Περιεχόμενα διάλεξης
|
|
- Ἀριστομάχη Κουρμούλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 4η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 4, σελ. 1 Περιεχόμενα διάλεξης Ηλεκτρομαγνητικά κύματα Κυματική Εξίσωση Ακριβής Λύση Οπτικών Ινών Ταξινόμηση Τρόπων Αριθμός Τρόπων Γ. Έλληνας, Διάλεξη 4, σελ. 2 Page 1
2 Παράρτημα Κυματική εξίσωση Γ. Έλληνας, Διάλεξη 4, σελ. 3 Κυματική εξίσωση ΗΠ Για ομογενές, ισότροπο, γραμμικό διηλεκτρικό μέσο χωρίς απώλειες: όπου 2 2 E E με = 0 2 t = E ε= μ= Ηλεκτρικό πεδίο Διηλεκτρική σταθερά Μαγνητική διαπερατότητα Γ. Έλληνας, Διάλεξη 4, σελ. 4 Page 2
3 Οδεύον κύμα E z = E0 g( t± ) υ όπου όρισα την ταχύτητα διάδοσης (φάσης) του κύματος υ 1 υ = με Γ. Έλληνας, Διάλεξη 4, σελ. 5 Αρμονικό κύμα E = E0 exp( iωt± iβ z) Αναλυτικό σήμα όπου όρισα τη σταθερά διάδοσης ω β = υ E = E0 exp( ± iβ z) Μιγαδική περιβάλλουσα (φάσορας) Γ. Έλληνας, Διάλεξη 4, σελ. 6 Page 3
4 Άλλοι ορισμοί Μήκος κύματος (χωρική περίοδος κύματος κατά τον άξονα ζ) βλ 2π = 2π β = λ Δείκτης διάθλασης ε r μr c n = = υ μ ε Σχετική διηλεκτρική σταθερά r Σχετική μαγνητική διαπερατότητα r Γ. Έλληνας, Διάλεξη 4, σελ. 7 Διανυσματική εξίσωση Helmholtz Ι Η κυματική εξίσωση για το ηλεκτρικό πεδίο για τη μιγαδική περιβάλλουσα είναι 2 2 E+ k E = 0 όπου όρισα τον κυματάριθμο k = ω με Ομοίως για τη μιγαδική περιβάλλουσα του μαγνητικού πεδίου 2 2 H+ k H = 0 Γ. Έλληνας, Διάλεξη 4, σελ. 8 Page 4
5 Διανυσματική εξίσωση Helmholtz ΙΙ E n k0 E 0 + = H n k0 H 0 + = όπου όρισα τον κυματάριθμο στο κενό k = ω με Γ. Έλληνας, Διάλεξη 4, σελ. 9 Ακριβής ανάλυση οπτικής ίνας Γ. Έλληνας, Διάλεξη 4, σελ. 10 Page 5
6 Υποθέσεις Ιδανική οπτική ίνα Ομογενής Ισότροπη Γραμμική Χωρίς απώλειες Με ντύμα απείρων διαστάσεων Γ. Έλληνας, Διάλεξη 4, σελ. 11 Ακριβής ορισμός τρόπου Τρόπος = Λύση της κυματικής εξίσωσης η οποία είναι αρμονική συνάρτηση ως προς το χρόνο (η χωρική του κατανομή δεν μεταβάλλεται κατά την μετάδοση) και ικανοποιεί τις οριακές συνθήκες στη διαχωριστική επιφάνεια μεταξύ πυρήνα και ντύματος Γ. Έλληνας, Διάλεξη 4, σελ. 12 Page 6
7 Λύση εξίσωσης Helmholtz Ι Υποθέτουμε λύση της μορφής Σε κυλινδρικές συντεταγμένες Γ. Έλληνας, Διάλεξη 4, σελ. 13 Λύση εξίσωσης Helmholtz ΙΙ Θέτω Εκφράζω την εγκάρσια Λαπλασιανή σε κυλινδρικές συντεταγμένες Γενική λύση (υπέρθεση τρόπων & χωρισμός μεταβλητών) Γ. Έλληνας, Διάλεξη 4, σελ. 14 Page 7
8 Λύση εξίσωσης Helmholtz ΙΙΙ Για ένα στοιχειώδη τρόπο Επιμέρους διαφορικές εξισώσεις (Γωνιακή) (Ακτινική) Γ. Έλληνας, Διάλεξη 4, σελ. 15 Λύση γωνιακής ΔΕ Λύση όπου q α Ακέραιος (γωνιακός αριθμός) Αυθαίρετη σταθερά φάσης Γ. Έλληνας, Διάλεξη 4, σελ. 16 Page 8
9 Λύση ακτινικής ΔΕ Εξίσωση Bessel Γενική λύση όπου J q N I q K q q Κανονική συνάρτηση Bessel πρώτου είδους βαθμού q Κανονική συνάρτηση Bessel δεύτερου είδους βαθμού q Τροποποιημένη συνάρτηση Bessel πρώτου είδους βαθμού q Τροποποιημένη συνάρτηση Bessel δεύτερου είδους βαθμού q Γ. Έλληνας, Διάλεξη 4, σελ. 17 Εξισώσεις Bessel Ι Κανονικές συναρτήσεις Bessel πρώτου είδους Κανονικές συναρτήσεις Bessel δεύτερου είδους Γ. Έλληνας, Διάλεξη 4, σελ. 18 Page 9
10 Εξισώσεις Bessel ΙΙ Τροποποιημένες συναρτήσεις Bessel πρώτου είδους Τροποποιημένες συναρτήσεις Bessel δεύτερου είδους Γ. Έλληνας, Διάλεξη 4, σελ. 19 Τελική λύση Ε z, H z Όπου όρισα τις κανονικοποιημένες παραμέτρους Εγκάρσια σταθερά διάδοσης Εγκάρσιος συντελεστής εξασθένησης Γ. Έλληνας, Διάλεξη 4, σελ. 20 Page 10
11 Υπολογισμός λοιπών συνιστωσών Από τις εξισώσεις Maxwell Γ. Έλληνας, Διάλεξη 4, σελ. 21 Γενική λύση (πυρήνας) Γ. Έλληνας, Διάλεξη 4, σελ. 22 Page 11
12 Γενική λύση (ντύμα) Γ. Έλληνας, Διάλεξη 4, σελ. 23 Οριακές συνθήκες Ι Συνέχεια εφαπτομενικών συνιστωσών ΗΠ, ΜΠ: E ( a) = E ( a) z1 z2 H ( a) = H ( a) z1 z2 E ( a) = E ( a) φ φ 1 2 H ( a) = H ( a) φ φ 1 2 Γ. Έλληνας, Διάλεξη 4, σελ. 24 Page 12
13 Οριακές συνθήκες ΙΙ Σύστημα τεσσάρων εξισώσεων με τέσσερις αγνώστους: Μη μηδενική λύση για det[m]=0: Χαρακτηριστική εξίσωση Γ. Έλληνας, Διάλεξη 4, σελ. 25 Παράμετρος V Ορίζω την αδιάστατη παράμετρο: V = u + w Από τον ορισμό των u,w: 2 2 V = ( n n ) k a = NAk a Εξαρτάται από τις γεωμετρικές παραμέτρους και τη συχνότητα Γ. Έλληνας, Διάλεξη 4, σελ. 26 Page 13
14 Λύση χαρακτηριστικής εξίσωσης Υπερβατική εξίσωση οπότε αριθμητική λύση Για δεδομένα V, q υπάρχουν m ρίζες Από κάθε ρίζα υπολογίζω β,w,u Γ. Έλληνας, Διάλεξη 4, σελ. 27 Ταξινόμηση τρόπων Ονομασία Υβριδικοί τρόποι (q>0) TE (q=0, Ε z =0) TM (q=0, Η z =0) Συμβολισμός HEqm, EHqm TE 0 m TM 0 m Γ. Έλληνας, Διάλεξη 4, σελ. 28 Page 14
15 Σταθερά διάδοσης β/k 0 Για V<2.405 η ίνα γίνεται μονότροπη! Γ. Έλληνας, Διάλεξη 4, σελ. 29 Προσεγγιστικός υπολογισμός ιδιοτιμών Γ. Έλληνας, Διάλεξη 4, σελ. 30 Page 15
16 Απλοποιημένη χαρακτηριστική εξίσωση Μικρά Δ [4, pp ] u Jl 1( u) Kl 1( w) = w J ( u) K ( w) l l όπου 1 l = q+ 1 q 1 TE, TM 0m 0m EH HE qm qm Γ. Έλληνας, Διάλεξη 4, σελ. 31 Γραφική λύση (V=2) Γ. Έλληνας, Διάλεξη 4, σελ. 32 Page 16
17 Γραφική λύση (V=8) Γ. Έλληνας, Διάλεξη 4, σελ. 33 Ταξινόμηση τρόπων Γ. Έλληνας, Διάλεξη 4, σελ. 34 Page 17
18 Σταθερές διάδοσης Κανονικοποιημένη σταθερά μετάδοσης 2 b = 1 u 2 V D. Gloge, App. Opt. 10, 2252,1971. [2, p.42] Γ. Έλληνας, Διάλεξη 4, σελ. 35 Ισοδυναμικές γραμμές I LP 11 LP 12 Γ. Έλληνας, Διάλεξη 4, σελ. 36 Page 18
19 Ισοδυναμικές γραμμές II LP 21 LP 22 Γ. Έλληνας, Διάλεξη 4, σελ. 37 Δυναμικές γραμμές LP 01 TE 02 Γ. Έλληνας, Διάλεξη 4, σελ. 38 Page 19
20 Ένταση LP 01 Γ. Έλληνας, Διάλεξη 4, σελ. 39 Ένταση LP 11 Γ. Έλληνας, Διάλεξη 4, σελ. 40 Page 20
21 Ένταση LP 21 Γ. Έλληνας, Διάλεξη 4, σελ. 41 Ένταση LP 02 Γ. Έλληνας, Διάλεξη 4, σελ. 42 Page 21
22 Ένταση LP 31 Γ. Έλληνας, Διάλεξη 4, σελ. 43 Ένταση LP 12 Γ. Έλληνας, Διάλεξη 4, σελ. 44 Page 22
23 Ένταση LP 11 Γ. Έλληνας, Διάλεξη 4, σελ. 45 Φωτογραφίες έντασης τρόπων LP 21 LP 31 LP 12 Γ. Έλληνας, Διάλεξη 4, σελ. 46 Page 23
24 Αριθμός τρόπων Εξαρτάται από το V N mod es V 2 2 D. Gloge, App. Opt. 10, 2252,1971. [4, p.283] Γ. Έλληνας, Διάλεξη 4, σελ. 47 Αριθμητικό παράδειγμα Ι Δεδομένα Λύση (ίνα με ντύμα) n 1 = 1.46 Δ = 1% λ 0 = 0.85 μm NA = n 1 2Δ = V = 37.9 N mod es V modes Γ. Έλληνας, Διάλεξη 4, σελ. 48 Page 24
25 Αριθμητικό παράδειγμα ΙΙ Λύση (ίνα χωρίς ντύμα) n 2 =1 NA = 1 V = N mod es V2 2 13,800 modes Συμπέρασμα: Υπάρχουν πολύ περισσότεροι τρόποι σε ίνα χωρίς ντύμα Γ. Έλληνας, Διάλεξη 4, σελ. 49 Θεμελιώδης τρόπος LP 01 iβ z E 0 ( / ) for a ( r, z ) A J ur a e r x = J i z 0( u ) / K 0( w ) K 0( wr / a ) e β for r a Γ. Έλληνας, Διάλεξη 4, σελ. 50 Page 25
26 Προσέγγιση LP 01 όπου w το εύρος της δέσμης. Γ. Έλληνας, Διάλεξη 4, σελ. 51 Κλάσμα ισχύος στον πυρήνα Βάσει της προσέγγισης Gauss: Για V=2, Pcore/Ptotal=75% V=1, Pcore/Ptotal=20% Συμπέρασμα : Βέλτιστη τιμή 2<V<2.4 Γ. Έλληνας, Διάλεξη 4, σελ. 52 Page 26
27 Βιβλιογραφία Ι Άλλα βοηθήματα [1] John M. Senior, "Optical Fiber Communications : Principles and Practice," Prentice Hall, 2nd edition, 1993, ISBN: [2] Paul Diament, Wave Transmission and Fiber Optics, Macmillan, [3] Bahaa E.A. Saleh, M. C. Teich, "Fundamentals of Photonics," Wiley, [4] Dietrich Marcuse, "Theory of dielectric optical waveguides," Academic Press, [5] Simon Ramo, John R. Whinnery, Theodore Van Duzer, "Fields and Waves in Communication Electronics," Wiley, 1993, ISBN: Γ. Έλληνας, Διάλεξη 4, σελ. 53 Βιβλιογραφία ΙΙ Wim Van Etten and Jan Van Der Plaats, Fundamentals of optical fiber communications, Prentice Hall, 2nd edition, 1991, ISBN: J. Buck, Fundamental of optical fibers, Wiley, 1995, ISBN: Ν. Ουζούνογλου, Τηλεπικοινωνίες Οπτικών Ινών, Εκδόσεις Συμεών, Αθήνα Γ. Έλληνας, Διάλεξη 4, σελ. 54 Page 27
4η Διάλεξη Οπτικές ίνες
4η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 4, σελ. 1 Η διάλεξη αυτή αναφέρεται στο κεφ. 3 του βιβλίου του Green και πιο συγκεκριμένα στις ενότητες 3.1-3.4 και 3.8, 3.9. Page 1 Περιεχόμενα διάλεξης Ηλεκτρομαγνητικά
11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ
xx ΤΟΜΟΣ ΙI 11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ 741 11.1 Διαφορική και ολοκληρωτική μορφή των εξισώσεων Maxwell Ρεύμα μετατόπισης...................................... 741 11.2 Οι εξισώσεις Maxwell σε μιγαδική
AΠΟΦΑΣΗ της από 3/4/2012 Συνεδρίασης του Δ.Σ. του Τμήματος Φυσικής. ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΦΥΣΙΚΗΣ ΙΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ) Για το 5ο εξάμηνο
ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΦΥΣΙΚΗΣ ΙΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ) Ι. Ηλεκτρικό φορτίο-διατήρηση φορτίου-κβάντωση φορτίου-νόμος Coulomb-Ενέργεια συστήματος φορτίων-ηλεκτρικό πεδίο-κατανομές φορτίου-ροή, Νόμος Gauss. ΙΙ. Ηλεκτρικό
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Ηλίας Γλύτσης, Τηλ. 21-7722479, e-mail:
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 21-7722479 - e-mail:
Ανάλυση της κυματοδήγησης στις οπτικές ίνες με την ηλεκτρομαγνητική θεωρία
Ανάλυση της κυματοδήγησης στις οπτικές ίνες με την ηλεκτρομαγνητική θεωρία Τρόποι διάδοσης ηλεκτρομαγνητικών κυμάτων Στο κενό, τα ηλεκτρομαγνητικά κύματα διαδίδονται έχοντας το ηλεκτρικό πεδίο Ε και το
Περιεχόμενα διάλεξης
7η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 7, σελ. 1 Περιεχόμενα διάλεξης Διασπορά Πόλωσης Γ. Έλληνας, Διάλεξη 7, σελ. Page 1 Πόλωση Γενική θεωρία Γ. Έλληνας, Διάλεξη 7, σελ. 3 Μηχανικό ανάλογο Εγκάρσια
ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1
ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,
ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ. a) Ομοαξονική γραμμή b) Γραμμή εδάφους c) Τρίκλωνη γραμμή d) Δισύρματη γραμμή (συνεστραμμένο καλώδιο)
ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ a) Ομοαξονική γραμμή b) Γραμμή εδάφους c) Τρίκλωνη γραμμή d) Δισύρματη γραμμή (συνεστραμμένο καλώδιο) 1 ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗ ΖΕΥΞΗ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΕΞΑΣΘΕΝΙΣΗ ΓΡΑΜΜΙΚΕΣ
ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ ΚΥΜΑΤΟΣ ΣΤΟΥΣ ΚΥΜΑΤΟΔΗΓΟΥΣ ΔΙΑΦΟΡΩΝ ΔΙΑΤΟΜΩΝ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ : Φυσικής και Εφαρμοσμένων Μαθηματικών Μάθημα : Εφαρμοσμένα Μαθηματικά Διδάσκων: Αν. καθηγητής Χρ. Σχοινάς Προαιρετική
Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων
Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων ΕΙΣΑΓΩΓΗ - Το μάθημα αυτό πραγματεύεται θεμελιώδεις έννοιες των γραμμών μεταφοράς στην επιστημονική περιοχή των ηλεκτρονικών συστημάτων
papost/
Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε
Επαναληπτικό διαγώνισµα στα Κύµατα
ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
Περιεχόμενα διάλεξης
7η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 7, σελ. 1 Περιεχόμενα διάλεξης Διασπορά Πόλωσης Γ. Έλληνας, Διάλεξη 7, σελ. Page 1 Πόλωση Γενική θεωρία Γ. Έλληνας, Διάλεξη 7, σελ. 3 Μηχανικό ανάλογο Εγκάρσια
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 22: Κυματοπακέτα-Κυματοδηγοί Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την έννοια του κυματοπακέτου,
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ Θέμα1: Α. Η ταχύτητα διάδοσης ενός ηλεκτρομαγνητικού κύματος: α. εξαρτάται από τη συχνότητα ταλάντωσης της πηγής β. εξαρτάται
ΚΥΜΑΤΟ ΗΓΗΣΗ. «Μικροοπτικές διατάξεις-ολοκληρωµένα οπτικά»
ΚΥΜΑΤΟ ΗΓΗΣΗ Επίπεδοι κυµατοδηγοί Προσέγγιση γεωµετρικής οπτικής Προσέγγιση κυµατικής οπτικής και συνοριακών συνθηκών Οπτικές ίνες ιασπορά Μέθοδοι ανάπτυξης κυµατοδηγών Ηχρήση των κυµάτων στις επικοινωνίες
( ) ( ) ( )z. HMY Φωτονική. Διάλεξη 08 Οι εξισώσεις του Maxwell. r = A r. B r. ˆ det = Βαθμωτά και διανυσματικά μεγέθη
HMY - Φωτονική Διάλεξη 8 Οι εξισώσεις του Mawell Βαθμωτά και διανυσματικά μεγέθη Πολλαπλασιασμός Πρόσθεση διανυσμάτων Βαθμωτό: το μέγεθος που για τον προσδιορισμό του χρειάζεται μόνο το μέτρο του και η
HMY 333 Φωτονική Διάλεξη 07. Ταχύτητα φάσης, ταχύτητα ομάδας και διασπορά. n 2 n O
Uiersiy of Cyrus Πανεπιστήμιο Κύπρου Uiersiy of Cyrus Πανεπιστήμιο Κύπρου HMY 333 Φωτονική Διάλεξη 7 Ταχύτητα φάσης, ταχύτητα ομάδας και διασπορά Σε ένα μέσο διασποράς, όπως οι οπτικές ίνες, η μορφή του
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Χαρακτηριστικά Διάδοσης Κύματος Όλα τα κύματα μεταφέρουν ενέργεια.
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΕΙΣΑΓΩΓΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mail:
max 0 Eκφράστε την διαφορά των δύο θετικών λύσεων ώς πολλαπλάσιο του ω 0, B . Αναλύοντας το Β σε σειρά άπειρων όρων ώς προς γ/ω 0 ( σειρά
. Να αποδείξετε ότι σε ένα ταλαντούμενο σύστημα ενός βαθμού ελευθερίας, μάζας και σταθεράς ελατηρίου s με πολύ ασθενή απόσβεση (γω, όπου γ r/, r η σταθερά αντίστασης και s/ ) το πλήρες εύρος στο μισό του
HMY331 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ
HMY331 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Διδάσκων Δρ Γ. Η. Γεωργίου Μαθήματα Δευτέρα και Πέμπτη 10.30-12.00 π.μ. Σύστημα Αξιολόγησης 1. Τελική Εξέταση 60% 2. Ενδιάμεση Εξέταση 40% Κατοίκον εργασία 5 κατοίκον εργασίες
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ, Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΟΤΗΤΑ 1: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ*
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ, Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΟΤΗΤΑ 1: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ* διατυπώνουν τον ορισμό του μαγνητικού πεδίου διατυπώνουν και να εφαρμόζουν τον ορισμό της έντασης του μαγνητικού πεδίου διατυπώνουν
r r r r r r r r r r r
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ
ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ 1 ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 20 ΔΕΚΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) Α) Για κάθε μία
8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση
11//17 8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση Φίλιππος Φαρμάκης Επ. Καθηγητής 1 Ηλεκτρομαγνητισμός Πως συνδέονται ο ηλεκτρισμός με τον μαγνητισμό; Πως παράγονται τα κύματα;
Περιοχές Ακτινοβολίας Κεραιών
Κεραίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Δημοσθένης Βουγιούκας Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Πληροφοριακών & Επικοινωνιακών Συστημάτων Περιοχές Ακτινοβολίας Κεραιών 2 1 Σημειακή Πηγή 3 Κατακόρυφα Πολωμένο
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z
Μάθηµα Γραµµές Μεταφοράς Κυµατοδηγοί & Οπτικές Ίνες Καθ. Θωµάς Σφηκόπουλος
Μάθηµα Γραµµές Μεταφοράς Κυµατοδηοί & Οπτικές Ίνες Καθ. Θωµάς Σφηκόπουλος Κυµατοδηοί - Μάθηµα 3ο -4ο ΘΝΙΚΟ & ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΠΙΣΤΜΙΟ ΑΘΝΩΝ Τοµέας πικοινωνιών και πεξερασίας Σήµατος Τµήµα Πληροφορικής
ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Κυματοδήγηση
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Κυματοδήγηση Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Να αιτιολογήσετε την απάντησή σας. Μονάδες 5
2002 5. Να γράψετε στο τετράδιό σας τη λέξη που συµπληρώνει σωστά καθεµία από τις παρακάτω προτάσεις. γ. Η αιτία δηµιουργίας του ηλεκτροµαγνητικού κύµατος είναι η... κίνηση ηλεκτρικών φορτίων. 1. Ακτίνα
ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 1 ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που
ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η. ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου τηλ:210/ /
47 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου τηλ:10/76.01.470 10/76.00.179 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 008 ΘΕΜΑ
δ. έχουν πάντα την ίδια διεύθυνση.
Διαγώνισμα ΦΥΣΙΚΗ Κ.Τ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ 1 ον 1.. Σφαίρα, μάζας m 1, κινούμενη με ταχύτητα υ1, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m. Οι ταχύτητες των σφαιρών μετά την κρούση α. έχουν
r r r r r r r r r r r
http://edu.kliaka.g ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ)
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΞΙΣΩΣΗ Η/Μ ΚΥΜΑΤΟΣ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ
Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)
Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια
2 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 3 ώρες ΒΑΘΜΟΣ:.. ΗΜΕΡΟΜΗΝΙΑ: 3// ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: Ατρείδης Γιώργος Θ Ε Μ Α
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...
Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου
Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Τρέχοντα Κύματα Κύμα ονομάζεται η διάδοση μιας διαταραχής σε όλα τα σημεία του ελαστικού μέσου με ορισμένη ταχύτητα. Κατά τη διάδοση ενός κύματος
Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Σύστημα μετάδοσης με οπτικές ίνες Tο οπτικό φέρον κύμα μπορεί να διαμορφωθεί είτε από αναλογικό
Experiments are the only means of knowledge. Anyother is poetry and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL
ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ 7 xpeiments ae the only means o knowledge. Anyothe is poety and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWLL Σε µια πρώτη παρουσίαση του θέµατος δίνονται οι εξισώσεις του Maxwell στο
HMY 333 Φωτονική Διάλεξη 12 Οπτικοί κυματοδηγοί
4 Hsiu. Ha Ανάκλαση και μετάδοση του φωτός σε μια διηλεκτρική επαφή HMY 333 Φωτονική Διάλεξη Οπτικοί κυματοδηγοί i i i r i si c si v c hp://www.e.readig.ac.u/clouds/awell/ c 3 Γωνία πρόσπτωσης < κρίσιμη
ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ
ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ 1. ΕΓΚΑΡΣΙΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ Κύματα κατά μήκος τεντωμένου νήματος Στο τεντωμένο με δύναμη νήμα του Σχήματος 1.1α δημιουργούμε μια εγκάρσια διαταραχή (παράλληλη με τη διεύθυνση
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
δ) Αν ένα σηµείο του θετικού ηµιάξονα ταλαντώνεται µε πλάτος, να υπολογίσετε την απόσταση του σηµείου αυτού από τον πλησιέστερο δεσµό. ΑΣΚΗΣΗ 4 Μονοχρ
ΑΣΚΗΣΗ 1 Κατά µήκος µιας ελαστικής χορδής µεγάλου µήκους που το ένα άκρο της είναι ακλόνητα στερεωµένο, διαδίδονται δύο κύµατα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι µετρηµένα σε
ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟΥ 1 ΗΛΕΚΤΡΙΚΕΣ - ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟΥ ΗΛΕΚΤΡΙΚΕΣ - ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ( t ) Χρονική εξίσωση απομάκρυνσης a ( t ) με a Χρονική εξίσωση ταχύτητας a aa ( t ) με a a Χρονική εξίσωση επιτάχυνσης a Σχέση
(ΚΕΦ 32) f( x x f( x) x z y
(ΚΕΦ 3) f( x x f( x) x z y ΣΥΝΟΨΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ J. C. Maxwell (~1860) συνόψισε τη δουλειά ως τότε για το ηλεκτρικό και μαγνητικό πεδίο σε 4 εξισώσεις. Όμως, κατανόησε ότι οι εξισώσεις αυτές (όπως
ΕΡΓΑΣΙΑ ΣΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ
ΕΡΓΑΣΙΑ ΣΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζεται μηχανικό κύμα; Να περιγράψετε το μηχανισμό διάδοσής του. 2. Τι χρειάζεται για να δημιουργηθεί και να διαδοθεί ένα μηχανικό κύμα; Διαδίδονται
ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2009
ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 009 Θέμα 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από
Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου
Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο
ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ÈÅÌÅËÉÏ
ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018
1 ΚΕΦΑΛΑΙΟ 1 ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018 Αντικείμενο του μαθήματος είναι η μελέτη Μερικών Διαφορικών Εξισώσεων. Τον όρο Μερική Διαφορική Εξίσωση θα συμβολίζουμε με (ΜΔΕ). Η ιστοσελίδα
ΕΞΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ
e- laboratory ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ http://users.dra.sch.gr/filplatakis ΟΝΟΜΑ ΕΞΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ ΚΥΡΙΑΚΗ 20 ΙΑΝΟΥΑΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ
Βασικές διαδικασίες παραγωγής πολωμένου φωτός
Πόλωση του φωτός Βασικές διαδικασίες παραγωγής πολωμένου φωτός πόλωση λόγω επιλεκτικής απορρόφησης - διχρωισμός πόλωση λόγω ανάκλασης από μια διηλεκτρική επιφάνεια πόλωση λόγω ύπαρξης δύο δεικτών διάθλασης
ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εισαγωγή στα Η/Μ Κύματα Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Ιδιότητες των μέσων
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/02/12 ΛΥΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 1/0/1 ΥΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις
ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι
Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 2. Μια κρούση λέγεται πλάγια όταν: α. δεν ικανοποιεί την αρχή διατήρησης της ορμής.
ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΙΟΥΝΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ
Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο
Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Στο σχήμα φαίνεται μια γνώριμη διάταξη δύο παράλληλων αγωγών σε απόσταση, που ορίζουν οριζόντιο επίπεδο, κάθετο σε ομογενές μαγνητικό πεδίο έντασης.
ΗΜ & Διάδοση ΗΜ Κυμάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΗΜ & Διάδοση ΗΜ Κυμάτων Ενότητα : Κυματική Εξίσωση & Επίπεδο ΗΜ Κύμα Σαββαΐδης Στυλιανός Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Περιεχόμενα διάλεξης
5η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 5, σελ. Περιεχόμενα διάλεξης Ιδιότητες οπτικών ινών Διασπορά (Dispersio) Τρόπων (Iermodal Dispersio) Χρωματική (Iramodal (Chromaic) Dispersio) Πόλωσης (Polarizaio
γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,,
1. Κατά μήκος μιας ελαστικής χορδής μεγάλου μήκους που το ένα άκρο της είναι ακλόνητα στερεωμένο, διαδίδονται δύο κύματα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι μετρημένα σε και
1. Η ένταση του ηλεκτρικού πεδίου ενός ηλεκτρομαγνητικού κύματος, το οποίο διαδίδεται στο κενό στη
ΗΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ 1. Η ένταση του ηλεκτρικού πεδίου ενός ηλεκτρομαγνητικού κύματος, το οποίο διαδίδεται στο κενό στη διεύθυνση του άξονα Ox, έχει χρονική εξίσωση x 0,02 2 (10 t ) (S.I.). α. Να υπολογίσετε
Σύνθεση ή σύζευξη ταλαντώσεων;
Σύνθεση ή σύζευξη ταλαντώσεων; Σώμα Σ μάζας προσδένεται στο ένα άκρο οριζόντιου ελατηρίου σταθεράς το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Πάνω στο πρώτο σώμα στερεώνεται δεύτερο ελατήριο σταθεράς,
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας
7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων
Λύση Εξίσωσης Laplace: Χωρισμός Μεταβλητών
Λύση Εξίσωσης Laplace: Χωρισμός Μεταβλητών Δομή Διάλεξης Μέθοδος χωριζόμενων μεταβλητών σε καρτεσιανές συν/νες (οριακές συνθήκες σε επίπεδο). Μέθοδος χωριζόμενων μεταβλητών σε σφαιρικές συν/νες (οριακές
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΑ ΠΕΔΙΑ ΣΤΗΝ ΥΛΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ: Μεταβολικές Μέθοδοι, Κυματοδηγοί και Επιταχυντές Υπεύθυνος Καθηγητής: Δημήτριος Πλιάκης ΟΝΟΜΑΕΠΩΝΥΜΟ:ΒΑΜΒΑΚΟΣ
ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Διασπορά Ι Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση μαθήματος
ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5
ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ
Θ'εματα Γ Λυκείου. ΘΕΜΑ 1 ο
1 ΘΕΜΑ 1 ο ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου
ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων
ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ 1. Σχήµα 1 Σχήµα 2
ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ The law of natue ae witten in the language of mathematic G.Galileo God ued beautiful mathematic in ceating the wold P.Diac ΣΥΝΤΟΜΗ ΜΑΘΗΜΑΤΙΚΗ ΕΙΣΑΓΩΓΗ Α. ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ.Ροή
β) Για ένα μέσο, όπου το Η/Μ κύμα έχει ταχύτητα υ
Ασκ. 5 (σελ 354) Το πλάτος του μαγνητικού πεδίου ενός ηλεκτρομαγνητικού κύματος ειναι 5.4 * 10 7 Τ. Υπολογίστε το πλάτος του ηλεκτρικού πεδίου, αν το κύμα διαδίδεται (a) στο κενό και (b) σε ένα μέσο στο
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 4o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα
ΚΕΦΑΛΑΙΟ 2o : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 1: Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ
ΘΕΜΑ Γ ΚΕΦΑΛΑΙΟ 2o : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 1: Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ Άσκηση 1. Το σημείο Ο αρχίζει τη χρονική στιγμή t 0 να εκτελεί απλή αρμονική ταλάντωση, που περιγράφεται
ΟΔΗΓΟΣ ΔΙΟΡΘΩΣΗΣ (Προτεινόμενες Λύσεις)
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Παρασκευή, 13 Ιουνίου 2014
Μάθημα Ακουστικής. Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ
Μάθημα Ακουστικής Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ Περιοδική Κίνηση Μία κίνηση χαρακτηρίζεται σαν περιοδική αν αναπαράγεται απαράλλακτα σε ίσα διαδοχικά χρονικά διαστήματα. Στο χρονικό αυτό
2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 15 ΣΕΠΤΕΜΒΡΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ Γ.Ο.Ι. ΧΩΡΟΥΣ
NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr
Έστω µάζα m. Στη µάζα κάποια στιγµή ασκούνται δυο δυνάµεις. ( Βλ. σχήµα:) Ποιά η διεύθυνση και ποιά η φορά κίνησης της µάζας; F 1 F γ m F 2 ιατυπώστε αρχή επαλληλίας. M την της Ποιό φαινόµενο ονοµάζουµε
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ
ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ 11 -- ΠΕΙΡΑΙΑΣ -- 1853 -- ΤΗΛ. 10-4475, 43687 Θέμα 1: Α. γ Β. β Γ. α Δ. δ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ Ε. α. λάθος β. λάθος γ. σωστό δ. σωστό ε. λάθος Θέμα: Α. Ι. Σωστή απάντηση είναι
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 18: Νόμοι Maxwell Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσίασει τις εξισώσεις Maxwell. 2 Περιεχόμενα ενότητας
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mil:
7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ ο ΕΞΑΜΗΝΟ. Θεωρ. - Εργ.
7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ 7.1. 1ο ΕΞΑΜΗΝΟ Υποχρεωτικά 9.2.32.1 Μαθηματική Ανάλυση (Συναρτήσεις μιας μεταβλητής) 5 0 9.2.04.1 Γραμμική Άλγεβρα 4 0 9.4.31.1 Φυσική Ι (Μηχανική) 5 0 3.4.01.1 Προγραμματισμός Ηλεκτρονικών
Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής
Η/Μ ΚΥΜΑΤΑ 1. Τα ηλεκτροµαγνητικά κύµατα: Ερωτήσεις Πολλαπλής επιλογής α. είναι διαµήκη. β. υπακούουν στην αρχή της επαλληλίας. γ. διαδίδονται σε όλα τα µέσα µε την ίδια ταχύτητα. δ. Δημιουργούνται από
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής