) ma 6 m 6 m r e 5.34 Ω ma E (b) Z b βr e + (β + )R E (40)(5.34 kω) + (40 + )(. kω) Ω kω kω Z i R B Z b 390 kω kω 8.37 kω Z o R C. kω (c) A v β R Z C b (40)(. k Ω) kω.8 (d) Z b βr e + ( β + ) + RC / ro + ( R + R )/ r C E o R (4) +. k Ω/ 0 kω Ω + (3.4 k Ω)/ 0 kω. kω E 57

61 747.6 Ω kω kω Z i R B Z b 390 kω kω kω Z o R C. kω (any level of r o ) β R C r e RC + + Z o b ro ro A v R i C + r o (40)(. k Ω) 5.34 Ω. kω kω 0 k 0 k Ω Ω. kω + 0 kω Even though the condition r o 0R C is not met it is sufficiently close to permit the use of the approximate approach. β RC β RC RC A v 0 Zb β RE RE RC 8. kω R E 0.8 kω m 6 m E 6.84 ma 3.8 Ω r e E E R E (6.84 ma)(0.8 kω) 5.6 B E + BE ma B E μa ( β + ) R B CC B and R B 4.09 kω μa B 7. (a) dc analysis the same r e 5.34 Ω (as in #5) B (b) Z i R B Z b R B βr e 390 kω (40)(5.34 Ω) Ω vs kω in #5 Z o R C. kω (as in #5) (c) A v RC. kω r 5.34 Ω e 4.99 vs.8 in #5 (d) Z i Ω vs kω for #5 Z o R C r o. kω 0 kω.98 kω vs.. kω in #5 58

62 8. (a) B RC ro.98 kω A v vs..8 in #5 re 5.34 Ω Significant difference in the results for A v. CC BE R + ( β + ) R B E k Ω+ (8)(. kω k Ω) kω μa E (β + ) B (8)(45.78 μa) 3.7 ma 6 m 6 m r e 7 Ω 3.7 ma E (b) r o < 0(R C + R E ) ( β + ) + RC / ro Z b βr e + + ( R + R )/ r C E o R E (80)(7 Ω) + (8) k Ω/ 40 kω k Ω/ 40 kω. kω 560 Ω kω (note that (β + ) 8 R C /r o 0.4) 560 Ω + [8.4 /.7]. kω 560 Ω kω kω Z i R B Z b 330 kω kω 66.8 kω β R C r e RC + + Zb ro ro A v RC + ro (80)(5.6 k Ω) 7 Ω 5.6 kω kω 40 kω 40 kω k Ω/40 kω (5.35) (a) B CC BE R + ( β + ) R 70 k Ω+ ()(.7 k Ω) kω B E 59

63 6.86 μa E (β + ) B (0 + )(6.86 μa).98 ma 6 m 6 m r e 8.7 Ω E.98 ma βr e (0)(8.7 Ω) 959. Ω (b) Z b βr e + (β + )R E 959. Ω + ()(.7 kω) kω Z i R B Z b 70 kω kω 4.5 kω Z o R E r e.7 kω 8.7 Ω 8.69 Ω (c) A v RE.7 kω R + r.7 kω Ω E e 0. (a) B CE BE R + ( β + ) R 390 k Ω+ ()5.6 kω B E E (β + ) B ()(6.84 μa) 0.88 ma 6 m 6 m r e 3.4 Ω E 0.88 ma r o < 0R E : Z b βr e + ( β + ) RE + RE / ro ()(5.6 k Ω) (0)(3.4 Ω) k Ω/40 kω 3.77 kω kω kω Z i R B Z b 390 kω kω 36. kω Z o R E r e 5.6 kω 3.4 Ω 3. Ω 6.84 μa (b) A v ( β + ) R / E Z + R / r E o ()(5.6 k Ω) / kω k Ω/ 40 kω (c) A v i b o A v i (0.994)( m) m 60

64 . (a)? Test βr E 0R (00)( kω) 0(8. kω) 400 kω 8 kω (checks)! Use approximate approach: 8. k Ω(0 ) B 8. kω+ 56 kω.5545 E B BE E.855 E R 0.97 ma E kω 0.97 ma B E 4.6 μa ( β + ) (00 + ) C β B (00)(4.6 μa) 0.9 ma (b) r e 6 m 6 m 8.05 Ω 0.97 ma E (c) Z b βr e + (β + )R E (00)(8.05 Ω) + (00 + ) kω 5.6 kω + 40 kω kω Z i 56 kω 8. kω kω 7.5 kω kω 7.03 kω Z o R E r e kω 8.05 Ω 7.66 Ω (d) A v. (a) E r e RE kω R + r kω Ω E EE E e R BE ma 6.8 kω 6 m 6 m Ω ma E (b) Z i R E r e 6.8 kω Ω 33. Ω Z o R C 4.7 kω α RC (0.998)(4.7 k Ω) (c) A v re Ω α β β

65 EE BE E. ma RE 3.9 kω 3.9 kω 6 m 6 m r e 3.58 Ω E. ma RC (0.9868)(3.9 k Ω) A v α 63. r 3.58 Ω e CC BE (a) B RF + β RC 0 kω+ 0(3.9 k Ω) 6.4 μa E (β + ) B (0 + )(6.4 μa).987 ma r e 6 m 6 m 3.08 Ω.987 ma E (b) Z i βr e R A F v Need A v! RC 3.9 kω A v re 3.08 Ω 98 Z i (0)(3.08 Ω) 0 k Ω kω 738 Ω Ω Z o R C R F 3.9 kω 0 kω 3.83 kω (c) From above, A v 98 RC 5. A v r e 60 R C 60(r e ) 60(0 Ω).6 kω A i β RF R + β R F C RF R + 00(.6 k Ω) F 9R F R C 00R F R F 3800 R C 3800(.6 k Ω) kω CC BE B R + β R F B (R F + βr C ) CC BE C 6

66 and CC BE + B (R F + βr C ) 6 m 6 m with E.6 ma r e 0 Ω.6 ma B E.94 μa β CC BE + B (R F + βr C ) (.94 μa)(33.59 kω + (00)(.6 kω)) (a) A v : i b βr e + (β + ) b R E o + C β b but i + b and i b Substituting, o + ( i b ) β b and o (β + ) b i Assuming (β + ) b i o (β + ) b and o o R C (β + ) b R C o ( β + ) brc Therefore, βr + ( β + ) R β R b C β r b e+ β R b E o RC RC and A v r + R R (b) i β b (r e + R E ) For r e R E i β b R E i b e b E i e E E Now i + b R i o F + b 63

67 Since o i o i + R o or b i + RF and i β b R E o i βr E i + β R E RF but o A v i β AR v i E and i βr E i + R Avβ REi or i R F F b F βr E i Avβ R E i [ β RE ] i RF i β RE β RERF so Z i Avβ RE R + β ( A ) R R i Z i with Z i Z i Z o : Set i 0 i F v E i F x y where x βr E and y R F / A v x y ( β RE )( RF / Av ) x + y β R + R / A β RERF β R A + R E v F E F v i b βr e + (β + ) b R E i β b (r e + R E ) 0 since β, r e + R E 0 b 0 and β b 0 64

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

IXBH42N170 IXBT42N170

IXBH42N170 IXBT42N170 High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor IXBH42N17 IXBT42N17 S 9 = 1 = 42A (sat) 2.8V Symbol Test Conditions Maximum Ratings TO-247 (IXBH) S = 25 C to 15 C 17 V V CGR = 25

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises Page 11 CHAPTER 1 V LSB 5.1V 10 bits 5.1V 104bits 5.00 mv V 5.1V MSB.560V 1100010001 9 + 8 + 4 + 0 785 10 V O 786 5.00mV or

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

IXBK64N250 IXBX64N250

IXBK64N250 IXBX64N250 High Voltage, High Gain BiMOSFET TM Monolithic Bipolar MOS Transistor IXBK64N25 IXBX64N25 V CES = 25V 11 = 64A V CE(sat) 3.V TO-264 (IXBK) Symbol Test Conditions Maximum Ratings V CES = 25 C to 15 C 25

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors (Large Can Type)

Aluminum Electrolytic Capacitors (Large Can Type) Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns GenX3 TM V IGBT High Speed PT IGBTs for -1kHz switching IXGA42NC3 IXGH42NC3 IXGP42NC3 V CES = V 1 = 42A V CE(sat) 5V t fi typ = 65ns TO-263 (IXGA) Symbol Test Conditions Maximum Ratings V CES = 25 C to

Διαβάστε περισσότερα

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater. Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges

Διαβάστε περισσότερα

Metal Oxide Varistors (MOV) Data Sheet

Metal Oxide Varistors (MOV) Data Sheet Φ SERIES Metal Oxide Varistors (MOV) Data Sheet Features Wide operating voltage (V ma ) range from 8V to 0V Fast responding to transient over-voltage Large absorbing transient energy capability Low clamping

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

SMD Transient Voltage Suppressors

SMD Transient Voltage Suppressors SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time

Διαβάστε περισσότερα

First Sensor Quad APD Data Sheet Part Description QA TO Order #

First Sensor Quad APD Data Sheet Part Description QA TO Order # Responsivity (/W) First Sensor Quad PD Data Sheet Features Description pplication Pulsed 16 nm laser detection RoHS 211/65/EU Light source positioning Laser alignment ø mm total active area Segmented in

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR FEATURES NPN SILICON OSCILLATOR AND MIXER TRANSISTOR LOW COST HIGH GAIN BANDWIDTH PRODUCT: ft = MHz TYP LOW COLLECTOR TO BASE TIME CONSTANT: CC r b'b = 5 ps TYP LOW FEEDBACK CAPACITANCE: CRE=.55 pf TYP

Διαβάστε περισσότερα

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN- -; Rev ; / EVALUATION KIT AVAILABLE µ µ PART ESD TEMP. RANGE - C to +5 C PPACKAGE SO TOP VIEW V EE V CC SENSE+ SENSE- R t R t R t R t MAX SENSE OUT SENSE+ SENSE- N.C. SHDN N.C. 3 5 R f R G R f 3 VDSL TRANSFORMER

Διαβάστε περισσότερα

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition MA MA Series Silicon planer e For stabilization of power supply ø.56. Unit : mm Features Color indication of VZ rank classification High reliability because of combination of a planer chip and glass seal

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Precision Metal Film Fixed Resistor Axial Leaded

Precision Metal Film Fixed Resistor Axial Leaded Features EIA standard colour-coding Non-Flame type available Low noise and voltage coefficient Low temperature coefficient range Wide precision range in small package Too low or too high ohmic value can

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W Features 1. Reliable low cost construction utilizing molded plastic technique 2. Both bi-directional and uni-directional devices are available 3. Fast response time 4. Excellent clamping capacity 5. 1500

Διαβάστε περισσότερα

Transient Voltage Suppressor

Transient Voltage Suppressor Transient Suppressor Features Glass passivated junction Low incremental surge resistance, excellent clamping capability Underwriters Laboratory Recognition under UL standard for safety 497B: Isolated Loop

Διαβάστε περισσότερα

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

Type 947D Polypropylene, High Energy Density, DC Link Capacitors Type 947D series uses the most advanced metallized film technology for long life and high reliability in DC Link applications. This series combines high capacitance and very high ripple current capability

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

ITU-R BT ITU-R BT ( ) ITU-T J.61 ( ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

PRELIMINARY DATA SHEET NPN EPITAXIAL SILICON TRANSISTOR FOR MICROWAVE HIGH-GAIN AMPLIFICATION

PRELIMINARY DATA SHEET NPN EPITAXIAL SILICON TRANSISTOR FOR MICROWAVE HIGH-GAIN AMPLIFICATION PRELIMINARY DATA SHEET NPN EPITAXIAL SILICON TRANSISTOR FOR MICROWAVE HIGH-GAIN AMPLIFICATION NE699M FEATURES OUTLINE DIMENSIONS (Units in mm) HIGH ft: 6 GHz TYP at V, ma LOW NOISE FIGURE: NF =. db TYP

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

NMBTC.COM /

NMBTC.COM / Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration

Διαβάστε περισσότερα

SPBW06 & DPBW06 series

SPBW06 & DPBW06 series /,, MODEL SELECTION TABLE INPUT ORDER NO. INPUT VOLTAGE (RANGE) NO LOAD INPUT CURRENT FULL LOAD VOLTAGE CURRENT EFFICIENCY (TYP.) CAPACITOR LOAD (MAX.) SPBW06F-03 310mA 3.3V 0 ~ 1500mA 81% 4700μF SPBW06F-05

Διαβάστε περισσότερα

RSDW08 & RDDW08 series

RSDW08 & RDDW08 series /,, MODEL SELECTION TABLE INPUT ORDER NO. INPUT VOLTAGE (RANGE) NO LOAD INPUT CURRENT FULL LOAD VOLTAGE CURRENT EFFICIENCY (Typ.) CAPACITOR LOAD (MAX.) RSDW08F-03 344mA 3.3V 2000mA 80% 2000μF RSDW08F-05

Διαβάστε περισσότερα

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC ~ A File Name:IDLV65SPEC 07050 SPECIFICATION MODEL OUTPUT OTHERS NOTE DC VOLTAGE RATED CURRENT RATED POWER DIMMING RANGE VOLTAGE TOLERANCE PWM FREQUENCY (Typ.) SETUP TIME Note. AUXILIARY DC OUTPUT Note.

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type Qualified FEATURE Excellent Mechanical Strength and Electrical Stability Ideal for Pick and Place Machinery Stable High Frequency Characteristics Miniature, High Board Density Equivalent Specification

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Summary of Specifications

Summary of Specifications Snap Mount Large High CV High Ripple 85 C Temperature The series capacitors are the standard 85 C, large capacitance, snap-in capacitors from United Chemi-Con. The load life for the series is 2,000 hours

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

; +302 ; +313; +320,.

; +302 ; +313; +320,. 1.,,*+, - +./ +/2 +, -. ; +, - +* cm : Key words: snow-water content, surface soil, snow type, water permeability, water retention +,**. +,,**/.. +30- +302 ; +302 ; +313; +320,. + *+, *2// + -.*, **. **+.,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5. Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions xercise Solutions X5. ( β ).0 β 4. β 40. 0.0085 hapter 5 β 40. α 0.999 β 4..0 0.0085.95 X5. O 00 O n 3

Διαβάστε περισσότερα

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20% Wire Wound SMD Power Inductors WPN Series Operating temperature range : -40 ~+125 (Including self-heating) FEATURES Fe base metal material core provides large saturation current Metallization on ferrite

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

HiPerFAST TM IGBT with Diode

HiPerFAST TM IGBT with Diode HiPerFAST TM IGBT with Diode C2-Class High Speed IGBTs IXGK NC2D1 IXGX NC2D1 S = V 25 = 75 A (sat) = V t fi(typ) = 35 ns Symbol Test Conditions Maximum Ratings S = 25 C to 15 C V V CGR = 25 C to 15 C;

Διαβάστε περισσότερα

NPN Silicon RF Transistor BFQ 74

NPN Silicon RF Transistor BFQ 74 NPN Silicon RF Transistor BFQ 74 For low-noise amplifiers in the GHz range, and broadband analog and digital applications in telecommunications systems at collector currents from 1 ma to 25 ma. Hermetically

Διαβάστε περισσότερα

Surface Mount Aluminum Electrolytic Capacitors

Surface Mount Aluminum Electrolytic Capacitors FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Metal thin film chip resistor networks

Metal thin film chip resistor networks Metal thin film chip resistor networks AEC-Q200 Compliant Features Relative resistance and relative TCR definable among multiple resistors within package. Relative resistance : ±%, relative TCR: ±1ppm/

Διαβάστε περισσότερα

SCOPE OF ACCREDITATION TO ISO 17025:2005

SCOPE OF ACCREDITATION TO ISO 17025:2005 SCOPE OF ACCREDITATION TO ISO 17025:2005 TFF CORPORATION TEKTRONIX COMPANY 1-14-1 Midorigaoka, Naka-gun, Ninomiya-machi, Kanagawa Pref. 259-0132 JAPAN Hideki Yuyama Phone: 81 463 70 5634 CALIBRATION Valid

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM AT-3263 Surface Mount Package SOT-363 (SC-7) I I Y Pin Connections B 1 C 1 E 1 E 2 C 2 B 2 Page 1 21.4., 7:6 PM Absolute Maximum Ratings [1] Absolute Thermal Resistance [2] : Symbol Parameter Units Maximum

Διαβάστε περισσότερα

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF) Snap-in Terminal Type, 85 C Standard Withstanding 3000 hours application of rated ripple current at 85 C. Compliant to the RoHS directive (2011/65/EU). LS Smaller LG Specifications Item Category Temperature

Διαβάστε περισσότερα

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table SMBJ SERIES SMBG Plastic-Encapsulate Diodes HD BK 7 Transient Suppressor Diodes Features P PP 6W V RWM 5.V- 44V Glass passivated chip Applications Clamping Marking SMBJ XXCA/XXA/XX XX : From 5. To 44 SMBG

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC IDPV65 series ~ A File Name:IDPV65SPEC 07060 IDPV65 series SPECIFICATION MODEL OUTPUT OTHERS NOTE DC VOLTAGE RATED CURRENT RATED POWER DIMMING RANGE VOLTAGE TOLERANCE PWM FREQUENCY (Typ.) SETUP TIME Note.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Bulletin 1489 UL489 Circuit Breakers

Bulletin 1489 UL489 Circuit Breakers Bulletin 489 UL489 Circuit Breakers Tech Data 489-A Standard AC Circuit Breaker 489-D DC Circuit Breaker 489-A, AC Circuit Breakers 489-D, DC Circuit Breakers Bulletin 489-A Industrial Circuit Breaker

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα