REFERENC LISTA 2015 UNIS-FAGAS. UNIS-Fabrika gasnih aparata d.o.o.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "REFERENC LISTA 2015 UNIS-FAGAS. UNIS-Fabrika gasnih aparata d.o.o."

Transcript

1 UNIS-FAGAS UNIS-Fabrika gasnih aparata d.o.o. REFERENC LISTA 2015 Rajlovačka bb, SARAJEVO Tel.: Fax.:

2 Kompanija UNIS-Fabrika gasnih aparata d.o.o. (UNIS-FAGAS d.o.o.) Sarajevo sa osnovnom djelatnošću projektovanja, proizvodnje, ugradnje opreme za mjerenje i regulaciju pritiska gasa u svom dosadašnjem radu realizovala je veliki broj projekata kako na domaćem tako i na inostranom tržištu. Naša najbolja referenca je veliki broj stalnih klijenata koji u nama vide stabilnog i pouzdanog partnera i sa kojima saradnja, na obostrano zadovoljstvo, traje već godinama. UNIS-FAGAS ima uvedene sljedeće standarde, i to ISO 9001:2008, ISO , DIN EN ISO :2005, AD2000-Merkblatt HP0:2008, Abs. 3, DIN EN :2009, te u svojoj poslovnoj politici nastoji da sve svoje proizvode sertificira kod nadležnih institucija prema BAS-EN standardima. Pored sertificiranja proizvoda od strane domaćih institucija SMP (INSTITUT ZA STANDARDIZACIJU I MJERITELJSTVO BIH), UNIS-FAGAS sertificira svoje proizvode od strane njemačkog udruženja za zrak, gas i vodu DVGW, TÜV Thüringen e.v, kao i kanadsko - američkog udruženja za gas CSA. U periodu od do godine UNIS-FAGAS je projektovao i uradio gasifikaciju opštine Visoko. UNIS-FAGAS je bio generalni izvođač poslova od finansiranja projekta do izrade projektne dokumentacije, radova na terenu i isporuke opreme. Projekat je obuhvatao: ZNAČAJNIJI PROJEKTI Gasifikaciju za korisnika gasa; Radove primarne gasne mreže prema projektu gasifikacije sačinjenom i ovjerenom od ovlašćene institucije; Radove sekundarne gasne mreže prema sopstvenom projektu. 1. Izrada mjerne stanice (Šepak) Kapacitet: Q = m 3 /h 2. Izrada blok i čistačke stanice (Šepak) Kapacitet: Q = m 3 /h 3. Izrada mjerno-regulacione stanice (Bijeljina) Kapacitet: Q = m 3 /h 4. Izrada mjerno-regulacione stanice (Visoko) Kapacitet: Q = m 3 /h 5. Izrada mjerno-regulacione stanice (Brnjaci) Kapacitet: Q = m 3 /h 6. Izrada mjerno-regulacione stanice (Travnik) Kapacitet: Q = m 3 /h 7. Izrada mjerno-regulacione stanice (Busovača, Vitez, Novi Travnik) Kapacitet: Q = m 3 /h 8. Izrada rejonsko regulacione mjerne stanice Kapacitet: Q = m 3 /h 9. Izrada baždarnice (Sarajevo) Kapacitet: Q = m 3 /h 10. Izrada mjerno-regulacione stanice Kapacitet: Q = m 3 /h 11. Izrada CNG punionica (Novi Sad, Sarajevo) 12. Izrada mjerno-regulacionih stanica G-100 do G-400 2

3 EKSKLUZIVNO ZASTUPNIŠTVO UNIS-FAGAS je ovlašćeni zastupnik grupacije ELSTER- INSTROMET za područje BiH. ELSTER-INSTROMET je prepoznatljiv više od 170 godina kao kvalitetan i inovativan proizvođač opreme za mjerenje i regulaciju gasa. UNIS FAGAS je distributer za Bosnu i Hercegovinu proizvoda iz programa POLYKEN - BERRY PLASTICS CORPORATION, USA. Proizvodi POLYKEN za antikorozivnu zaštitu čeličnih cjevovoda u svijetu su poznati više od 50 godina. Na našem tržištu prisutni su 40 godina. UNIS FAGAS je ovlašćeni zastupnik firme TECHART za Bosnu i Hercegovinu. Kompanija TECHART je specijalizovana za poslove elektro-hemijske zaštite čelika od korozije. Primjenom TECHART rješenja potpuno se zaustavlja korozija i produžava se radni vijek objekta za više decenija. UNIS FAGAS je zastupnik firme PREMATLAK za područje BiH koja se bavi proizvodnjom manometara i termometara. UNIS FAGAS posjeduje tipska odobrenja za BiH, za manometre i termometre proizvođača Prematlak koja su izdata od strane INSTITUTA ZA MJERITELJSTVO, BiH. 3

4 ISPORUKA I UGRADNJA OPREME ZA TELEMETRIJSKI SISTEM Uspješno smo realizovali brojne projekte isporuke i ugradnje opreme za telemetrijski sistem, osiguravamo konstantnu nabavku rezervnih dijelova za isti, te pružamo usluge edukacije i tehničke podrške korisnicima navedene opreme; Isporuka elektronskih korektora i opreme za telemetriju; Isporuka rezervnih dijelova za elektronske korektore i Flow computer; Isporuka i ugradnja mjerne opreme (turbinski mjerač, tip SMRI-X i Flow computer FC 2000) na lokacijama MRS Butila, MRS Hum, MS Starić i MS Semizovac; Isporuka i ugradnja opreme za telemetrijski sistem Visoko; Isporuka opreme za nadogradnju telemetrijskog sistema; Isporuka rezervnih dijelova za elektronske korektore i telemetrijski sistem; Isporuka, ugradnja mjerne opreme i instrumentacije i to: Flow computer dvolinijski; Turbinski mjerači; Tehničko rješenje mjerne stanice i telemetrijske akvizicijske podataka; Kabinet za mjernu opremu; Eksterna AKU baterija; Smart transmiteri pritiska i temperature; Gasni kromatograf; Modifikacija postojećeg ISS software-a telemetrijskog sistema Sarajevogasa i BH-gasa; Analogni modem, Westermo; Montaža, testiranje i puštanje u rad mjerne opreme i obuka zaposlenika za rukovanje isporučenom opremom. 4

5 PRIKAZ REFERENCI SA FOTOGALERIJAMA GODINA PROIZVODNJE / / / KOMPRIMOVANI PRIRODNI GAS (KPG ili CNG) KPG CNG punionica, Q = 350 m 3 /h, p = 350 bar Mjesto ugradnje: Novi Sad za firmu NIS a.d. Komprimovani zemni gas ili komprimovani prirodni gas (nekada i sabijeni ) je jedan od oblika u koji se, radi lakšeg transporta i čuvanja, pretvara zemni gas. koriste se oznake KPG i CNG, a najpoznatiji je pod imenom metan. Zemni gas se veoma teško pretvara i čuva u obliku tečnosti, te je njegovo sabijanje, kompromis između zahtjeva da mu se smanji specifična zapremina (da ista količina zauzme manje mjesta), tehničke i finansijske zahtjevnosti njegovog utečnjavanja i čuvanja u tečnom stanju. Zbog niza tehničkih prednosti prirodni gas se na automobilima daleko najčešće koristi u komprimovanom stanju, a sasvim rijetko kao utečnjen. Oblast upotrebe KPG-a se uglavnom poklapa sa tečnim naftnim gasom: koristi se kao alternativno gorivo za pokretanje automobila. Ovim gorivom može da se direktno napaja motor sa unutrašnjim sagorjevanjem, a može se koristiti i za generisanje vodonika i napajanje gorivih ćelija, koje generišu električnu energiju za pogon elektromotora. Da bi se koristilo na postojećim motorima sa unutrašnjim sagorjevanjem, vozilo mora biti na odgovarajući način rekonstruisano, odnosno prilagođeno, tj. mora da mu se ugradi plinski (KPG) sistem. Načelno se ove prepravke mogu lako izvršiti, a dobijene performanse su potpuno uporedive sa klasičnim vozilima. 5

6 Primjenom KPG sistema na vozilima, smanjuje se emisija izduvnih gasova, tako da se i bez njihovog dodatnog prečišćavanja dostiže norma euro 5. Zbog cijene goriva, eksploatacija ovakvih vozila je jeftinija (u odnosu ona na dizel gorivo), mada je cijena samog vozila (sa gasnim sistemom) nešto viša od cijene vozila na benzin ili dizel gorivo. Tvrdi se i da korišćenje prirodnog gasa traži manje održavanje motora, uz ostvarivanje većeg vijeka. Primjena prirodnog gasa za pogon automobila doživljava poslednjih godina pravu ekspanziju. Procene su da je broj vozila u svetu, koje (delimično ili isključivo) pokreće prirodni gas reda veličine nekoliko miliona. Najčešće se počinje od gradskih autobusa, ali sve je više i putničkih, posebno taksi vozila, kao i vozila za komunalne službe i unutrašnji transport. Paralelno sa razvojem vozila na prirodni gas razvija se i infrastruktura. Grade se gasovodi (koji svakako snabdjevaju i druge potrošače), širi se mreža kompresorskih stanica za punjenje vozila prirodnim gasom. KPG CNG punionica, Q = 350 m 3 /h, p = 350 bar Mjesto ugradnje: Novi Sad za firmu NIS a.d. 6

7 KPG CNG punionica, Q = 10 m 3 /h, p = 350 bar Mjesto ugradnje: Sarajevo za firmu BIHAMK 7

8 GASNE STANICE Regulacione stanice, Q = m 3 /h, p = 12 bar Mjesto ugradnje: Bačka Palanka za firmu Novi Sad-Gas Posmatrajući gasnosnabdjevajući sistem u smjeru protoka gasa, tj. od proizvođača prema potrošaću, mijenjaju se područja pritiska u kojima njegovi pojedini dijelovi rade. Tako se pritisno područje napajanja kroz magistralne gasovode nalazi obično između 50 i 25 bar, a pritisno područje potrošnje između 7 i 3 bar, odnosno između 100 i 20 mbar. Na prelazu iz jednog u drugo područje pritisak se reguliše u regulacionim stanicama (RS). Ako se ujedno i mjeri radi obračuna prodanih količina, onda govorimo o mjerno-regulacionim stanicama (MRS) i primopredajnim stanicama. Prema namjeni obično ih nazivamo: Primopredajne mjerno-regulacione stanice; Područne mjerno-regulacione stanice; Skupne regulacione stanice za grupe potrošača. Regulacione stanice sastoje se od: Uređaja za regulaciju pritiska; Sigurnosnih uređaja; Zapornih organa; Fazonskih komada, cijevi, zaptivača i spojeva; Ostalog pribora, a prema potrebi i od: Predgrijača; Obilaznih vodova; Odvajača kondenzata; Odvajača prašine; Odorizatora; Kontrolnih uređaja; Mjernih uređaja za protok gasa. Regulacione stanice, Q = m 3 /h, p = 12 bar Mjesto ugradnje: Bačka Palanka za firmu Novi Sad-Gas 8

9 Regulacione stanice, Q = m 3 /h, p = 12 bar Mjesto ugradnje: Bačka Palanka za firmu Novi Sad-Gas Izvedba regulacionih stanica može biti: Jednolinijska, jednostepena ili dvostepena, sa grijanjem ili bez njega; Dvolinijska (dvije linije po 100% punog učina), jednostepena ili dvostepena, sa grijanjem ili bez njega; Trolinijska (tri linije po 50% punog učina), jednostepena ili dvostepena, sa grijanjem ili bez njega. Za izbor opreme mjerno-regulacione stanice potrebno je poznavati: Ulazni pritisak minimalni (p umin u bar); Ulazni pritisak maksimalni (p umax u bar); Područje izlaznog pritiska (p idoz u bar); Protok količine gasa (Q vn u m 3 /h); Vrstu gasa (gustoća ρ n, relativna gustoća d); Nazivni prečnik ulaznog gasovoda (DN ulazni); Nazivni prečnik izlaznog gasovoda (DN izlazni); Izvedbu prirubnice na ulazu i izlazu (DIN, ASA). 9

10 Regulacione stanice, Q = m3/h, p = 12 bar Mjesto ugradnje: Bačka Palanka za firmu Novi Sad-Gas 10

11 Mjerna stanica, Q = m 3 /h, p = 50 bar Mjesto ugradnje: Šepak za firmu Bijeljina Gas 11

12 Izometrijski prikaz glavne regulaciono-mjerne stanice (GRMS), Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Bijeljina za firmu Bijeljina Gas Izometrijski prikaz kotlovnice za glavnu regulaciono-mjernu stanicu (GRMS) Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Bijeljina za firmu Bijeljina Gas 12

13 Utovar glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Bijeljina za firmu Bijeljina Gas 13

14 Montaža glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Bijeljina za firmu Bijeljina Gas 14

15 Montaža glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Bijeljina za firmu Bijeljina Gas Kabinet nadzora flow computer za glavnu regulaciono-mjernu stanicu Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Bijeljina za firmu Bijeljina Gas 15

16 Montaža glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Visoko za firmu BH- Gas 16

17 Montaža glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Visoko za firmu BH- Gas 17

18 Kontejner za smještaj glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 19 bar Mjesto ugradnje: Brnjaci za firmu BH- Gas 18

19 Kontejner za smještaj glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 19 bar Mjesto ugradnje: Brnjaci za firmu BH- Gas 19

20 Kontejner za smještaj glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Travnik za firmu BH- Gas Montaža glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Travnik za firmu BH- Gas 20

21 Montaža glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Travnik za firmu BH- Gas 21

22 Montaža kotlovnice za glavnu regulaciono-mjernu stanicu Q = m 3 /h, p = 51,1bar Mjesto ugradnje: Travnik za firmu BH- Gas Završna montaža glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Travnik za firmu BH- Gas 22

23 Montaža glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Busovača, Vitez i Novi Travnik za firmu BH- Gas 23

24 Montaža glavne regulaciono-mjerne stanice, Q = m 3 /h, p = 51,1 bar Mjesto ugradnje: Busovača, Vitez i Novi Travnik za firmu BH- Gas 24

25 Montaža kotlovnice za glavnu regulaciono-mjernu stanicu Q = m 3 /h, p = 51,1bar Mjesto ugradnje: Travnik za firmu BH- Gas 25

26 Rejonsko regulaciona-mjerna stanica, Q = m 3 /h, p = 14,5 bar Mjesto ugradnje: Bijeljina 26

27 Rejonsko regulaciona-mjerna stanica, Q = m3/h, p = 14,5 bar Mjesto ugradnje: Bijeljina 27

28 Montaža rejonsko regulaciona-mjerna stanica, Q = m3/h, p = 14,5 bar Mjesto ugradnje: Bijeljina Baždarnica za mjerne uređaje, Q = m 3 /h, p = 6 bar Mjesto ugradnje: Sarajevo za firmu Sarajevogas 28

29 RAZLIČITI TIPOVI GASNIH STANICA 29

30 30

31 31

32 32

33 33

34 RAZVOJ REGULATORA PRITISKA GASA 34

35 RAZVOJ GASNIH FILTERA O PROIZVODU Filter za gas je neophodan u regulacionim i mjernim stanicama radi zaštite od oštećenja osjetljivih uređaja od nečistoća koje stižu gasom. Služe da zaustave i sakupe nečistoće (čvrsti djelići, prah, rđa i kondenzat iz gasnog toka) 5 µm. OPIS PROIZVODA Gasne filtere izrađujemo u veličinama za pritiske od 16 do 100 bara. Izrađeni su i ispitani na nepropusnost po standardu PED 97/23 EC Direktivi, DIN i Tehničkim propisima za izradu posuda pod pritiskom (G 498). Sistem otvaranja i zatvaranja može biti prirubnički i sa brzozatvarajućom glavom, te omogućava jednostavnu i sigurnu zamjenu filterskih uložaka. Priključci za ulaz i izlaz gasa mogu se raditi po zahtjevu naručioca zavisno o tipu regulacione, mjerne i regulaciono mjerne stanice. Gasni filter ima priključak R ¼ za ugradnju diferencijalnog manometra ili R ½ ako se umjesto diferencijalnog manometra koriste manometri za mjerenje pritiska (manometri nisu u sastavu filtera i isti se posebno naručuju). Takođe, postoji i priključak za ispust nečistoća i kondenzata. Po ulasku gasa u gasni filter, usljed promjene pravca strujanja i brzine gasa, izdvajaju se veće nečistoće i sakupljaju na dno filtera. Gas prolazi kroz filterski uložak, gdje se izdvaja preostala nečistoća 5 μm. Po posebnim zahtjevima izrađujemo filtere sa električnim premoštenjem za izjednačavanje električnih potencijala između poklopca i kućišta. PODACI ZA NARUDŽBU GF-P-H / X / X / XXX / XXX X XXX XXX Gasni filter DN400 PN100 (Horizontalna ugradnja) GF-P Tip filtera (Gasni filter-prirubnički); H, V, U Izvedba (horizontalni, vertikalni, ugaoni položaj); X Omotač gasnog filtera DN; X/X Tip filterskog uloška / Broj filterskih uložaka; XXX Nazivni otvor DN; XXX Nazivni pritisak PN; XXX / XXX Ugao ulaznog / Ugao izlaznog priključka prema položaju ugradnje. Gasni filter DN125 PN16 (Ugaona ugradnja) 35

36 RAZVOJ ZAGRIJAČA GASA IZMJENJIVAČA TOPLOTE O PROIZVODU Zagrijač gasa / Izmjenjivač toplote je aparat (uređaj) u kojem se toplota predaje (vrši prelaz) sa jednog medija na drugi. Površina za izmjenu toplote izvedena je iz cijevi pa se ovi izmjenjivači toplote nazivaju cijevni izmjenjivači toplote. Zavisno od toga koji proces je primaran, tj. da li želimo da glavni medij grijemo ili hladimo, izmjenjivači toplote se dijele na grijače i hladnjake. OPIS PROIZVODA Cijevni zagrijači gasa / izmjenjivači toplote su rekuperatori, tj. površinski toplotni aparati u kojima se toplotni tok kroz zidove cijevi ne mijenja u zavisnosti od vremena. Cijevni izmjenjivači toplote mogu biti različite konstrukcije i izvedbe, različitih oblika i položaja ugradnje. Mogu biti rastavljivi i nerastavljivi. Mogu biti horizontalni i vertikalni. Mogu biti pojedinačni i vezani u bateriju od dva ili više izmjenjivača toplote. Mogu biti samostojeći, oslonjeni na noge ili oslonjeni na oslonce zavarene na plaštu izmjenjivača kod vertikalnih izmjenjivača toplote ili oslonjeni na sedlaste oslonce kod horizontalnih izmjenjivača toplote. PODRUČJE PRIMJENE U procesu redukcije pritiska gasa "Joule-Thomson"-ovim efektom, pad temperature gasa je znatan (približno 0,5 C po baru redukcije pritiska). Ovo snižavnje temperature gasa može oštetiti opremu zbog formiranja kristala leda nastalih iz vodene pare u gasu. Posebno, u prvom stepenu stanice, gas mora biti zagrijan prije redukcije pritiska pošto se ovaj efekat dešava naročito pri velikim razlikama ulaznog i izlaznog pritiska. Preporučuje se da, poslije redukcije pritiska gasa, temperatura gasa ne smije biti ispod 5 C. Jedna od najboljih metoda za zagrijavanje gasa u redukcionim stanicama je upotreba izmjenjivača toplote sa toplom vodom ili zasićenom vodenom parom kao fluidima nosiocima toplote. Cijevni izmjenjivač toplote je aparat u kojem se toplota predaje sa jednog medija na drugi. Površina za izmjenu toplote izvedena je iz cijevi pa se ovi izmjenjivači nazivaju cijevni izmjenjivači toplote. Zagrijač gasa Izmjenjivač toplote 36

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1 (Regenerativni zagrijači napojne vode) List: 1 REGENERATIVNI ZAGRIJAČI NAPOJNE VODE Regenerativni zagrijači napojne vode imaju zadatak da pomoću pare iz oduzimanja turbine vrše predgrijavanje napojne vode

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

PLINSKI FILTRI ZFG ravni i ZEFG kutni Uputstva za upotrebu, montažu i održavanje

PLINSKI FILTRI ZFG ravni i ZEFG kutni Uputstva za upotrebu, montažu i održavanje PLINSKI FILTRI ZFG ravni i ZEFG kutni Uputstva za upotrebu, montažu i održavanje PRIMJENA Strujanjem plina kroz cjevovode plin sa sobom nosi razne nečistoće koje mogu biti njegov sastavni dio, no mogu

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656 TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

TESTIRANJE ZAPTIVENOSTI KANALSKIH MREŽA

TESTIRANJE ZAPTIVENOSTI KANALSKIH MREŽA 2. MEĐUNARODNI STRUČNI SKUP IZ OBLASTI KLIMATIZACIJE, GRIJANJA I HLAĐENJA ENERGIJA+ TESTIRANJE ZAPTIVENOSTI KANALSKIH MREŽA Dr Milovan Živković,dipl.inž.maš. Vuk Živković,dipl.inž.maš. Budva, 22-23.9.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O. Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

DUALNOST. Primjer. 4x 1 + x 2 + 3x 3. max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 (P ) 1/9. Back FullScr

DUALNOST. Primjer. 4x 1 + x 2 + 3x 3. max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 (P ) 1/9. Back FullScr DUALNOST Primjer. (P ) 4x 1 + x 2 + 3x 3 max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 1/9 DUALNOST Primjer. (P ) 4x 1 + x 2 + 3x 3 max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 1/9 (D)

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Rastavljivi izmjenjivač topline XG

Rastavljivi izmjenjivač topline XG XG Opis/primjena XG je rastavljivi izmjenjivač topline, napravljen za korištenje u sustavima daljinskog grijanja i sustavima za hlađenje. Izmjenjivači topline se mogu otvoriti radi čišćenja i zamjene ploča

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Ventil sa dosjedom (PN 16) VFM 2 prolazni ventil, prirubnički

Ventil sa dosjedom (PN 16) VFM 2 prolazni ventil, prirubnički Tehnički podaci Ventil sa dosjedom (PN 16) VFM 2 prolazni ventil, prirubnički Opis Funkcije: Logaritamska karakteristika Odnos maksimalnog i minimalnog protoka >100:1 Tlačno rasterećeni Ventil za sustave

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Poglavlje 7. Blok dijagrami diskretnih sistema

Poglavlje 7. Blok dijagrami diskretnih sistema Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

O proizvođaču Zašto upotrijebiti plastično revizijsko okno tipa Zagožen? Tehnički podatci revizijskog okna Standardna revizijska okna

O proizvođaču Zašto upotrijebiti plastično revizijsko okno tipa Zagožen? Tehnički podatci revizijskog okna Standardna revizijska okna 1 O proizvođaču Zašto upotrijebiti plastično revizijsko okno tipa Zagožen? Tehnički podatci revizijskog okna Standardna revizijska okna Revizijsko okno DN 625 Revizijsko okno DN 800 Revizijsko okno DN

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica

Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica Tehnički podaci Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica Opis VL 2 VL 3 Ventili VL 2 i VL 3 pružaju kvalitetno, isplativo rješenje za većinu primjena

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα