ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΤΙΣ ΧΗΜΙΚΕΣ ΜΕΤΡΗΣΕΙΣ Μ. Κωστάκης, Ν. Θωμαϊδης, Μ. Κουππάρης Εργαστήριο Αναλυτικής Χημείας, Τμ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΤΙΣ ΧΗΜΙΚΕΣ ΜΕΤΡΗΣΕΙΣ Μ. Κωστάκης, Ν. Θωμαϊδης, Μ. Κουππάρης Εργαστήριο Αναλυτικής Χημείας, Τμ."

Transcript

1 ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΤΙΣ ΧΗΜΙΚΕΣ ΜΕΤΡΗΣΕΙΣ Μ. Κωστάκης, Ν. Θωμαϊδης, Μ. Κουππάρης Εργαστήριο Αναλυτικής Χημείας, Τμ. Χημείας, ΕΚΠΑ 1. ΕΙΣΑΓΩΓΗ Ένα αποτέλεσμα μιας μέτρησης αποτελεί μια κρίσιμη παράμετρο, καθώς αποτελεί πηγή πληροφοριών για διάφορους σκοπούς και τη λήψη σημαντικών αποφάσεων. Έτσι, ένα αποτέλεσμα μπορεί να κρίνει αν ένα προϊον ή μια υπηρεσία συμμορφώνεται με τη νομοθεσία, τις απαιτήσεις ενός πελάτη ή ενός κράτους και πιο σημαντικά αν είναι ακατάλληλο ή κατάλληλο για χρήση ή κατανάλωση. Ωστόσο ένα αποτέλεσμα από μόνο του δεν μπορεί να αξιολογηθεί χωρίς να υπάρχει μια εκτίμηση του εύρους τιμών που μπορεί να κυμαίνεται το αποτέλεσμα. Η μέτρηση μιας παραμέτρου που γίνεται μέσα από μια σειρά από διεργασίες, π.χ. δειγματοληψία, αναλυτικές αντιδράσεις, εκχύλιση, εξάτμιση κ.α. Οι διεργασίες αυτές δεν στερούνται σφαλμάτων (τυχαίων ή συστηματικών) με αποτέλεσμα να επηρεάζεται το τελικό αποτέλεσμα της εκτιμήτριας του αναλύτη. Επομένως για να μπορέσουμε να αξιολογήσουμε ή να συγκρίνουμε ένα αποτέλεσμα είναι απαραίτητο να γνωρίζουμε το εύρος τιμών μέσα στο οποίο κυμαίνεται η τελική τιμή του αποτελέσματος. Κατέστη έτσι παγκόσμια ανάγκη να υπάρχει ένα οδηγός για την εκτίμηση της αβεβαιότητας μιας μέτρησης. Το Διεθνές Γραφείο Μέτρων και Σταθμών (Bureau International des Poids et Mesures, BIPM) το 1995 εξέδωσε την οδηγία για την εκτίμηση της αβεβαιότητας των μτρήσεων «Guide to the expression of Uncertainty in Measurements», GUM. Ο οδηγός αυτός περιγράφει ένα μαθηματικό μοντέλο για την εκτίμηση της αβεβαιότητας σε μια οποιαδήποτε μέτρηση (είτε χημική, είτε φυσική) και είναι διαθέσιμος στο διαδίκτυο στον ιστότοπο του BIPM (www.bipm.org ). Παρόλο που ο GUM είναι για γενική οδηγία για την εκτίμηση της αβεβαιότητας σε μια οποιαδήποτε μέτρηση, αποτελεί ένα αρκετά δύσχρηστο κείμενο ώστε να εφαρμοστεί σε ένα αναλυτικό χημικό εργαστήριο. Πολλές φορές απαιτεί να είναι γνωστές μετρολογικές πληροφορίες σχετικές με τη μέτρηση ή τα μετρητικά συστήματα που δεν είναι πάντα διαθέσιμες και φθηνές στη συλλογή τους. Ως αποτέλεσμα αυτού, καθώς επίσης και με την πρώτη έκδοση του προτύπου ISO 1705:1999, το οποίο απαιτεί από τα εργαστήρια να έχουν διαδικασίες για την εκτίμηση της αβεβαιότητας των μετρήσεών τους, η EURACHEM εξέδωσε οδηγία για την ποσοτικοποίηση την αβεβαιότητας των αναλυτικών μετρήσεων (Quantifying Uncertainty in Analytical Measurements, nd ed., 000, ). Μέσα στην επόμενη δεκαετία προτάθηκαν μια σειρά από οδηγίες και προτάσεις με εναλλακτικούς τρόπους για την εκτίμηση της αβεβαιότητας. Βασίζονται κυρίως στο γεγονός ότι οι πληροφορίες που απαιτούνται για τον κλασικό τρόπο εκτίμησης της αβεβαιότητας δεν είναι πάντοτε διαθέσιμες, όπως επίσης και στο ότι δεδομένα που διαθέτει ήδη το εργαστήριο μπορούν να αξιοποιηθούν για να δώσουν μια πιο απλή και ρεαλιστική εκτίμηση της αβεβαιότητας, δεδομένα από τον εσωτερικό και εξωτερικό έλεγχο ποιότητας (QC charts, Proficiency tests). Αποτέλεσμα αυτού ήταν να εκδοθούν παράλληλα οδηγίες από διάφορους φορείς (NORDTEST, EUROLAB, SANCO κ.α.) που να εκτιμούν την αβεβαιότητα με διαφορετικές προσεγγίσεις. 1

2 1.1. ΟΡΙΣΜΟΙ-ΟΡΟΛΟΓΙΑ Με βάση την οδηγία του BIPM International vocabulary of metrology Basics and general concepts and associated terms (VIM) και την αντίστοιχη οδηγία της EURACHEM Terminology in Analytical Measurement Introduction to VIM 3 σχετικά με την ορολογία στη Μετρολογία και τις αναλυτικές μετρήσεις καθιερώθηκαν οι παρακάτω ορισμοί γύρω από την αβεβαιότητα [1,]: Αβεβαιότητα μετρήσεων. Η μη αρνητική παράμετρος που χαρακτηρίζει την διασπορά των ποσοτικών τιμών που αποδίδονται στο μετρούμενο μέγεθος, βασισμένη στις πληροφορίες που χρησιμοποιήθηκαν. Εναλλακτικά από την οδηγία της EURACHEM για την αβεβαιότητα δίνεται ο παρακάτω ορισμός [3,4]: Αβεβαιότητα μετρήσεων. Η παράμετρος που συνδέεται με το αποτέλεσμα μιας μέτρησης και χαρακτηρίζει τη διασπορά των τιμών που μπορούν λογικά να αποδοθούν στο μετρούμενο μέγεθος. Όπως αναφέρεται και στον παραπάνω οδηγό, οι διαφορές στον ορισμό δεν επηρεάζουν πρακτικά τη σημασία της αβεβαιότητας για τις αναλυτικές μετρήσεις [4]. Ουσιαστικά η αβεβαιότητα μιας μέτρησης αποτελεί μια ποσοτική ένδειξη της ποιότητας του αποτελέσματος []. Ο όρος «παράμετρος» αναφέρεται σε μεγέθη, όπως η τυπική απόκλιση ή το διάστημα εμπιστοσύνης. Στον πρώτο ορισμό η αβεβαιότητα αναφέρεται ως «μη-αρνητική παράμετρος» [1,] γιατί γενικότερα η λέξη αβεβαιότητα συγχέεται με την έννοια της αμφιβολίας ή της περιορισμένης γνώσης για το αποτέλεσμα, ενώ η αβεβαιότητα των μετρήσεων αποτελεί συστατικό που αυξάνει την εμπιστοσύνη για την αξιοπιστία του αποτελέσματος. Τέλος δεν θα πρέπει να συγχέεται η έννοια της αβεβαιότητας με την έννοια του σφάλματος. Το σφάλμα ορίζεται ως η διαφορά μεταξύ του αποτελέσματος που λήφθηκε και της πραγματικής (αληθούς) τιμής. Αντίθετα, η αβεβαιότητα έχει τη μορφή εύρους ή διαστήματος μέσα στο οποίο κυμαίνονται τα αποτελέσματα. Επίσης το σφάλμα (η συστηματική συνιστώσα, bias) μπορεί να διορθωθεί ώστε το αποτέλεσμα να είναι πιο κοντά στην αληθή τιμή, ενώ η αβεβαιότητα παραμένει λόγω της αμφιβολίας (τυχαίου σφάλματος) που υπάρχει για το πειραματικό αποτέλεσμα [3,4]. Οι εκτιμώμενες αβεβαιότητες μπορούν να εκφραστούν με διαφορετικούς τρόπους, π.χ. ως τυπική απόκλιση, ως διάστημα εμπιστοσύνης ή ανοχή (torerance). Για να μπορέσουμε να εκτιμήσουμε τη συνολική αβεβαιότητα θα πρέπει να εκφραστούν οι αβεβαιότητες των διαφόρων συνιστωσών σε μια κοινή μορφή []. Μπορούμε να διακρίνουμε δύο τύπους αβεβαιότητας ανάλογα με τον τρόπο που έγινε η εκτίμησή της αβεβαιότητας, αβεβαιότητα τύπου Α και αβεβαιότητα τύπου Β: Αβεβαιότητα τύπου Α. Όταν η μέθοδος για την εκτίμηση της αβεβαιότητας βασίσθηκε στη χρήση στατιστικής ανάλυσης μιας σειράς αποτελεσμάτων του μετρούμενου μεγέθους [5]. Αβεβαιότητα τύπου Β. Όταν η μέθοδος για την εκτίμηση της αβεβαιότητας βασίσθηκε στη χρήση οποιουδήποτε άλλου τρόπου εκτός της στατιστικής ανάλυσης [5], παραδείγματος χάριν [1,5]: Αβεβαιότητα από πιστοποιητικά πιστοποιημένων υλικών αναφοράς (CRM) Αβεβαιότητα από προηγούμενη γνώση

3 Αβεβαιότητα από πιστοποιητικά κατασκευαστών και διακρίβωσης εξοπλισμού Αβεβαιότητα που έχει ληφθεί από βιβλία αναφοράς. Οι τρόποι με τους οποίους μπορεί να εκφραστεί μια αβεβαιότητα, είτε αυτή είναι σε ένα έγγραφο (πιστοποιητικό CRM, διακρίβωσης, ανάλυσης κ.λ.π.), είτε προσδιορίζεται από ένα εργαστήριο είναι οι εξής []: Τυπική αβεβαιότητα (standard uncertainty, u): ορίζεται η αβεβαιότητα μιας ποσότητας, εκφρασμένη ως τυπική απόκλιση. Συνδυασμένη τυπική αβεβαιότητα (combined standard uncertainty, u c ): ορίζεται η αβεβαιότητα του μετρούμενου μεγέθους που προκύπτει από το μαθηματικό συνδυασμό των διαφορετικών τυπικών αβεβαιοτήτων και ισούται με την τετραγωνική ρίζα του αθροίσματος των τετραγώνων των τυπικών αβεβαιοτήτων κάθε συνιστώσας που συνεισφέρει στην αβεβαιότητα. Διευρυμένη αβεβαιότητα (expanded uncertainty, U): αποτελεί τη μορφή της αβεβαιότητας που δίνεται συνήθως από ένα εργαστήριο για να συνοδεύσει ένα αποτέλεσμα που αποστέλλεται στον πελάτη του. Εκφράζει το διάστημα μέσα στο οποίο εκτιμάται ότι βρίσκεται η μετρούμενη τιμή για δεδομένη στάθμη εμπιστοσύνης. Συνήθως η τιμή προκύπτει αν πολλαπλασιάσουμε τη συνδυασμένη αβεβαιότητα με ένα παράγοντα κάλυψης (coverage factor, k). Η επιλογή του παράγοντα κάλυψης βασίζεται στην επιθυμητή στάθμη εμπιστοσύνης. Στις χημικές αναλύσεις συνήθως χρησιμοποιείται στάθμη εμπιστοσύνης 95%, οπότε ο παράγοντας κάλυψης είναι k=1,96 (συνηθέστερα k=), ενώ στις περιπτώσεις που θέλουμε στάθμη εμπιστοσύνης 99%, τότε ο παράγοντας κάλυψης είναι k=3.. ΑΠΑΙΤΗΣΕΙΣ ΤΟΥ ΠΡΟΤΎΠΟΥ ISO/IEC 1705 ΓΙΑ ΤΗΝ ΑΒΕΒΑΙΟΤΗΤΑ Στο εδάφιο αναφέρονται οι απαιτήσεις του προτύπου για την εκτίμηση της αβεβαιότητας των μετρήσεων [6]: : οποιοδήποτε εργαστήριο (διακριβώσεων ή δοκιμών) που εκτελεί τις δικές του διακριβώσεις πρέπει να εφαρμόζει διαδικασία εκτίμησης της αβεβαιότητας των μετρήσεων για όλες τις διακριβώσεις και τους τύπους διακριβώσεων : αναφέρονται οι απαιτήσεις για την αβεβαιότητας των μετρήσεων για τα εργαστήρια δοκιμών. Συγκεκριμένα επισημαίνεται ότι πρέπει να διαθέτουν και να εφαρμόζουν διαδικασίες για την εκτίμηση της αβεβαιότητας των μετρήσεων. Ωστόσο τονίζει ότι «σε ορισμένες περιπτώσεις, η φύση της μεθόδου δοκιμής μπορεί να αποκλείει τον αυστηρό, μετρολογικό και στατιστικά έγκυρο υπολογισμό της αβεβαιότητας των μετρήσεων». Για τις περιπτώσεις αυτές ορίζει ότι το εργαστήριο θα πρέπει να προσπαθήσει να κάνει μια λογική εκτίμηση της αβεβαιότητας βασιζόμενο στην εμπειρία που έχει για την επίδοση της μεθόδου καθώς και με βάση τα δεδομένα επικύρωσης Σημείωση 1: ο βαθμός αυστηρότητας που χρειάζεται σε μια εκτίμηση της αβεβαιότητας των μετρήσεων εξαρτάται από παράγοντες, όπως οι απαιτήσεις της μεθόδου δοκιμής (π.χ. ποιοτική ή ημιποσοτική ή ποσοτική μέθοδος, 3

4 εμπειρική (empirical) ή μη εμπειρική μέθοδος (non empirical or rational method)), οι απαιτήσεις του πελάτη και η ύπαρξη στενών ορίων στα οποία βασίζονται οι αποφάσεις για τη συμμόρφωση με μια προδιαγραφή. H τελευταία δήλωση σημαίνει ότι αν υπάρχουν όρια (ελάχιστο, μέγιστο ή περιοχή τιμών) στα οποία λαμβάνονται σημαντικές αποφάσεις, τότε η αβεβαιότητα σε αυτό το όριο θα πρέπει να είναι όσο το δυνατό πιο αυστηρά υπολογισμένη και να περιλαμβάνει όλες τις δυνατές συνιστώσες που συνεισφέρουν στην τελική αβεβαιότητα. Αυτή η εργασία όμως έχει ως συνέπεια τον ποσοτικό πλέον εντοπισμό των κύριων πηγών της αβεβαιότητας και ως εκ τούτου τη λήψη ενεργειών για την ελαχιστοποίηση αυτών των πηγών και τη βελτίωση της ποιότητας του τελικού αποτελέσματος της μέτρησης : ορίζεται ότι πρέπει να λαμβάνονται υπόψη οι συνιστώσες εκείνες που είναι σημαντικές για τη δεδομένη περίσταση. Το σημαντικό στοιχείο που υπάρχει στο ISO/IEC 1705 είναι η διαφοροποίηση στην αντιμετώπιση μεταξύ μετρήσεων εργαστηρίων δοκιμών (κυρίως χημικών και μικροβιολογικών) και εργαστηρίων διακριβώσεων (φυσικές μετρήσεις). Αυτή η διαφοροποίηση υφίσταται γιατί σε πολλές περιπτώσεις ο αυστηρά μετρολογικός υπολογισμός της αβεβαιότητας, που διατυπώνεται στον GUM [5], είναι πολύ δύσκολο έως αδύνατο να εφαρμοστεί στις περισσότερες χημικές μετρήσεις όπως αναφέρθηκε και παραπάνω. Το πρότυπο ISO/IEC 1705 επιτρέπει τη χρήση προσεγγίσεων για την εκτίμηση της αβεβαιότητας που δεν βασίζονται στην συστατικό προς συστατικό προσέγγιση του ISO GUM («bottom-up» προσέγγιση). Παρόμοια απαίτηση για τον υπολογισμό αβεβαιότητας υπάρχει και στο πρότυπο ISO για τα κλινικά εργαστήρια ( 5.6.): Το Εργαστήριο πρέπει να προσδιορίσει την αβεβαιότητα των αποτελεσμάτων, όπου είναι σχετικό και δυνατό. Πηγές που συνεισφέρουν στην αβεβαιότητα περιλαμβάνουν δειγματοληψία, προετοιμασία δείγματος, επιλογή υποδείγματος, βαθμονομητές, υλικά αναφοράς, εισαγόμενες ποσότητες (input quantities), χρησιμοποιούμενο εξοπλισμό, περιβαλλοντικές συνθήκες, κατάσταση δείγματος και εναλλαγές χειριστών. 3. ΒΑΣΙΚΕΣ ΜΕΤΡΟΛΟΓΙΚΕΣ ΕΝΝΟΙΕΣ Για την εκτίμηση της αβεβαιότητας είναι απαραίτητο να παρατεθούν μερικά στοιχεία μετρολογίας και στατιστικής. Αρχικά θα πρέπει οι διαφορετικές μορφές της αβεβαιότητας ή τα δεδομένα που υπάρχουν για την εκτίμηση της αβεβαιότητας να μετατραπούν μαθηματικά σε μια κοινή μορφή ώστε να μπορούν να χρησιμοποιηθούν για την εκτίμηση της συνολικής αβεβαιότητας. Υπολογισμός τυπικής αβεβαιότητας. Όπως αναφέρθηκε παραπάνω με βάση την κατάταξη του GUM, η αβεβαιότητα τύπου Α υπολογίζεται με τη χρήση της στατιστικής από τα δεδομένα που υπάρχουν για μια σειρά μετρήσεων. Τα μεγέθη που μπορούν να υπολογιστούν είναι η μέση τιμή : 1 x = n Και η τυπική απόκλιση των τιμών (ή πειραματική τυπική απόκλιση κατά GUM): n i = 1 x i (1) 4

5 n i= 1 s( x ) = i ( x i x) n 1 () Παράλληλα, ένα ακόμη μέγεθος που μπορεί να εκτιμηθεί από μια σειρά μετρήσεων είναι η τυπική απόκλιση του μέσου όρου (ή πειραματική τυπική απόκλιση μέσου όρου κατά GUM) που συνδέεται με την τυπική απόκλιση με τη σχέση : s x s( x) = ( n Από τους παραπάνω τύπους ο () χαρακτηρίζει τη διασπορά τιμών γύρω από τη μέση τιμή και είναι η τυπική απόκλιση μιας μεμονωμένης τιμής, ενώ ο (3) χαρακτηρίζει την επαναληψιμότητα του μέσου όρου και εκφράζει πόσο καλά η μέση τιμή (x) εκτιμά την αληθή τιμή (μ) (όταν υπάρχουν μόνο τυχαία σφάλματα) [5]. Όταν έχουμε δεδομένα για να εκτιμήσουμε την αβεβαιότητα τύπου Α, τότε η τυπική αβεβαιότητα ισούται με ένα από τους δύο παραπάνω τύπους (), (3). Η πρακτική εμπειρία δείχνει ότι σε περιπτώσεις που έχουμε εκτίμηση της αβεβαιότητας για μεγέθη που αφορούν τα τυχαία σφάλματα και μεμονωμένες τιμές, τότε χρησιμοποιούμε τον τύπο (), καθώς το ζητούμενο είναι να εκτιμήσουμε την αβεβαιότητα λόγω της διασποράς των τιμών, ενώ αντίθετα σε περιπτώσεις που θέλουμε να εκτιμήσουμε την αβεβαιότητα λόγω της ύπαρξης κάποιου συστηματικού σφάλματος (π.χ. κατά τη μελέτη της ανάκτησης), τότε χρησιμοποιούμε τον τύπο (3), καθώς το ζητούμενο είναι να προσδιορίσουμε την απόσταση της αληθούς τιμής από το μέσο όρο. Είναι σημαντικό να επισημάνθεί ότι θεωρητικά ο τύπος () χρησιμοποιείται σε περιπτώσεις που θεωρούμε ότι έχουμε απουσία συστηματικού σφάλματος. Αντίθετα, η αβεβαιότητα τύπου Β υπολογίζεται με άλλες τεχνικές εκτός στατιστικής, όπως δεδομένα από πιστοποιητικά διακριβώσεων, δεδομένα προηγούμενων πειραματικών μετρήσεων σε σχετικά μεγάλο χρονικό διάστημα, εμπειρία και οποιαδήποτε άλλη σχετική πληροφορία. Συνήθως αυτά τα δεδομένα έχουν τη μορφή εύρους ή ανοχής (tolerance) ±α, από το οποίο θα πρέπει να υπολογισθεί η τυπική αβεβαιότητα και για το σκοπό αυτό θα πρέπει να αναγνωρίσθεί το είδος της κατανομής των τιμών των μεγεθών που έχουμε. Στις χημικές μετρήσεις τρεις είναι οι τύποι συναρτήσεων κατανομής που συναντιούνται πιο συχνά, κανονική, τετραγωνική, τριγωνική. Κανονική κατανομή. Όταν τα δεδομένα ακολουθούν κανονική κατανομή τότε θα πρέπει να αναφέρεται μια δεδομένη στάθμη εμπιστοσύνης. Η συνήθης μορφή της αβεβαιότητας είναι x±α για στάθμη εμπιστοσύνης p%. Για να θεωρήσουμε την κανονική κατανομή θα πρέπει να αναφέρεται η στάθμη εμπιστοσύνης. Ανάλογα με τη στάθμη εμπιστοσύνης διαιρούμε το εύρος / ανοχή (±α) και με τον αντίστοιχο συντελεστή. Οι συντελεστές στην περίπτωση της κανονικής κατανομής αποτελούν τους συντελεστές κάλυψης που χρησιμοποιήθηκαν για να υπολογιστεί το εύρος / ανοχή της τιμής και ταυτίζονται με αυτούς που αναφέρθηκαν παραπάνω. Οι συντελεστές κάλυψης για τις αντίστοιχες στάθμες εμπιστοσύνης αναφέρονται στον Πίνακα 3.1, ενώ η γραφική αναπαράσταση της κανονικής κατανομής απεικονίζεται στο Σχήμα 3.1. i ) (3) 5

6 Πίνακας 3.1. Ο συντελεστής κάλυψης ανάλογα με τη στάθμη εμπιστοσύνης της κανονικής κατανομής [5]. Στάθμη εμπιστοσύνης (%) , ,73 Συντελεστής κάλυψης 1 1,645 1,960,576 3 Σχήμα 3.1. Γραφική αναπαράσταση της κανονικής κατανομής [5]. Από τα παραπάνω παρατηρούνται τα εξής: Στις χημικές μετρήσεις η στάθμη εμπιστοσύνης που χρησιμοποιείται πιο συχνά είναι 95% και σπανιότερα 99%. Οι συντελεστές κάλυψης για στάθμες εμπιστοσύνης 95% και 95,45% δεν έχουνε σημαντική διαφορά, γι αυτό συχνά χρησιμοποιείται συντελεστής κάλυψης k= για στάθμη εμπιστοσύνης 95%. Αντίθετα για 99% και 99,73% οι συντελεστές έχουν πιο μεγάλη διαφορά. Με βάση τα παραπάνω προκύπτει ότι και το τελικό αποτέλεσμα, αλλά και η αβεβαιότητα τύπου Α θεωρείται ότι ακολουθεί κανονική κατανομή, γεγονός που ισχύει στις περισσότερες περιπτώσεις στις χημικές μετρήσεις. Παράδειγμα 3.1: Το πιστοποιητικό διακρίβωσης ενός πρότυπου βάρους 10 Kg αναφέρει ότι η αβεβαιότητά του είναι 300 mg για 95% στάθμη εμπιστοσύνης. Να υπολογισθεί η τυπική αβεβαιότητα του πρότυπου βάρους. Λύση: Αφού αναφέρεται στάθμη εμπιστοσύνης θεωρούμε ότι οι μετρήσεις ακολουθούν κανονική κατανομή, επομένως με βάση τον πίνακα 3.1 η τυπική αβεβαιότητα θα είναι: 300 u( m) = = 153mg Αντίστοιχα, αν θεωρήσουμε ως συντελεστή κάλυψης το 1, τότε θα έχουμε u( m) = = 150mg. Παρατηρούμε ότι οι διαφορές είναι πολύ 6

7 μικρές στα αποτελέσματα έτσι, ώστε μπορούμε να χρησιμοποιήσουμε συντελεστή κάλυψης k= για στάθμη εμπιστοσύνης 95% αν και στην πραγματικότητα είναι για 95,45%. Παράδειγμα 3.:Ποια θα ήταν η τυπική απόκλιση στο παραπάνω παράδειγμα αν είχαμε στάθμη εμπιστοσύνης 99% & 99,73%, αντίστοιχα; Λύση: Αντίστοιχα με παραπάνω θα διαιρέσουμε την αβεβαιότητα του πιστοποιητικού με τον αντίστοιχο παράγοντα κάλυψης για την δεδομένη στάθμη εμπιστοσύνης, οπότε θα προκύψει u( m) = mg και u( m) = 100mg αντίστοιχα. Παρατηρούμε ότι οι διαφορές στις δύο στάθμες εμπιστοσύνης είναι αισθητά πιο μεγάλες. Τετραγωνική κατανομή.σε περιπτώσεις που από το πιστοποιητικό δίνεται το εύρος / ανοχή (±α) χωρίς να δίνεται η στάθμη εμπιστοσύνης, τότε θεωρούμε ότι ακολουθείται τετραγωνική κατανομή στα αποτελέσματα. Με την τετραγωνική κατανομή θεωρούμε ότι όλες οι τιμές εντός του εύρους τιμών έχουν την ίδια πιθανότητα να είναι η αληθής τιμή, όπως φαίνεται και στο Σχήμα 3.. Η τυπική αβεβαιότητα υπολογίζεται από την εξίσωση (4). Σχήμα 3. Γραφική αναπαράσταση τετραγωνικής κατανομής [5]. a u ( x) = (4) 3 Παράδειγμα 3.3: Παρακάτω δίνονται οι όγκοι των ογκομετρικών φιαλών με την αντίστοιχη ανοχή που είναι τυπωμένα πάνω στις φιάλες:. α) 50±0,060 ml, β) 100±0,10 ml, γ) 1000±0,19 ml. Να υπολογιστούν οι τυπικές αβεβαιότητες. Λύση: Όπως αναφέρθηκε παραπάνω αφού δεν έχουμε συγκεκριμένη στάθμη εμπιστοσύνης, τότε θεωρείται ότι ακολουθείται τετραγωνική κατανομή και η τυπική αβεβαιότητα υπολογίζεται με βάση την εξίσωση (4). Οπότε, οι παραπάνω τυπικές αβεβαιότητες είναι α) 0,035 ml, β) 0,058 ml, γ) 0,110 ml. 7

8 Παράδειγμα / Άσκηση 3.4: Παρακάτω δίνονται οι όγκοι των σιφωνίων με την αντίστοιχη ανοχή που είναι τυπωμένα πάνω στα σιφώνια:. α)5±0,03 ml β) 5±0,030 ml γ) 50±0,05 ml. Να υπολογιστούν οι τυπικές αβεβαιότητες. Τριγωνική κατανομή. Όταν η αναφερόμενη (κεντρική) τιμή έχει τη μεγαλύτερη πιθανότητα να είναι η αληθής τιμή, σε σχέση με τα άκρα τότε χρησιμοποιούμε την τριγωνική κατανομή. Η τριγωνική κατανομή χρησιμοποιείται πιο σπάνια από τις άλλες δύο και πρακτικά εφαρμόζεται όταν ο χρήστης ρυθμίζει και ελέγχει την τιμή του μεγέθους, π.χ. σε ένα κλίβανο ή ένα υδατόλουτρο όπου ο χρήστης ρυθμίζει και ελέγχει την τιμή. Σε αυτές τις περιπτώσεις η τριγωνική κατανομή υπολογίζεται από την εξίσωση (5), ενώ η γραφική της αναπαράσταση φαίνεται στο Σχήμα 3.3. a u ( x) = (5) 6 Σχήμα 3.3 Γραφική αναπαράσταση τριγωνικής κατανομής [5]. Πολλές φορές υπάρχει διχογνωμία ως προς την επιλογή της κατάλληλης κατανομής, τριγωνική ή τετραγωνική. Η διαφορά των δύο κατανομών είναι αρκετά μικρή και πολλές φορές όταν η συνεισφορά της αβεβαιότητας στη συνδυασμένη αβεβαιότητα είναι μικρή, τότε δεν έχει νόημα να χαθεί χρόνος για το πια είναι κατάλληλη και μπορεί να χρησιμοποιηθεί η τετραγωνική κατανομή [7]. Παράδειγμα 3.5: Το δωμάτιο σταθερής θερμοκρασίας είναι απαραίτητο για ένα εργαστήριο κλινικών, βιοχημικών και μικροβιολογικών αναλύσεων. Ένα δωμάτιο σταθερής θερμοκρασίας έχει θερμοκρασία 0 ο C με ανοχή του κλιματιστικού ο C. Να βρεθεί η τυπική αβεβαιότητα της θερμοκρασίας. Λύση: Αφού έχει καθορίσει και ελέγχει ο χρήστης τη θερμοκρασία τότε θεωρούμε ότι η κατανομή είναι τριγωνική. Επομένως με βάση την εξίσωση (5) έχουμε: 8

9 o u( T) = = 0,8 6 C Παράδειγμα 3.6: Εάν ένα σιφώνιο 50 ml έχει ανοχή από τον κατασκευαστεί 0,05 ml, ποια είναι η τυπική αβεβαιότητα αν θεωρήσουμε ότι ακολουθεί: α) τετραγωνική κατανομή και β) τριγωνική κατανομή. Λύση: Όπως έγινε και στα προηγούμενα πραδείγματα, με βάση τους τύπους (4) και (5) θα έχουμε αβεβαιότητες 0,09 ml και 0,00 ml, αντίστοιχα. Παρατηρούμε ότι η διαφορά μεταξύ τους είναι πολύ μικρή, οπότε όποια από τις δύο κατανομές και να χρησιμοποιήσουμε, η διαφορά δεν θα είναι αισθητή. Παρατήρηση: Ισχύει μόνο σε περιπτώσεις που δεν έχουν μεγάλη επίδραση στην συνδυασμένη αβεβαιότητα. Υπολογισμός συνδυασμένης αβεβαιότητας. Μέχρι στιγμής όλα τα δεδομένα έχουν μετατραπεί σε σχετική τυπική αβεβαιότητα και επομένως σε μια κοινή μορφή. Το επόμενο στάδιο είναι να συνδυαστούν όλες οι επιμέρους συνιστώσες της αβεβαιότητας και να προκύψει η σχετική συνδυασμένη (ολική) αβεβαιότητα. Για το συνδυασμό των αβεβαιότητων υπάρχουν δυο βασικοί κανόνες με βάση τη ΕURACHEM [3,4]: Κανόνας 1 ος : Τα μοντέλα που περιέχουν μόνο άθροισμα ή διαφορά π.χ. y=(p+q+r+ ) με ίδιες μονάδες, η συνδυασμένη αβεβαιότητα, u c (y), δίνεται από το τύπο: u c ( y( p, q,...)) = u( p) + u( q) + u( r) +... (6) Κανόνας os : Τα μοντέλα που περιέχουν πολλαπλασιασμό ή διαίρεση π.χ.y=(p x q x r x ) ή y=p/(q x r x ), η συνδυασμένη αβεβαιότητα, u c (y),δίνεται από το τύπο: u c ( y) = y u( p) p u( q) + q u( r) + r +... (7) Όπου το κλάσμα u(p)/p εκφράζει την σχετική τυπική αβεβαιότητα. Παράδειγμα 3.7: Η εξίσωση υπολογισμού μιας παραμέτρου είναι y=(p-q+r) όπου p=5,0, q=6,45 και r=9,04 (ίδιες μονάδες) με τυπικές αβεβαιότητες u(p)=0,13, u(q)=0,05 και u(r)=0,. Να υπολογιστεί η συνδυασμένη αβεβαιότητα. Λύση: Με βάση αυτά που αναφέρθηκαν παραπάνω και τη σχέση (6) έχουμε y = ( 0,13) + ( 0,05) + ( 0,) = 0, 6 Παράδειγμα 3.8: Η εξίσωση υπολογισμού μιας παραμέτρου είναι y=(op)/(qr) όπου o=,46 p=4,3, q=6,38 και r=,99 με τυπικές αβεβαιότητες u(o)=0,0 u(p)=0,13, u(q)=0,11 και u(r)=0,77. Να υπολογιστεί η συνδυασμένη αβεβαιότητα. Λύση: Με βάση τα παραπάνω έχουμε: 9

10 y = (,46 4,3) ( ) = 0, 56 6,38,99 u(o)/o=0,0813, u(p)/p=0,030, u(q)/q=0,17, u(r)/r=0,58 u c ( y) = y ( 0,0813) + ( 0,030) + ( 0,17) + ( 0,58) = 0, 043 Άρα ( y) = 0,56 0,043 = 0, 04 u c Υπολογισμός διευρυμένης αβεβαιότητας. Ο υπολογισμός της διευρυμένης αβεβαιότητα γίνεται με τον πολλαπλασιαμό της συνδυασμένης αβεβαιότητας με το συντελεστή κάλυψης όπως αναφέρθηκε και παραπάνω. Ο συντελεστής κάλυψης διαφέρει ανάλογα με την στάθμη εμπιστοσύνης. Οι διαφορετικοί συντελεστές κάλυψης ανφέρονται στον Πίνακα 3.1 με τα αντίστοιχα επίπεδα εμπιστοσύνης. Ειδικές περιπτώσεις. Ο όγκος και η μάζα αποτελούν δύο μεγέθη τα οποία είναι πλήρως μελετημένα και ιχνηλάσιμα στο SI. Επομένως η εκτίμηση της αβεβαιότητας μπορεί να υπολογιστεί μετρολογικά. Υπολογισμός αβεβαιότητας σε μετρήσεις μάζας. Η αβεβαιότητα στον προσδιορισμό της μάζας υπολογίζεται από τα δεδομένα της διακρίβωσης του ζυγού και υπάρχουν στο πιστοποιητικό διακρίβωσης. Εξαρτάται από τη μάζα που ζυγίζουμε και συνήθως θεωρούμε ότι το εύρος (ανοχή) που δηλώνεται στο πιστοποιητικό ακολουθεί τετραγωνική κατανομή. Λαμβάνεται υπόψη η μεθοδολογία ζύγισης (εκ διαφοράς, άμεση ζύγιση, κλπ). Παράδειγμα 3.9: Το πιστοποιητικό διακρίβωσης ζυγού 4 δεκαδικών αναφέρει ότι στα 100 mg η αβεβαιότητα είναι ±0,14 mg (ως ανοχή). Σε ζυγίσεις περίπου 100 mg η αβεβαιότητα θα είναι: 0,14 u( m) = = 0,081 0, 08mg 3 Αν πραγματοποιούνται ζυγίσεις εκ διαφοράς, δηλαδή δύο ζυγίσεις, η συνολική αβεβαιότητα της ζύγισης θα είναι: u( m) = 0,08 = 0, 11mg Παράδειγμα 3.10: Συνήθως το πιστοποιητικό διακρίβωσης αντί για πίνακα αβεβαιότητας σε διάφορες περιοχές μαζών, παρέχει εξίσωση διευρυμένης αβεβαιότητας ως προς μάζα. Να υπολογιστεί η τυπική αβεβαιότητα για τα δεδομένα του παραδείγματος 3.9 αν γνωρίζουμε ότι η εξίσωση διευρυμένης αβεβαιότητας μάζας είναι η εξής: U ( g) = ± [,01457*10 5 m( g) + 0, ] 10

11 Λύση: Από το παράδειγμα 3.9 γνωρίζουμε ότι το βάρος είναι 100 mg, αν το βάλουμε στην παραπάνω εξίσωση έχουμε ότι η διευρυμένη αβεβαιότητα είναι U=0, g = 0,1650 mg, επομένως η τυπική αβεβαιότητα θα είναι το ήμισυ για 95% στάθμη εμπιστοσύνης, άρα u(m) = 0,085 mg και επειδή συνήθως η ζύγιση γίνεται εκ διαφοράς θα έχουμε u(m)= *0,085 = 0.1 mg. Υπολογισμός αβεβαιότητας σε μετρήσεις όγκου. Η αβεβαιότητα σε μετρήσεις όγκου έχει τρεις συνιστώσες: 1. Αβεβαιότητα από την ανοχή που αναφέρει ή δίνει ο κατασκευαστής στο πιστοποιητικό που συνοδεύει τον εξοπλισμό μέτρησης όγκου. Επειδή δεν δηλώνεται το επίπεδο εμπιστοσύνης, θεωρείται ότι η κατανομή είναι τετραγωνική και η αβεβαιότητα δίνεται ως u(x)=α/ 3.. Αβεβαιότητα από τη διακύμανση κατά την πλήρωση μέχρι τη χαραγή. Υπολογίζεται με επαναληπτικά πειράματα πλήρωσης ζύγισης (π.χ. για n = 10) και το αποτέλεσμα δίνεται ως τυπική απόκλιση. 3. Αβεβαιότητα που προέρχεται από την επίδραση της θερμικής διαστολής. Η αβεβαιότητα αυτή πηγάζει από τη διαφορά θερμοκρασίας που επικρατεί στο εργαστήριο, από τη θερμοκρασία αναφοράς (βαθμονόμησης) των 0 C, στην οποία αναφέρεται ο πιστοποιημένος όγκος των ογκομετρικών σκευών. Παράδειγμα 3.11: Η αβεβαιότητα σε ογκομετρική φιάλη τύπου Α των 50 ml (με πιστοποιημένο όγκο στους 0 C, V 0 = 50,017 ml) υπολογίζεται ως εξής: Αβεβαιότητα στη βαθμονόμηση: Ο κατασκευαστής ορίζει στο πιστοποιητικό ότι η ανοχή είναι ±0,0 ml. Το επίπεδο εμπιστοσύνης δεν ορίζεται. Η αβεβαιότητα είναι: 0,0 u1 ( V ) = = 0, 01mL 3 Αβεβαιότητα από επαναληψιμότητα: Κατά την εκτέλεση 10 κύκλων πλήρωσηζύγιση, η τυπική απόκλιση του όγκου βρέθηκε 0,04 ml, άρα: u ( V ) 0, 04mL = H θερμοκρασία του εργαστηρίου είναι 4 C. Η μεταβολή του ονομαστικού όγκου των 50 ml λόγω θερμικής διαστολής είναι: 0 V = V aw T (8) Ο συντελεστής θερμικής διαστολής του νερού, α w, είναι,1χ10-4, η διαφορά θερμοκρασίας ΔΤ = 4 C και ο πιστοποιημένος όγκος στους 0 C, V 0 = 50,017 ml, επομένως: ΔV = 0,04 ml Θεωρούμε ότι η κατανομή είναι τετραγωνική, άρα η αβεβαιότητα αυτής της πηγής είναι: 0,04 u3 ( V ) = = 0, 04mL 3 11

12 Άρα η συνολική τυπική αβεβαιότητα στον όγκο είναι: u V ) = u ( V ) + u ( V ) + u ( V ) = 0,048 0, 05mL ( ΑΒΕΒΑΙΟΤΗΤΑ ΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Όταν οι αναλυτικοί επιστήμονες προσδιορίζουν τη συγκέντρωση μιας ουσίας σε ένα δείγμα, θα πρέπει να έχουν κατά νου ότι το ευρισκόμενο αποτέλεσμα είναι μόνο μια εκτίμηση της αληθούς τιμής. Το αποτέλεσμα της μέτρησης αποκλίνει από την πραγματική τιμή εξαιτίας των συστηματικών (σταθερών ή αναλογικών) και τυχαίων σφαλμάτων που αναπόφευκτα υπάρχουν. Αυτά μπορούν να διακριθούν στις εξής περιπτώσεις [8]: 1. Το συστηματικό σφάλμα της μεθόδου (method bias).. Το συστηματικό σφάλμα του εργαστηρίου (laboratory bias). 3. Το σφάλμα από δείγμα σε δείγμα (run error), το οποίο είναι τυχαίο σφάλμα, οφειλόμενο μεταξύ άλλων παραγόντων και στον παράγοντα χρόνο και συμπεριλαμβάνεται συνήθως στην ενδοεργαστηριακή αναπαραγωγιμότητα (ή ενδιάμεση πιστότητα, intermediate precision, όπως χαρακτηριστικά αναφέρεται στον ISO GUM). 4. Το σφάλμα επαναληψιμότητας (repeatability error), το οποίο είναι τυχαίο και προέρχεται από τις επαναληπτικές αναλύσεις ενός δείγματος. Αυτός ο κατάλογος είναι γνωστός και ως «κλίμακα σφαλμάτων» (ladder of errors) [9], διότι τα σφάλματα κατατάσσονται ιεραρχικά: 1. Σφάλματα από τη μέθοδο ως έχει,. Σφάλματα από τη μέθοδο όπως εφαρμόζεται από ένα συγκεκριμένο εργαστήριο, 3. Σφάλματα από τη μέθοδο όπως εφαρμόζεται από ένα συγκεκριμένο εργαστήριο, μια συγκεκριμένη μέρα, και τέλος 4. Σφάλματα που προκύπτουν τη συγκεκριμένη μέρα για μια μέτρηση Η αβεβαιότητα συνδέεται άμεσα με τα παραπάνω είδη σφαλμάτων και κατά τον υπολογισμό της πρέπει να λαμβάνονται υπόψη. Ωστόσο είναι απαραίτητη η εξής διευκρίνιση: Το σφάλμα (error) είναι η διαφορά από την αληθή τιμή, ενώ η αβεβαιότητα (uncertainty) είναι ένα εύρος στο οποίο βρίσκεται με αξιοπιστία σε κάποια στάθμη μπιστοσύνης η μέτρηση όπως αναφέρθηκε αναλυτικότερα και παραπάνω. Τα τυχαία σφάλματα προσδιορίζονται με πειράματα επαναληψιμότητας ή αναπαραγωγιμότητας ή μέσω του διαγράμματος ελέγχου ποιότητας (quality control chart) και δεν μπορούν να διορθωθούν, μπορούν όμως να μειωθούν αυξάνοντας τον αριθμό των μετρήσεων. Τα συστηματικά σφάλματα είναι δυσκολότερο να ποσοτικοποιηθούν. Το συστηματικό σφάλμα της μεθόδου (method bias) αναφέρεται σαφώς σε κάποιο πρότυπο και το αποτέλεσμα τέτοιων μετρήσεων χρησιμοποιείται 1

13 για την επίτευξη ιχνηλασιμότητας. Οι διαθέσιμοι τρόποι για την ποσοτικοποίηση των συστηματικών σφαλμάτων είναι οι παρακάτω: 1. Ανάλυση πρότυπων υλικών αναφοράς που να προσομοιάζουν με το δείγμα (matrix certified reference materials, CRMs).. Σύγκριση της ελεγχόμενης μεθόδου με μια πρότυπη μέθοδο. 3. Πειράματα ανακτήσεων. 4. Διεργαστηριακές δοκιμές ικανότητας. Είτε είναι σημαντικό το συστηματικό σφάλμα, είτε όχι (είτε δηλαδή γίνει διόρθωση των συστηματικών σφαλμάτων των αποτελεσμάτων των μετρήσεων, είτε όχι), η αβεβαιότητα που προκύπτει από αυτά τα συστηματικά σφάλματα πρέπει να περιλαμβάνεται στον υπολογισμό της συνολικής αβεβαιότητας [3,10]. Για τη μέθοδο υπολογισμού αβεβαιότητας Nordtest, πέραν της αβεβαιότητας του συστηματικού σφάλματος, χρησιμοποιείται και το ίδιο το συστηματικό σφάλμα (όταν είναι μικρό) αντί των αβεβαιοτήτων του εξοπλισμού, των προτύπων, κλπ. Οι πιθανές πηγές της αβεβαιότητας που συναντώνται στις χημικές μετρήσεις προέρχονται συνήθως από τα παρακάτω στάδια της ανάλυσης (με τις αντίστοιχες συνιστώσες αβεβαιότητας) [11]: 1. Ατελής ορισμός του προσδιοριζόμενου συστατικού (αποτυχία στο να οριστεί επακριβώς η μορφή του προσδιοριζόμενου συστατικού, παραδοχές που ενσωματώνονται στη μέθοδο, αλλά δεν ορίζονται).. Δειγματοληψία (ανομοιογένεια, σφάλματα από τη στρατηγική δειγματοληψίας, αλλοίωση του δείγματος κατά τη δειγματοληψία κ.ά.). 3. Προκατεργασία δείγματος (ατελής παραλαβή ή προσυγκέντρωση του προσδιοριζόμενου συστατικού, επιμόλυνση, παρεμποδίσεις, αβεβαιότητα στον ογκομετρικό εξοπλισμό και στο ζυγό, ανεπαρκής γνώση της επίδρασης των περιβαλλοντικών συνθηκών). 4. Ανάλυση πιστοποιημένων υλικών αναφοράς και σύγκριση τους με το δείγμα (αβεβαιότητα της πιστοποιημένης τιμής, διαφορά μήτρας του υλικού αναφοράς και του δείγματος). 5. Βαθμονόμηση του οργάνου μέτρησης (αβεβαιότητα στις περιεκτικότητες προτύπων ουσιών και υλικών αναφοράς). 6. Τελική μέτρηση (παρεμποδίσεις, συστηματικά σφάλματα χειριστή, ακαταλληλότητα οργάνου για τη συγκεκριμένη μέτρηση, όπως διακριτική ικανότητα, αδυναμία διόρθωσης υποβάθρου κ.ά.). 7. Επεξεργασία αποτελεσμάτων και παρουσίαση τους (αβεβαιότητα σε τιμές σταθερών που χρησιμοποιούνται στους υπολογισμούς, σημαντικά ψηφία, στρογγυλοποίηση). 8. Ερμηνεία των αποτελεσμάτων Η επικύρωση της μεθόδου δίνει στοιχεία για την αβεβαιότητα από τα εξής τμήματα της: 1. Ανάλυση δείγματος υπό συνθήκες ενδοεργαστηριακής πιστότητας ή αναπαραγωγιμότητας. Από τέτοιες μελέτες μπορούν να προκύψουν και συμπεράσματα για την ομοιογένεια του υλικού και έτσι να έχουμε μια εκτίμηση της αβεβαιότητας που προκύπτει από τη δειγματοληψία ή την υποδειγματοληψία στο εργαστήριο.. Ανάλυση πιστοποιημένων υλικών αναφοράς (CRM). Το συνολικό συστηματικό σφάλμα μιας μεθόδου και του εργαστηρίου που την χρησιμοποιεί (method bias + laboratory bias) εκτιμάται με την ανάλυση 13

14 πιστοποιημένων υλικών αναφοράς υπό συνθήκες επαναληψιμότητας. Ο τρόπος αυτός έχει αποδειχθεί ότι δίνει την καλύτερη εκτίμηση αβεβαιότητας, διότι πληροφορεί για την συνδυαστική δράση πολλών πηγών της. Η συνολική αβεβαιότητα αυτού του σταδίου είναι ο συνδυασμός της τυπικής απόκλισης του μέσου όρου n προσδιορισμών και της τυπικής αβεβαιότητας της «αληθούς τιμής» του CRM που παρέχεται στο πιστοποιητικό του (συνήθως ως εύρος σε στάθμη εμπιστοσύνης 95%). 3. Καμπύλη βαθμονόμησης. Η πλέον συνηθισμένη περίπτωση (και η ενδεικνυόμενη) είναι η χρήση γραμμικής καμπύλης αναφοράς για τον προσδιορισμό της άγνωστης συγκέντρωσης ενός δείγματος. Η αβεβαιότητα στη συγκέντρωση προκύπτει από την εξίσωση του σφάλματος της συγκέντρωσης χρησιμοποιώντας τα δεδομένα της παλινδρόμησης. Σχετικό παράδειγμα δίνεται παρακάτω. 4. Ανθεκτικότητα της μεθόδου (robustness). Από τα πειράματα ανθεκτικότητας και κατά τη βελτιστοποίηση της μεθόδου, μελετάται η επίδραση διαφόρων παραμέτρων, όπως π.χ. η θερμοκρασία ενός σταδίου, η ποσότητα ενός οξέος ή διαλύτη και οποιαδήποτε άλλη παράμετρος επηρεάζει το τελικό αποτέλεσμα. Τα αποτελέσματα τέτοιων πειραμάτων μπορούν να χρησιμοποιηθούν για τον υπολογισμό της αβεβαιότητας που σχετίζεται με την παράμετρο που μεταβάλλεται. 5. Εκλεκτικότητα (selectivity). Κάτι ανάλογο συμβαίνει και στα πειράματα εκλεκτικότητας, όπου μελετάται η επίδραση διαφόρων παρεμποδιστών στο αποτέλεσμα του προσδιορισμού. Τα αποτελέσματα τέτοιων πειραμάτων μπορούν να χρησιμοποιηθούν για τον υπολογισμό της αβεβαιότητας που σχετίζεται με τον πιθανό παρεμποδιστή που μεταβάλλεται. 5. ΠΟΡΕΙΑ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ Η μεθοδολογία για την πορεία της εκτίμησης της αβεβαιότητας που είναι η πλέον διαδεδομένη μέχρι σήμερα είναι η πορεία που προτείνει η EURACHEM στην αντίστοιχη οδηγία της [3]. Παράλληλα για την απλούστευση της διαδικασίας προτάθηκε η μεθοδολογία Nordtest για την εκτίμηση της αβεβαιότητας [1]. Επιπλέον στην νέα έκδοση της οδηγίας της EURACHEM που αναμένεται να εκδοθεί ([4]) συμπεριλαμβάνονται και τα στάδια και οι διαδικασίες που χρησιμοποιούνται στη μεθοδολογία Nordtest, επομένως μελλοντικά θα αποτελούν μια ενιαία διευρυμένη μεθοδολογία που θα ακολουθείται, ανάλογα με τις συνθήκες που επιβάλει η μέθοδος προσδιορισμού. Στη συνέχεια αναλύονται οι παραπάνω μεθοδολογίες για την εκτίμηση της αβεβαιότητας Εκτίμηση αβεβαιότητας κατά Eurachem Η μεθοδολογία της EURACHEM περιλαμβάνει τα εξής στάδια: 1. Καθορισμός σχέσης μέτρησης.. Ταυτοποίηση των συνιστωσών των πηγών αβεβαιότητας. 3. Ποσοτικοποίηση της αβεβαιότητας κάθε πηγής. 4. Υπολογισμός της συνδυασμένης αβεβαιότητας. 14

15 Καθορισμός σχέσης μέτρησης. Στην πράξη σημαίνει καταγραφή με σαφήνεια του τι ακριβώς μετρείται και διατύπωση μιας ποσοτικής σχέσης μεταξύ της συγκέντρωσης του προσδιοριζόμενου συστατικού και των παραμέτρων από τις οποίες υπολογίζεται ή εξαρτάται. Ιδιαίτερη σημασία έχει το είδος της μεθόδου που χρησιμοποιείται. Στις εμπειρικές μεθόδους, η ίδια η χρησιμοποιούμενη μέθοδος καθορίζει τον ορισμό του προσδιοριζόμενου συστατικού: π.χ. προσδιορισμός απελευθέρωσης Cd από ιζήματα με διαδοχικές εκχυλίσεις (sequential extractions) και AAS. Αντίθετα στις μη εμπειρικές μεθόδους το προσδιοριζόμενο συστατικό είναι ανεξάρτητο από το είδος της τεχνικής που χρησιμοποιείται: π.χ. προσδιορισμός ολικού Cd σε ιζήματα με AAS. Για τον προσδιορισμό μπορούμε να χρησιμοποιήσουμε οποιαδήποτε τεχνική ενόργανης ανάλυσης, όμως ο ορισμός του προσδιοριζόμενου στοιχείου δεν αλλάζει. Όπου είναι εφικτό περιλαμβάνονται συντελεστές διόρθωσης (για ανακτήσεις, καθαρότητα αντιδραστηρίων, ομοιογένεια υλικού), ώστε να συμπεριληφθεί η αβεβαιότητά τους στον τελικό υπολογισμό. Η τελική σχέση υπολογισμού του προσδιοριζόμενου συστατικού πρέπει να περιλαμβάνεται αναλυτικά στη σχετική τυποποιημένη οδηγία (πρωτόκολλο) της μεθόδου. Παράδειγμα 5.1: Ο προσδιορισμός Cd στα πλαστικά με AAS περιλαμβάνει τα εξής στάδια: 1. Ομογενοποίηση και υποδειγματοληψία.. Ζύγιση του δείγματος. Ζυγίζονται με ακρίβεια 4ου σημαντικού ψηφίου 15 mg. 3. Χώνευση με μίγμα οξέων. 4. Αν το χωνευμένο δείγμα δεν είναι διαυγές, ακολουθεί διήθηση. 5. Αραίωση σε διακριβωμένη ογκομετρική φιάλη των 50 ml. 6. Κατασκευή καμπύλης αναφοράς με πρότυπα διαλύματα συγκεντρώσεων 0,50, 1,00, 1,50 και,00 mg/l. 7. Μέτρηση του άγνωστου χωνευμένου δείγματος πέντε (5) φορές και καταγραφή της μέσης απορρόφησής του. 8. Υπολογισμός της συγκέντρωσης του άγνωστου δείγματος σε mg/l. 9. Υπολογισμός της περιεκτικότητας στο αρχικό δείγμα σε mg/kg. H εξίσωση που δίνει την περιεκτικότητα του Cd είναι: C( mg / L) V ( ml) [ Cd ]( mg / Kg) = m( g) όπου C: η συγκέντρωση στο τελικό διάλυμα, προσδιοριζόμενη με χρήση καμπύλης αναφοράς, mg/l. V: ο όγκος του τελικού διαλύματος μετά τη χώνευση ml, και m: η μάζα πλαστικού που χωνεύτηκε, g. Η αβεβαιότητα στην περιεκτικότητα του Cd, u Cd, είναι αποτέλεσμα της αβεβαιότητας στον προσδιορισμό της συγκέντρωσης, u(c), του όγκου, u(v) και της μάζας, u(m). 15

16 Αν στον υπολογισμό της αβεβαιότητας συμπεριληφθούν, π.χ. η αβεβαιότητα δειγματοληψίας (πειράματα ανομοιογένειας) και η αβεβαιότητα ανάκτησης, τότε στην παραπάνω εξίσωση περιλαμβάνονται και οι αντίστοιχοι συντελεστές διόρθωσης, F HOM και F rec : C V F [ Cd ] = m F Ακόμη και στην περίπτωση που οι συντελεστές αυτοί είναι μονάδα (δηλαδή δεν απαιτείται διόρθωση), οι αβεβαιότητες που προέρχονται από αυτές τις πηγές μπορούν να συμπεριληφθούν στον τελικό υπολογισμό της αβεβαιότητας, αν είναι της ίδιας τάξης με την αβεβαιότητα την προερχόμενη από τα τυχαία σφάλματα. HOM Ταυτοποίηση των συνιστωσών (πηγών) αβεβαιότητας. Για κάθε παράμετρο στη σχέση δημιουργείται ένας κατάλογος από τις πιθανές πηγές αβεβαιότητας, όπως ήδη έχει αναφερθεί στο υποκεφ. 3. Στον κατάλογο αυτό θα περιλαμβάνονται και πηγές αβεβαιότητας παραμέτρων που δεν εμφανίζονται στην εξίσωση υπολογισμού του προσδιοριζόμενου συστατικού. Στη συνέχεια είναι δυνατό να κατασκευαστεί ένα διάγραμμα «αιτίου - αποτελέσματος» (cause and effect diagram ή fish-bone diagram,), στο οποίο θα περιλαμβάνονται όλες οι πηγές αβεβαιότητας του καταλόγου. Αν και το διάγραμμα αυτό είναι προαιρετικό, διευκολύνει στο να συγχωνευτούν οι πηγές που επηρεάζουν διάφορες παραμέτρους. Παράδειγμα 5.1 (συνέχεια): Για το παραπάνω παράδειγμα που αναφέρθηκε παρουσιάζεται ένα απλοποιημένο διάγραμμα «αιτίου- αποτελέσματος»: rec Σχήμα 5.1. Διάγραμα αιτίου-αποτελέσματος(ή fishbone) για το Παράδειγμα

17 Ποσοτικοποίηση της τυπικής αβεβαιότητας κάθε πηγής Στο στάδιο αυτό υπολογίζεται η αβεβαιότητα κάθε συνιστώσας και εκφράζεται ως τυπική απόκλιση ή σχετική τυπική απόκλιση (εάν διαφέρουν οι μονάδες). Στην αναλυτική χημεία το μεγαλύτερο ποσοστό μεθόδων είναι οι εσωτερικές (in-house) μέθοδοι. Επομένως για να εκτιμηθούν τα χαρακτηριστικά ποιότητας της μεθόδου θα πρέπει να γίνει επικύρωση. Από τα στοιχεία της επικύρωσης μπουρούμε να αντλήσουμε αρκετά δεδομένα για την εκτίμηση της αβεβαιότητας. Τα στοιχεία που χρησιμοποιοούνται για την εκτίμηση της αβεβαιότητας είναι τα εξής [3,4]: Η εκτιμήτρια της πιστότητας (εκτίμηση τυχαίων σφαλμάτων) Η εκτιμήτρια των συστηματικών σφαλμάτων (bias) (ορθότητα, trueness) καθώς και της αβεβαιότητάς τους Οποιοσδήποτε άλλος παράγοντας που δεν περιλαμβάνεται στα παραπάνω χαρακτηριστικά ποιότητας, καθώς και οι μελέτες εκτίμησής τους Μελέτη υπολογισμού τυχαίων σφαλμάτων Ο υπολογισμός της αβεβαιότητας που οφείλεται στα τυχαία σφάλματα γίνεται με την χρήση των δεδομένων που υπάρχουν από την εκτίμηση της πιστότητας. Αυτό που χρησιμοποιείται είναι δεδομένα από την επαναληψιμότητα ή την ενδιάμεση πιστότητα ή την ενδοεργαστηριακή αναπαραγωγιμότητα. Τέλος για τις περιπτώσεις όπου η μέθοδος χρησιμοποιείται αρκετό χρονικό διάστημα και εφαρμόζεται ένα σύστημα εσωτερικού ελέγχου ποιότητας, μια έγκυρη εκτίμηση της αβεβαιότητας μπορεί να γίνει από το Διάγραμμα Ελέγχου Ποιότητας (διαγράμματα QC) με την προϋπόθεση ότι υπάρχει ικανοποιητικός αριθμός δεδομένων. Κατά την εκτίμηση της αβεβαιότητας των τυχαίων σφαλμάτων υπολογίζεται η διασπορά των αποτελέσμάτων γύρω από τη μέση τιμή. Η πράξη έχει δείξει ότι η εκτίμηση αυτής της αβεβαιότητας είναι ορθότερη όταν χρησιμοποιήθεί η εξίσωση () του υποκ. 3, δηλαδή η τυπική απόκλιση των τιμών, θεωρώντας ότι δεν έχουμε συστηματικά σφάλματα. Επειδή τις περισσότερες φορές χρειαζόμαστε τη σχετική αβεβαιότητα, ο υπολογισμός της σχετικής τυπικής αβεβαιότητας ταυτίζεται με τον υπολογισμό του RSD των τιμών. Για να υπάρχει καλύτερη εκτίμηση της αβεβαιότητας θα πρέπει να μελετηθεί η πιστότητα συμπεριλαμβάνοντας όσο το δυνατόν περισσότερους παράγοντες που επηρεάζουν τη διακύμανση των αποτελέσματων, όπως διαφοροποίηση από μέρα σε μέρα, διαφορετικός αναλυτής, διαφορετικός εξοπλισμός ή ακόμη και διαφορετική δειγματοληψία ή υποδειγματοληψία. Γι αυτό το λόγο αποτελέσματα που πάρθηκαν υπό συνθήκες αναπαραγωγιμότητας, καθώς και τα διαγράμματα QC δίνουν καλύτερη εκτίμηση της αβεβαιότητας των τυχαίων αφαλμάτων. 17

18 Παράδειγμα 5.1 (Συνέχεια): Στον παρακάτω πίνακα δίνονται τα αποτελέσματα από τα πειράματα αναπαραγωγιμότητας της μεθόδου που έγιναν για πέντε διαφορετικές μέρες σε τετραπλές αναλύσεις κάθε μέρα, καθώς και οι εκτιμήτρια αναπαραγωγιμότητας. 1 η μέρα η μέρα 3 η μέρα 4 η μέρα 5 η μέρα Χ1 10,0 117,4 118,7 117,6 115,4 Χ 115,5 118,1 114,7 118, 117,3 Χ3 116,8 118, 116,1 10,7 11, Χ4 1,8 118,8 10,0 116,0 116,7 Μέσος όρος 118,0 (mg/kg) Τυπική απόκλιση,1 (mg/kg) RSD 0,0180 Επομένως η τυπική αβεβαιότητα των τυχαίων σφαλμάτων (πιστότητα) θα είναι u = SD =,1mg / Kg και η σχετική τυπική αβεβαιότητα που θα χρησιμοποιηθεί για τον υπολογισμό της συνδυασμένης αβεβαιότητας είναι: RSD R SD = X = 0,0180 Σημείωση: Ορθότερη εκτιμήτρια της αναπαραγωγιμότητας μπορεί να ληφθεί με ANOVA (SINGLE FACTOR) οπότε SD R =,5 mg / Kg Μελέτη υπολογισμού συστηματικών σφαλμάτων Η εκτίμηση των συστηματικών σφαλμάτων λόγω της ιδιαιτερότητάς τους να μη μπορούν να εξαλειφτούν, αλλά να μπορούν να διορθωθούν, έχουν δημιουργήσει προβληματισμό ως προς την αναγκαιότητα εκτίμησής τους, και πότε είναι απαραίτητη η διόρθωσή τους και σε ποιες περιπτώσεις θα πρέπει να ληφθεί υπόψη στη συνολική αβεβαιότητα η αβεβαιότητα των συστηματικών σφαλμάτων. Τα συστηματικά σφάλματα χωρίζονται σε δύο βασικές κατηγορίες, τα σταθερά συστηματικά σφάλματα, τα οποία είναι ανεξάρτητα από τη συγκέντρωση του αναλύτη και τα αναλογικά συστηματικά σφάλματα που μεταβάλονται ανάλογα με τη συγκέντρωση. Γι αυτό το λόγο ο έλεγχος των συστηματικών σφαλμάτων θα πρέπει να γίνεται σε παραπάνω του ενός επίπεδα συγκεντρώσεων, ώστε να μπορεί να εκτιμηθεί σε ποια από τις δύο περιπτώσεις ανήκουν [13]. Για να εκτιμηθεί η αβεβαιότητα των συστηματικών σφαλμάτων πρέπει να υπολογιστεί το ίδιο το συστηματικό σφάλμα χρησιμοποιώντας τους τρόπους που αναφέρθηκαν και παραπάνω, δηλ. ανάλυση CRM, σύγκριση με πρότυπη μέθοδο, ανάλυση εμβολιασμένων δειγμάτων, διεργαστηριακές συγκρίσεις. Ανάλογα με το 18

19 διαθέσιμο τρόπο, καθώς και το κόστος, το κάθε εργαστήριο επιλέγει τον προσφορότερο τρόπο που μπορεί να εφαρμοστεί στην εκάστοτε μέθοδο. Σχετικά με τους τρόπους εκτίμησης των συστηματικών σφαλμάτων, η ανάλυση CRM (Certificated Reference material) αποτελεί ένα αξιόπιστο τρόπο για την εκτίμηση των συστηματικών σφαλμάτων, ειδικά εάν το CRM προσομοιάζει στα δείγματα ρουτίνας. Ωστόσο δεν είναι πάντα διαθέσιμο ένα CRM που να προσομοιάζει στη μήτρα του δείγματος ή στα επίπεδα συγκεντρώσεων της μεθόδου. Επίσης τα CRM τις περισσότερες φορές είναι διαθέσιμα σε ένα μόνο επίπεδο συγκεντρώσεων με αποτέλεσμα να μην μπορούν να χρησιμοποιηθούν για πολλά επίπεδα συγκεντρώσεων [14]. Η σύγκριση με μια πρότυπη μέθοδο αποτελεί μια καλη επιλογή για την εκτίμηση των συστηματικών σφαλμάτων, καθώς συνήθως οι πρότυπες μέθοδοι χαρακτηρίζονται μετρολογικά ως υψηλότερης στάθμης από ό,τι οι οι εσωτερικές μέθοδοι, γεγονός που επιτρέπει να προσδιοριστεί το σφάλμα με μεγαλύτερη αξιοπιστία. Επιπλέον δίνουν τη δυνατότητα να εκτιμηθούν και τα αναλογικά, αλλά και τα σταθερά συστηματικά σφάλματα αν γίνει διερεύνηση σε εύρος συγκεντρώσεων. Ωστόσο, οι πρότυπες μέθοδοι είναι συνήθως υψηλού κόστους και ο εξοπλισμός που απαιτούν πολλές φορές δεν είναι διαθέσιμος [14]. Η επιλογή των εμβολιασμένων δειγμάτων είναι η πλέον φθηνή και προσβάσιμη μέθοδος για κάθε εργαστήριο, καθώς μπορεί να γίνει σε μεγάλο εύρος συγκεντρώσεων, με μικρό κόστος και άμεσα. Ένα πρόβλημα που εμφανίζεται είναι ότι πολλές φορές δεν προλαβαίνει να επέλθει ισορροπία μεταξύ της εμβολιασμένης ποσότητας και του δείγματος με αποτέλεσμα να μην έχουμε την ομοιογένεια του πραγματικού δείγματος και να γίνεται υποεκτίμηση του συστηματικού σφάλματος[13,14]. Τελευταίος τρόπος εκτίμησης των συστηματικών σφαλμάτων αποτελούν οι διεργαστηριακές συγκρίσεις ή προγράμματα ελέγχου ικανότητας, που αποτελούν τον εξωτερικό έλεγχο ποιότητας και δίνουν εκτίμηση για το που βρίσκεται η μέθοδος σε παγκόσμια κλίμακα. Για να εκτιμηθούν αξιόπιστα τα συστηματικά σφάλματα μιας μεθόδου προτιμάται η χρήση διεργαστηριακών συγκρίσεων, όπου όλα τα εργαστήρια χρησιμοποιούν την ίδια μέθοδο. Αντίθετα, τα προγράμματα ελέγχου ικανότητας (Proficiency tests, PT), ενώ δίνουν μια εκτίμηση για το που βρίσκεται το εργαστήριο, επειδή τα εργαστήρια χρησιμοποιούν διαφορετικές μεθόδους προσδιορισμού του ίδιου αναλύτη, παρέχουν εκτίμηση του ολικού συστηματικού σφάλματος. Ενα επιπλέον πλεονέκτημα των διεργαστηριακών συγκρίσεων είναι η καλύτερη προσέγγιση του πραγματικού δείγματος γιατι είναι πιο αυστηρές οι προϋποθέσεις ως προς την ομοιογένεια και τη σταθερότητα του δείγματος από το CRM. Παράλληλα όμως, μπορεί το ίδιο το δείγμα να μην είναι ίδιο με αυτό της ρουτίνας του εργαστηρίου ή στα ίδια επίπεδα συγκεντρώσεων και επομένως να μην έχουμε σωστή εκτίμηση λόγω διαφορετικής φύσης του δείγματος. Ένα επιπλέον μειονέκτημα των διεργαστηριακών δοκιμών είναι ότι όταν χρησιμοποιείται συμφωνημένη τιμή (consensus value), δηλαδή η τιμή προκύπτει από τα ίδια τα εργαστήρια που συμμετέχουν, αυτή δεν είναι ιχνηλάσιμη με αποτέλεσμα η εκτίμηση του συστηματικού σφάλματος να μην είναι αξιόπιστ [4,13,14]. Μετά τον υπολογισμό του συστηματικού σφάλματος θα πρέπει να εκτιμηθεί η σημαντικότητά του.. Δηλαδή αν το συστηματικό σφάλμα είναι στατιστικά σημαντικό ή όχι. Αυτό γίνεται συνήθως με τη χρήση t-test και ανάλογα με ποιο από τους παραπάνω τρόπους έγινε η εκτίμηση του συστηματικού σφάλματος. Εάν αποδειχθεί παρουσία συστηματικού σφάλματος θα πρέπει να γίνει διερεύνυσή του.. Παρόλο που υπάρχει μια κοινή πεποίθηση ότι το συστηματικό σφάλματος πρέπει να διορθώνεται, αυτό δεν είναι πάντα εύκολο. Στην βιβλιογραφία προτείνονται κριτήρια εκτίμησης του εφικτού της διόρθωσης ενός συστηματικού 19

20 σφάλματος. Τα κριτήρια αυτά χωρίζονται σε δύο μεγάλες κατηγορίες, τεχνικά και οικονομικά. Τα τεχνικά κριτήρια που προτείνονται είναι τα εξής [13,14]: 1. Απόδειξη της σημαντικότητας του σφάλματος. Π.χ. t-test. Ταυτοποίηση της αιτίας του συστηματικού σφάλματος. 3. Ακριβής εκτίμηση του συστηματικού σφάλματος. Μπορεί να πραγματοποιηθεί, είτε βρίσκοντας την ποσοτική σχέση που συνδέει την αιτία με το μέγεθος της επίδρασης του αποτελέσματος, είτε εμπειρικά μελετώντας την επίδραση των αποτελεσμάτων στην αιτία του σφάλματος. 4. Σημαντική μείωση της αβεβαιότητας αν εφαρμοστεί διόρθωση. Το συγκεκριμένο κριτήριο απαιτεί να γίνει εκτίμηση της αβεβαιότητας του συστηματικού σφάλματος πριν εφαρμοστεί η διόρθωση. Παράδειγμα 5.: Στον προσδιορισμό του μολύβδου με ICP-OES τα αποτελέσματα επηρεάζονται από τη συγκέντρωση του αργιλίου στο δείγμα λόγω φασματικών παρεμποδίσεων. Επομένως τα κριτήρια (i) και (ii) πληρούνται. Η διόρθωση των αποτελεσμάτων μπορεί να γίνει με βάση την ένταση εκπομπής του αργιλίου σε άλλη φασματική γραμμή. Επομένως έχουμε μια ποσοτική σχέση για τη διόρθωση των σφαλμάτων (κριτήριο iii) επιτρέποντας τη μείωση της αβεβαιότητας (κριτήριο vi). Όλα τα κριτήρια πληρούνται και επομένως μπορεί να εφαρμοσθεί η διόρθωση των αποτελεσμάτων του μολύβδου με βάση τη συγκέντρωση του αργιλίου. Παρατήρηση: Στην αβεβαιότητα θα συμπεριληφθεί και η αβεβαιότητα της σχέσης που διορθώνει τα αποτελέσματα του μολύβδου. Παράδειγμα 5.3: Με την ίδια τεχνική του παραδείγματος 5.1, κατά την ανάπτυξη μιας μεθόδου παρατηρείται διαφορά μεταξύ της καμπύλης εξωτερικών προτύπων και της καμπύλης εμβολιασμένων δειγμάτων (matrix-matched) (κριτήριο i). Η διαφοροποίηση οφείλεται στην επίδραση των αλάτων που υπάρχουν στη μήτρα (κριτήριο ii). Ωστόσο δεν μπορεί να βρεθεί ούτε ποσοτική, ούτε εμπειρική σχέση που να διορθώνει τα αποτελέσματα με βάση το κριτήριο iii. Άρα δεν πληρούνται τα κριτήρια που να επιτρέπουν τη διόρθωση. Ωστόσο, με τη χρήση καμπύλης εμβολιασμένων δειγμάτων (matrix-matched) δεν απαιτείται πλέον διόρθωση. Παράδειγμα 5.4: Ένα εργαστήριο παρατηρεί στατιστικά σημαντικό και σταθερό σφάλμα μέσω της χρήσης ενός ή περισσοτέρων CRMs. Όμως το σφάλμα είναι πολύ μικρό συγκρητικά με την αβεβαιότητα που θέλει το εργαστήριο. Οπότε αν και το κριτήριο (i) καλύπτεται μερικώς δεν υπάρχει λόγoς για διόρθωση. Παράδειγμα 5.5: Ένα εργαστήριο παρατηρεί στατιστικά σημαντικό και σταθερό σφάλμα μέσω της χρήσης ενός ή περισσοτέρων CRMs. Το σφάλμα είναι συγκρίσιμο με την επιθυμητή αβεβαιότητα. Επομένως το κριτήριο (i) πληρούται σαφώς. Ωστόσο δεν υπάρχει σαφής εικόνα της αιτίας του σφάλματος. Γι αυτό ή δεν εφαρμόζεται διόρθωση ή προσδιορίζεται η σχέση εμπειρικά μέσα από μελέτες που δείχνουν την επίδραση αποτελέσματος και μήτρας. Αν αυτό είναι δυνατόν να πραγματοποιηθεί τότε η διόρθωση μπορεί να γίνει εμπειρικά. Τα παραπάνω παραδείγματα, καθώς και μερικά ακόμη αντιπροσωπευτικά αναφέρονται στη βιβλιογραφία [13]. Τα οικονομικά κριτήρια, όπως είναι κατανοητό αφορούν το κόστος της μεθόδου, αλλά και το κόστος που απαιτούν οι μελέτες για την εκτίμηση των συστηματικών σφαλμάτων που κάποιες φορές μπορεί να είναι μεγάλο. 0

21 Αφού έχει μελετηθεί η επίδραση του συστηματικού σφάλματος θα πρέπει να γίνει η εκτίμηση της αβεβαιότητάς του. Ανεξάρτητα από την επίδραση που έχει το συστηματικό σφάλμα, θα πρέπει να υπολογισθεί η αβεβαιότητα σε όλες τις περιπτώσεις ανεξάρτητα από την παρουσία ή μη συστηματικού σφάλματος. Σε περίπτωση διόρθωσης του συστηματικού σφάλματος θα πρέπει να εκτιμηθεί η τιμή του συστηματικού σφάλματος με βάση τα παραπάνω. Έχει καθιερωθεί ότι σε περίπτωση που η αβεβαιότητα του συστηματικού σφάλματος είναι μεγαλύτερη ή ίση με το 30% της συνολικής αβεβαιότητας, τότε θα πρέπει να συμπεριλαμβάνεται στις συνιστώσες της αβεβαιότητας, ακόμη και σε περιπτώσεις που έχουμε 100% ανάκτηση του αναλύτη, καθώς μπορεί η διακύμανση του αναλύτη να είναι αρκετά υψηλή έτσι, ώστε το συστηματικό σφάλμα να μην είναι αναγνωρίσιμο [14,15]. Στη συνέχεια παρατίθενται οι τρόποι υπολογισμού της αβεβαιότητας που αναφέρθηκαν παραπάνω. Υπολογισμός αβεβαιότητας από χρήση πιστοποιημένων υλικών αναφοράς. Αναλύεται το υλικό αναφοράς n φορές και προσδιορίζεται ο μέσος όρος X της περιεκτικότητας και η τυπική της απόκλιση S r. Κατόπιν ο X συγκρίνεται με την «αληθή τιμή», μ, του CRM με τη δοκιμασία t για να διαπιστωθεί η ύπαρξη ή μη, στατιστικά σημαντικής διαφοράς: t exp = X µ S r n Η συνολική αβεβαιότητα, u bias, αυτού του σταδίου είναι ο συνδυασμός της τυπικής απόκλισης, S r / n,του μέσου όρου (βλ. εξίσωση (3)) n προσδιορισμών υπό συνθήκες επαναληψιμότητας και της τυπικής αβεβαιότητας, u CRM, της «αληθούς τιμής» του CRM, μ, που δίνεται στο πιστοποιητικό του. Συνήθως στο πιστοποιητικό δίνεται η διευρυμένη αβεβαιότητα, U, ή εύρος α της μ, σε στάθμη εμπιστοσύνης 95%, επομένως η u CRM θα είναι U/ ή α/ Παράδειγμα 5.1 (συνέχεια): Η εκτίμηση του συστηματικού σφάλματος έγινε με τη χρήση CRM, πραγματοποιήθηκαν έξι (n=6) προσδιορισμοί του υλικού αναφοράς με πιστοποιημένη περιεκτικότητα σε Cd 197,9±4,8 mg/kg για 95% στάθμη εμπιστοσύνης. Οι προσδιορισμοί έδωσαν τα παρακάτω αποτελέσματα: Προσδιορισμοί (6 εντός της ημέρας) Χ 1 Χ Χ 3 Χ 4 Χ 5 Χ 6 X S r RSD r (mg/kg) (%) Αρχικά εφαρμόζουμε τη δοκιμασία t για τον έλεγχο σημαντικότητας της διαφοράς μεταξύ της ευρισκόμενης περιοεκτικότητας X και της «αληθούς τιμής», μ. Από την εφαρμογή της δοκιμασίας t στα παραπάνω δεδομένα προκύπτει ότι οι μέσοι όροι X και μ, δεν διαφέρουν στατιστικά (t exp =1,14 <.57 =t crit, για n-1=5 βαθμούς ελευθερίας για στάθμη 95%), επομένως δεν έχουμε συστηματικό σφάλμα που να απαιτεί διόρθωση. Όμως η αβεβαιότητα θα πρέπει να συνυπολογισθεί στη συνολική αβεβαιότητα, αφού είναι της ίδιας τάξης μεγέθους με την τυπική απόκλιση των πειραμάτων μελέτης των τυχαίων σφαλμάτων. 1

ΠΙΣΤΟΠΟΙΗΜΕΝΑ ΥΛΙΚΑ ΑΝΑΦΟΡΑΣ ΕΞΩΤΕΡΙΚΟΣ ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ

ΠΙΣΤΟΠΟΙΗΜΕΝΑ ΥΛΙΚΑ ΑΝΑΦΟΡΑΣ ΕΞΩΤΕΡΙΚΟΣ ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΠΙΣΤΟΠΟΙΗΜΕΝΑ ΥΛΙΚΑ ΑΝΑΦΟΡΑΣ ΕΞΩΤΕΡΙΚΟΣ ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ Νικ. Σ. Θωμαΐδης Eργ. Αναλυτικής Χημείας Τμ. Χημείας, Παν. Αθηνών Ορθότητα: Υλικά αναφοράς: Σύγκριση της πειραματικής τιμής με την «αληθή» τιμή

Διαβάστε περισσότερα

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Έλεγχοι Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Το ρυθμό απελευθέρωσης του φαρμάκου από το σκεύασμα Έλεγχο ταυτότητας και καθαρότητας της πρώτης ύλης και των εκδόχων( βάση προδιαγραφών)

Διαβάστε περισσότερα

ΑΠΑΙΤΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΙΧΝΗΘΕΤΕΣ

ΑΠΑΙΤΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΙΧΝΗΘΕΤΕΣ ΑΠΑΙΤΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΙΧΝΗΘΕΤΕΣ Οι απαντήσεις σε όλα τα πεδία οφείλουν να λαμβάνουν υπόψη και να είναι σύμφωνες με τις Ευρωπαϊκές Οδηγίες και τους Ευρωπαϊκούς Κανονισμούς. Για κάθε πεδίο

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΩΝ ΚΡΙΤΗΡΙΩΝ ΙΑΠΙΣΤΕΥΣΗΣ ΕΡΓΑΣΤΗΡΙΩΝ ΙΧΝΗΛΑΣΙΜΟΤΗΤΑ ΜΕΤΡΗΣΕΩΝ

ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΩΝ ΚΡΙΤΗΡΙΩΝ ΙΑΠΙΣΤΕΥΣΗΣ ΕΡΓΑΣΤΗΡΙΩΝ ΙΧΝΗΛΑΣΙΜΟΤΗΤΑ ΜΕΤΡΗΣΕΩΝ ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΩΝ ΚΡΙΤΗΡΙΩΝ ΙΑΠΙΣΤΕΥΣΗΣ ΕΡΓΑΣΤΗΡΙΩΝ ΙΧΝΗΛΑΣΙΜΟΤΗΤΑ ΜΕΤΡΗΣΕΩΝ ΕΣΥ ΚΟ2-ΚΡΙΤΕ/01/06/19-12-2013 1/7 ΕΣΥ ΚΟ2-ΚΡΙΤΕ Έκδοση: 01 Αναθεώρηση: 06 Ηµεροµηνία Έκδοσης: 14-3-1997

Διαβάστε περισσότερα

ΑΒΕΒΑΙΟΤΗΤΑ ΜΕΤΡΗΣΗΣ: ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΑΒΕΒΑΙΟΤΗΤΑ ΜΕΤΡΗΣΗΣ: ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΕΛΛΗΝΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΕΤΡΟΛΟΓΙΑΣ ΑΒΕΒΑΙΟΤΗΤΑ ΜΕΤΡΗΣΗΣ: ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Εισηγητής: Δρ. Δ.Γ. Κυριακίδης Δ/ντής ΔΔΠΕΥ ΒΙ.ΠΕ.Θ. Ο.Τ. 45, Σίνδος 57022 Θεσσαλονίκη 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Σφάλματα Εγγενή

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΠΑΡΚΕΙΑ ΚΑΙ ΙΑΠΙΣΤΕΥΣΗ ΚΛΙΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ

ΤΕΧΝΙΚΗ ΕΠΑΡΚΕΙΑ ΚΑΙ ΙΑΠΙΣΤΕΥΣΗ ΚΛΙΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ ιαχείριση Κινδύνων & Λαθών στις Υπηρεσίες ΥΓΕΙΑΣ Υπηρεσίες ΥΓΕΙΑΣ - Risk Management- ΤΕΧΝΙΚΗ ΕΠΑΡΚΕΙΑ ΚΑΙ ΙΑΠΙΣΤΕΥΣΗ ΚΛΙΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ. Θεοδώρου Χημικός Μηχ/κός, MSc, MBA Αθήνα, 13 Μαρτίου 2009 Οι ιατρικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Εσωτερικός Έλεγχος Ποιότητας- Εγχειρίδιο χηµικών εργαστηρίων Περίληψη

Εσωτερικός Έλεγχος Ποιότητας- Εγχειρίδιο χηµικών εργαστηρίων Περίληψη ii Εσωτερικός Έλεγχος Ποιότητας- Εγχειρίδιο χηµικών εργαστηρίων Περίληψη: Σύµφωνα µε το ISO/IEC 17025 (3): Το εργαστήριο πρέπει να διαθέτει διαδικασίες ελέγχου ποιότητας για τον έλεγχο της εγκυρότητας

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Εθνικό Σύστημα Διαπίστευσης

Εθνικό Σύστημα Διαπίστευσης Εθνικό Σύστημα Διαπίστευσης Παράρτημα F2/13 του Πιστοποιητικού Αρ. 263-4 ΕΠΙΣΗΜΟ ΠΕΔΙΟ ΕΦΑΡΜΟΓΗΣ της ΔΙΑΠΙΣΤΕΥΣΗΣ του Εργαστηρίου Δοκιμών & της LINK LAB ΕΠΕ για τη διενέργεια διακριβώσεων Μέγεθος / Απορρόφηση

Διαβάστε περισσότερα

Εθνικό Σύστηµα ιαπίστευσης Α.Ε. ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΩΝ ΚΡΙΤΗΡΙΩΝ ΙΑΠΙΣΤΕΥΣΗΣ ΕΡΓΑΣΤΗΡΙΩΝ ΙΧΝΗΛΑΣΙΜΟΤΗΤΑ ΜΕΤΡΗΣΕΩΝ

Εθνικό Σύστηµα ιαπίστευσης Α.Ε. ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΩΝ ΚΡΙΤΗΡΙΩΝ ΙΑΠΙΣΤΕΥΣΗΣ ΕΡΓΑΣΤΗΡΙΩΝ ΙΧΝΗΛΑΣΙΜΟΤΗΤΑ ΜΕΤΡΗΣΕΩΝ ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΩΝ ΚΡΙΤΗΡΙΩΝ ΙΑΠΙΣΤΕΥΣΗΣ ΕΡΓΑΣΤΗΡΙΩΝ ΙΧΝΗΛΑΣΙΜΟΤΗΤΑ ΜΕΤΡΗΣΕΩΝ ΕΣΥ ΚΟ2-ΚΡΙΤΕ/01/04/8-1-2009 1/11 ΕΣΥ ΚΟ2-ΚΡΙΤΕ Έκδοση: 01 Αναθεώρηση: 04 Ηµεροµηνία Έκδοσης: 14-3-1997

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Ολοκληρωμένο Σύστημα Διασφάλισης Ποιότητας Εργαστηρίων Δοκιμών & Διακριβώσεων

Ολοκληρωμένο Σύστημα Διασφάλισης Ποιότητας Εργαστηρίων Δοκιμών & Διακριβώσεων Ολοκληρωμένο Σύστημα Διασφάλισης Ποιότητας Εργαστηρίων Δοκιμών & Διακριβώσεων totalab Edit.1 Rev 0/ 06-03-2012 Τι είναι το totalab ; To totalab : είναι ένα ολοκληρωμένο σύστημα διασφάλισης ποιότητας μετρήσεων

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι: ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ

ΜΕΡΟΣ Ι: ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΜΕΡΟΣ Ι: ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 1: ΓΕΝΙΚΑ... 15 1.1. ΠΟΙΟΤΙΚΗ και ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ... 15 1.2. ΤΑΞΙΝΟΜΗΣΗ των ΑΝΑΛΥΤΙΚΩΝ ΜΕΘΟΔΩΝ... 16 1.3. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΑ

Διαβάστε περισσότερα

ISO 17025-Γενικές απαιτήσεις για την ικανότητα των εργαστηρίων δοκιμών και διακριβώσεων

ISO 17025-Γενικές απαιτήσεις για την ικανότητα των εργαστηρίων δοκιμών και διακριβώσεων ISO 17025-Γενικές απαιτήσεις για την ικανότητα των εργαστηρίων δοκιμών και διακριβώσεων Απόστολος Βανταράκης Επικ. Καθηγητής Υγιεινής, Μον. Περιβαλλοντικής Μικροβιολογίας, (διαπίστευση κατά 17025) Εργ.

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Εθνικό Σύστηµα ιαπίστευσης Α.Ε.

Εθνικό Σύστηµα ιαπίστευσης Α.Ε. ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗ ΙΑΠΙΣΤΕΥΣΗ ΕΡΓΑΣΤΗΡΙΩΝ ΓΙΑ ΜΙΚΡΟΒΙΟΛΟΓΙΚΕΣ ΟΚΙΜΕΣ ΣΕ ΕΙΓΜΑΤΑ ΝΕΡΟΥ ΚΑΙ ΤΡΟΦΙΜΩΝ ΕΣΥ ΚΟ-ΜΙΚΡΟΒΙΟΛ/01/01/09-07-2008 1/6 ΕΣΥ ΚΟ-ΜΙΚΡΟΒΙΟΛ Έκδοση: 01 Αναθεώρηση: 01 Ηµεροµηνία Έκδοσης:

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΕΠΙΤΕΛΕΙΟ ΕΘΝΙΚΗΣ ΑΜΥΝΑΣ 6o Διακλαδικό Σχολείο Διαλειτουργικότητας, Στοχοθεσίας και Ποιότητας

ΓΕΝΙΚΟ ΕΠΙΤΕΛΕΙΟ ΕΘΝΙΚΗΣ ΑΜΥΝΑΣ 6o Διακλαδικό Σχολείο Διαλειτουργικότητας, Στοχοθεσίας και Ποιότητας ΓΕΝΙΚΟ ΕΠΙΤΕΛΕΙΟ ΕΘΝΙΚΗΣ ΑΜΥΝΑΣ 6o Διακλαδικό Σχολείο Διαλειτουργικότητας, Στοχοθεσίας και Ποιότητας Αθήνα Νοέμβριος 2014 Βασικές υποδομές (πυλώνες) της ποιότητας (Τυποποίηση Αξιολόγηση Συμμόρφωσης Μετρολογία)

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ Μαρία Γιαννακούρου ΤΕΙ Αθηνών, Σχολή Τεχνολογίας Τροφίμων και Διατροφής, Τμήμα Τεχνολογίας Τροφίμων Νικόλαος Γ. Στοφόρος Γεωπονικό

Διαβάστε περισσότερα

Δειγματοληψία Τροφίμων

Δειγματοληψία Τροφίμων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΥΓΙΕΙΝΗΣ ΚΑΙ ΕΠΙΔΗΜΙΟΛΟΓΙΑΣ Δειγματοληψία Τροφίμων Ελένη Μαλισιόβα Κτηνίατρος Α.Π.Θ. MSc Food Safety, Hygiene & Management, UK MSc

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

Ο ΠΛΑΝΗΤΗΣ ΥΠΕΡΘΕΡΜΑΙΝΕΤΑΙ

Ο ΠΛΑΝΗΤΗΣ ΥΠΕΡΘΕΡΜΑΙΝΕΤΑΙ Ο ΠΛΑΝΗΤΗΣ ΥΠΕΡΘΕΡΜΑΙΝΕΤΑΙ Διακυβερνητική Επιτροπή για τις κλιματικές αλλαγές: Αύξηση των αερίων του θερμοκηπίου (+31% για CO 2 ). Αύξηση μέσης θερμοκρασίας γης κατά 0.6±0.2 0.2 ο C από τα τέλη του 19

Διαβάστε περισσότερα

2.6.2 Φυσικές σταθερές των χημικών ουσιών

2.6.2 Φυσικές σταθερές των χημικών ουσιών 1 2.6.2 Φυσικές σταθερές των χημικών ουσιών Ερωτήσεις θεωρίας με απαντήσεις 6-2-1. Ποιες χημικές ουσίες λέγονται καθαρές ή καθορισμένες; Τα χημικά στοιχεία και οι χημικές ενώσεις. 6-2-2. Ποια είναι τα

Διαβάστε περισσότερα

ΠΟΙΟΤΗΤΑ στην Αιμοδοσία

ΠΟΙΟΤΗΤΑ στην Αιμοδοσία ΠΟΙΟΤΗΤΑ ΠΙΣΤΟΠΟΙΗΣΗ - ΔΙΑΠΙΣΤΕΥΣΗ Νίκη Βγόντζα Διευθύντρια Αιμοδοσίας Κωνσταντοπούλειο Γ.Ν.Ν. Ιωνίας Σημαίνει : ΠΟΙΟΤΗΤΑ στην Αιμοδοσία μετάγγιση σωστού και ασφαλούς αίματος στο σωστό ασθενή τη κατάλληλη

Διαβάστε περισσότερα

: ΠΡΟΜΗΘΕΙΑ ΥΛΙΚΩΝ ΑΠΟΛΥΜΑΝΣΗΣ ΝΕΡΟΥ. : Ι ΙΟΙ ΠΟΡΟΙ : 19.000,00 πλέον του αναλογούντος Φ.Π.Α.

: ΠΡΟΜΗΘΕΙΑ ΥΛΙΚΩΝ ΑΠΟΛΥΜΑΝΣΗΣ ΝΕΡΟΥ. : Ι ΙΟΙ ΠΟΡΟΙ : 19.000,00 πλέον του αναλογούντος Φ.Π.Α. ΧΡΗΜΑΤΟ ΟΤΗΣΗ ΠΡΟΥΠΟΛΟΓΙΣΜΟΣ : Ι ΙΟΙ ΠΟΡΟΙ ΠΕΡΙΕΧΟΜΕΝΑ Τεχνική Έκθεση Ενδεικτικός Προϋπολογισµός Ειδική Συγγραφή Υποχρεώσεων -Τεχνικές Προδιαγραφές Σχέδιο ιακήρυξης Έντυπο Οικονοµικής Προσφοράς ΟΚΤΩΒΡΙΟΣ

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ ΕΙΣΑΓΩΓΙΚΑ

ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ ΕΙΣΑΓΩΓΙΚΑ ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ ΕΙΣΑΓΩΓΙΚΑ 1 Ποιότητα και Ποιοτικός Έλεγχος Ο όρος «ποιότητα» συχνά χρησιµοποιείται χωρίς την πραγµατική της έννοια. ηλαδή δεν προσδιορίζεται αν το προϊόν στο οποίο αναφέρεται

Διαβάστε περισσότερα

ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ ΑΝΑΛΥΤΙΚΗΣ ΧΗΜΕΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ

ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ ΑΝΑΛΥΤΙΚΗΣ ΧΗΜΕΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ Ακαδημαϊκό έτος 2011-12 ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ ΑΝΑΛΥΤΙΚΗΣ ΧΗΜΕΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ Μ. Σταθερόπουλος, Καθηγητής, Σ. Λιοδάκης, Καθηγητής Μάρτιος 2012 1 Γενικές πληροφορίες για το μάθημα της Αναλυτικής Χημείας Το μάθημα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΚΛΙΝΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ VS ΣΤΑΤΙΣΤΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ Ι 1. Η στατιστική σημαντικότητα αντανακλά την επίδραση

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

9.1 Ορισµοί και έννοιες

9.1 Ορισµοί και έννοιες 9. Εργαστήρια Ο ρόλος των εργαστηρίων στα πλαίσια του οικοδοµήµατος της ποιότητας είναι ιδιαίτερα σηµαντικός, γιατί η αξιόπιστη µέτρηση είναι το µόνο διαθέσιµο αντικειµενικό κριτήριο αξιολόγησης της συµµόρφωσης

Διαβάστε περισσότερα

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD ΕΘΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΑΡΜΑΚΩΝ Η νέα κατευθυντήρια οδηγία που αφορά σε μελέτες βιοϊσοδυναμίας: Νομικό πλαίσιο Ευρωπαϊκή πραγματικότητα Εξελίξεις ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Μιχαλέας Σωτήρης, Φαρμακοποιός

Διαβάστε περισσότερα

Δραστηριότητα 2: Το αλμυρό νερό

Δραστηριότητα 2: Το αλμυρό νερό Παγκόσμιο πείραμα για το Διεθνές Έτος Χημείας Δραστηριότητα 2: Το αλμυρό νερό Το μεγαλύτερο ποσοστό του νερού στον πλανήτη, για την ακρίβεια το 95% είναι αλμυρό νερό, δηλ. περιέχει άλατα. Σε αυτή τη δραστηριότητα

Διαβάστε περισσότερα

25.6.2011 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 166/9

25.6.2011 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 166/9 25.6.2011 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 166/9 ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. 619/2011 ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 24ης Ιουνίου 2011 για τον καθορισμό μεθόδων δειγματοληψίας και ανάλυσης για τον επίσημο έλεγχο

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΕ ΝΕΡΟ ΓΕΝΙΚΑ Με το πείραμα αυτό μπορούμε να προσδιορίσουμε δύο βασικές παραμέτρους που χαρακτηρίζουν ένα

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

Ελληνικό Ινστιτούτο Μετρολογίας

Ελληνικό Ινστιτούτο Μετρολογίας Ελληνικό Ινστιτούτο Μετρολογίας ΑΒΕΒΑΙΟΤΗΤΑ ΜΕΤΡΗΣΕΩΝ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΣ - ΕΚΦΡΑΣΗ Γ. Ναβροζίδης, Χ. Μήτσας, Ε. Φλουδά, Μ. Αναγνώστου, Φ. Στρέλε ΕΝΗΜΕΡΩΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΙΜ-0 ΘΕΣ/ΝΙΚΗ, ΔΕΚΕΜΒΡΙΟΣ 999 Ελληνικό

Διαβάστε περισσότερα

Η ποιότητα των μετρήσεων κατανάλωσης ενέργειας ως παράγοντας του επιχειρηματικού κινδύνου

Η ποιότητα των μετρήσεων κατανάλωσης ενέργειας ως παράγοντας του επιχειρηματικού κινδύνου Η ποιότητα των μετρήσεων κατανάλωσης ενέργειας ως παράγοντας του επιχειρηματικού κινδύνου Γεώργιος Ν. Παπαδάκος Δρ Μηχανολόγος Μηχανικός ΕΜΠ Σύμβουλος Μετρολογίας Προοπτικές ανάπτυξης και οφέλη των επιχειρήσεων

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ ΚΕΦΑΛΑΙΟ 9 ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ Τα δηµογραφικά δεδοµένα τα οποία προέρχονται από τις απογραφές πληθυσµού, τις καταγραφές της φυσικής και µεταναστευτικής κίνησης του πληθυσµού

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Η ιοικούσα Επιτροπή της HellasLab, επιθυµεί να εκφράσει τις ευχαριστίες της στα µέλη της Οµάδας Εργασίας:

ΠΡΟΛΟΓΟΣ. Η ιοικούσα Επιτροπή της HellasLab, επιθυµεί να εκφράσει τις ευχαριστίες της στα µέλη της Οµάδας Εργασίας: ΠΡΟΛΟΓΟΣ Η Ελληνική Ένωση Εργαστηρίων, µε στόχο την ενηµέρωση των µελών της αλλά και οποιουδήποτε ενδιαφερόµενου φορέα, αποφάσισε την τυποποιηµένη έκδοση Τεχνικών Κειµένων, σχετικά µε θέµατα που αφορούν

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ ΠΕΡΙΕΧOΜΕΝΑ Πρόλογος στη δεύτερη έκδοση Πρόλογος στην πρώτη έκδοση Εισαγωγή Τι είναι η μεθοδολογία έρευνας Οι μέθοδοι έρευνας ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΚΕΦΑΛΑΙO 1: Γενικά για την επιστημονική

Διαβάστε περισσότερα

ΠΙΣΤΟΠΟΙΗΣΗ ΔΟΚΙΜΑΣΙΩΝ ΚΑΙ ΘΕΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ. Αλεξάνδρα Φλέβα Ph.D Βιολόγος Τμήμα Ανοσολογίας-Ιστοσυμβατότητας Γ.Ν.

ΠΙΣΤΟΠΟΙΗΣΗ ΔΟΚΙΜΑΣΙΩΝ ΚΑΙ ΘΕΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ. Αλεξάνδρα Φλέβα Ph.D Βιολόγος Τμήμα Ανοσολογίας-Ιστοσυμβατότητας Γ.Ν. ΠΙΣΤΟΠΟΙΗΣΗ ΔΟΚΙΜΑΣΙΩΝ ΚΑΙ ΘΕΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ Αλεξάνδρα Φλέβα Ph.D Βιολόγος Τμήμα Ανοσολογίας-Ιστοσυμβατότητας Γ.Ν. «Παπαγεωργίου» Έλεγχος ποιότητας Το σημαντικότερο εργαλείο στην εργαστηριακή διαδικασία

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ)

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ) ΑΣΚΗΣΕΙΣ. Ο διευθυντής προσωπικού μιας μεγάλης εταιρείας πιστεύει ότι ίσως υφίσταται κάποια σχέση μεταξύ των ημερών απουσίας και της ηλικίας των εργαζομένων. Με βάση την υπόθεση αυτή ενδιαφέρεται να κατασκευάσει

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Εθνικό Σύστηµα ιαπίστευσης Α.Ε.

Εθνικό Σύστηµα ιαπίστευσης Α.Ε. ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗ ΙΑΠΙΣΤΕΥΣΗ ΡΑΣΤΗΡΙΟΤΗΤΩΝ ΣΧΕΤΙΚΩΝ ΜΕ ΤΗ ΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΕΛΟΤ ΕΝ ISO/IEC 17025 ΕΣΥ ΚΟ- ΕΙΓΜ /01/02/10-5-2006 1/7 ΕΣΥ ΚΟ- ΕΙΓΜ Έκδοση: 01 Αναθεώρηση: 02 Ηµεροµηνία Έκδοσης:

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Χ. Αλεξανδρίδου Τμήμα Χημικών Μηχανικών, Πανεπιστήμιο Πατρών, 26504 Πάτρα

Χ. Αλεξανδρίδου Τμήμα Χημικών Μηχανικών, Πανεπιστήμιο Πατρών, 26504 Πάτρα Η ΣΥΜΒΟΛΗ ΤΩΝ ΕΠΙΘΕΩΡΗΣΕΩΝ ΣΤΗΝ ΒΕΛΤΙΩΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΕΡΓΑΣΤΗΡΙΩΝ ΔΟΚΙΜΩΝ: ΕΦΑΡΜΟΓΗ ΣΕ ΕΡΓΑΣΤΗΡΙΑ ΔΟΜΙΚΩΝ ΥΛΙΚΩΝ ΔΙΑΠΙΣΤΕΥΜΕΝΩΝ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΠΡΟΤΥΠΟ ISO 17025 Χ. Αλεξανδρίδου Τμήμα Χημικών

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις.

Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις. Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις. Περίληψη Η επιβάρυνση του περιβάλλοντος που προκαλείται από την παροχή ηλεκτρικής ή θερµικής ενέργειας είναι ιδιαίτερα σηµαντική.

Διαβάστε περισσότερα

4. Πόσο οξικό οξύ περιέχει το ξίδι;

4. Πόσο οξικό οξύ περιέχει το ξίδι; 4. Πόσο οξικό οξύ περιέχει το ξίδι; Σκοπός Σκοπός αυτού του πειράματος είναι να προσδιορίσετε την ποσότητα (γραμμομοριακή συγκέντρωση) του οξικού οξέος που υπάρχει σε ένα λευκό ξίδι μέσω ογκομέτρησης με

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ Υπό ΘΕΟΔΩΡΟΥ ΑΡΤΙΚΗ, ΑΝΑΣΤΑΣΙΟΥ ΣΟΥΓΙΑΝΝΗ ΚΑΙ ΓΕΩΡΓΙΟΥ ΑΡΤ1ΚΗ Ανωτάτη Βιομηχανική Σχολή Πειραιά 1. ΕΙΣΑΓΩΓΗ Τα συνήθη κριτήρια αξιολόγησης επενδύσεων βασίζονται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

Διαπίστευση εργαστηρίου ελέγχου ποιότητας πόσιμου νερού κατά ISO 17025

Διαπίστευση εργαστηρίου ελέγχου ποιότητας πόσιμου νερού κατά ISO 17025 Διαπίστευση εργαστηρίου ελέγχου ποιότητας πόσιμου νερού κατά ISO 17025 Φανή Μισκάκη Δρ. Χημικός Υπεύθυνη Ελέγχου Ποιότητας Νερού, ΕΥΔΑΠ Επικεφαλής αξιολογήτρια Ε.ΣΥ.Δ. 1 ΔΙΑΠΙΣΤΕΥΣΗ ΔIAΠIΣTEYΣH είναι η

Διαβάστε περισσότερα

ΕΤΑ και άλλες βιομηχανικές δραστηριότητες

ΕΤΑ και άλλες βιομηχανικές δραστηριότητες Το παρακάτω κείμενο περιέχει οδηγίες, παραδείγματα και διευκρινήσεις σχετικά με το τι θεωρείται Έρευνα και Τεχνολογική Ανάπτυξη, με έμφαση σε βιομηχανικές δραστηριότητες. Βασίζεται στο εγχειρίδιο Frascati

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal Θ2 Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal 1. Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί, με αφορμή τον προσδιορισμό του παράγοντα μετατροπής της

Διαβάστε περισσότερα

ΤΥΠΟΠΟΙΗΣΗ ΟΡΟΛΟΓΙΑΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΠΕΡΙΛΗΨΗ STANDARDISATION OF QUALITY TERMINOLOGY AND COMMUNICATION SUMMARY

ΤΥΠΟΠΟΙΗΣΗ ΟΡΟΛΟΓΙΑΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΠΕΡΙΛΗΨΗ STANDARDISATION OF QUALITY TERMINOLOGY AND COMMUNICATION SUMMARY ΤΥΠΟΠΟΙΗΣΗ ΟΡΟΛΟΓΙΑΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ Ι. Σαριδάκης, Ν. Τσαλκάνη, Ε. Λαμπή, Ε. Καραγιώργη ΠΕΡΙΛΗΨΗ Στην παρούσα εισήγηση παρουσιάζονται οι βασικές αρχές που πρέπει να ακολουθούνται κατά την

Διαβάστε περισσότερα

Κωδικός: ΜΤΝ2 Αρ. Έκδοσης: 1 Ημ/νία: 01-12-2014 Σελ. 1 από 7

Κωδικός: ΜΤΝ2 Αρ. Έκδοσης: 1 Ημ/νία: 01-12-2014 Σελ. 1 από 7 Κωδικός: ΜΤΝ2 Αρ. Έκδοσης: 1 Ημ/νία: 01-12-2014 Σελ. 1 από 7 1. ΣΚΟΠΟΣ Σκοπός της παρούσας οδηγίας είναι η περιγραφή του τρόπου με τον οποίο λαμβάνονται, μεταφέρονται και συντηρούνται τα δείγματα νερού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΠΕΙΡΑΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΕΙΡΑΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΗΜΗΤΡΙΟΣ Π. ΚΟΜΙΛΗΣ Λέκτορας ΞΑΝΘΗ 6 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 3. Επιστημονική

Διαβάστε περισσότερα

Σύντομη περιγραφή του πειράματος

Σύντομη περιγραφή του πειράματος Σύντομη περιγραφή του πειράματος Παρασκευή διαλυμάτων ορισμένης περιεκτικότητας και συγκέντρωσης, καθώς επίσης και παρασκευή διαλυμάτων συγκεκριμένης συγκέντρωσης από διαλύματα μεγαλύτερης συγκέντρωσης

Διαβάστε περισσότερα

ΟΔΗΓΟΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΓΩΝ ΣΥΜΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΣΜΟΥ ΚΑΙ ΘΕΡΜΟΤΗΤΑΣ ΩΣ ΠΡΟΣ ΤΗΝ ΕΝΕΡΓΕΙΑΚΗ ΑΠΟΔΟΤΙΚΟΤΗΤΑ

ΟΔΗΓΟΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΓΩΝ ΣΥΜΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΣΜΟΥ ΚΑΙ ΘΕΡΜΟΤΗΤΑΣ ΩΣ ΠΡΟΣ ΤΗΝ ΕΝΕΡΓΕΙΑΚΗ ΑΠΟΔΟΤΙΚΟΤΗΤΑ ΟΔΗΓΟΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΓΩΝ ΣΥΜΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΣΜΟΥ ΚΑΙ ΘΕΡΜΟΤΗΤΑΣ ΩΣ ΠΡΟΣ ΤΗΝ ΕΝΕΡΓΕΙΑΚΗ ΑΠΟΔΟΤΙΚΟΤΗΤΑ ΕΚΔΟΣΗ 2.0 30.10.2009 Α. Πεδίο Εφαρμογής Ο Οδηγός Αξιολόγησης εφαρμόζεται κατά την αξιολόγηση αιτήσεων

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις. Μια μηχανή εμφιάλωσης κρασιού γεμίζει φιάλες του μισού κιλού με ποσότητα κρασιού η οποία είναι κανονική τυχαία μεταβλητή

Διαβάστε περισσότερα

Εργαστήριο Ραδιενέργειας Περιβάλλοντος ΙΠΤΑ ΕΚΕΦΕ Δ. Αναλυτική υποδομή χαρακτηρισμού αερολύματος για ερευνητικό έργο και παροχή υπηρεσιών

Εργαστήριο Ραδιενέργειας Περιβάλλοντος ΙΠΤΑ ΕΚΕΦΕ Δ. Αναλυτική υποδομή χαρακτηρισμού αερολύματος για ερευνητικό έργο και παροχή υπηρεσιών Αναλυτική υποδομή χαρακτηρισμού αερολύματος για ερευνητικό έργο και παροχή υπηρεσιών Δειγματολήπτες Αιωρούμενων Σωματιδίων με φίλτρο High Volume Impactor Κρουστικός διαχωριστής που συλλέγει σωματίδια διαμέτρων

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ISO 17025 ΑΠΑΙΤΗΣΕΙΣ & ΕΦΑΡΜΟΓΗ

ΠΡΟΤΥΠΟ ISO 17025 ΑΠΑΙΤΗΣΕΙΣ & ΕΦΑΡΜΟΓΗ ΠΡΟΤΥΠΟ ISO 17025 ΑΠΑΙΤΗΣΕΙΣ & ΕΦΑΡΜΟΓΗ Εισηγήτρια Μ. ΣΤΥΛΙΑΝΟΥΔΑΚΗ Q-PLAN Α.Ε. ΔΙΑΠΙΣΤΕΥΣΗ ΣΤΗΝ ΕΛΛΑΔΑ ΕΣΥΔ Εργαστήρια Δοκιμών και Διακριβώσεων Φορείς Πιστοποίησης Συστημάτων Φορείς Ελέγχου Φορείς Πιστοποίησης

Διαβάστε περισσότερα

Ομογενή μίγματα χημικών ουσιών τα οποία έχουν την ίδια χημική σύσταση και τις ίδιες ιδιότητες (χημικές και φυσικές) σε οποιοδήποτε σημείο τους.

Ομογενή μίγματα χημικών ουσιών τα οποία έχουν την ίδια χημική σύσταση και τις ίδιες ιδιότητες (χημικές και φυσικές) σε οποιοδήποτε σημείο τους. ΔΙΑΛΥΜΑΤΑ Ομογενή μίγματα χημικών ουσιών τα οποία έχουν την ίδια χημική σύσταση και τις ίδιες ιδιότητες (χημικές και φυσικές) σε οποιοδήποτε σημείο τους. Διαλύτης: η ουσία που βρίσκεται σε μεγαλύτερη αναλογία

Διαβάστε περισσότερα

Ιδιότητες Ψυχρής Ροής Προϊόντων Πετρελαίου

Ιδιότητες Ψυχρής Ροής Προϊόντων Πετρελαίου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Χημικών Μηχανικών Τομέας Σύνθεση & Ανάπτυξης Βιομηχανικών Διεργασιών & Συστημάτων Εργαστήριο Καυσίμων & Λιπαντικών Εργαστηριακή Άσκηση Ιδιότητες Ψυχρής Ροής Προϊόντων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ (INSTRUMENTAL METHODS OF ANALYSIS)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ (INSTRUMENTAL METHODS OF ANALYSIS) ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ (INSTRUMENTAL METHODS OF ANALYSIS) ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2014 ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ (Ποιοτική Ανάλυση/ Ποσοτική Ανάλυση) Κλασσική Χημική Ανάλυση Ενόργανη Χημική Ανάλυση Σταθμική

Διαβάστε περισσότερα

LABORATORY INFORMATION MANAGEMENT SYSTEM

LABORATORY INFORMATION MANAGEMENT SYSTEM LABORATORY INFORMATION MANAGEMENT SYSTEM Σύστημα Διαχείρισης των Πληροφοριών του Εργαστηρίου (LIMS) Κωνσταντίνος Παπανώτας Τεχνικός Διευθυντής Εργαστηρίων Appert A.E. Επικεφαλής Αξιολογητής Ε.ΣΥ.Δ. LIMS

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΔΙΕΥΘΥΝΣΗ ΕΡΓΑΣΤΗΡΙΩΝ

ΔΙΕΥΘΥΝΣΗ ΕΡΓΑΣΤΗΡΙΩΝ ΔΙΕΥΘΥΝΣΗ ΕΡΓΑΣΤΗΡΙΩΝ Ευρωπαϊκή Εβδομάδα Ποιότητας, Νοέμβριος 2007 ΠΕΡΙΕΧΟΜΕΝΑ ΕΝΟΤΗΤΑ 1 η Διαδικασίες Διαπίστευσης ΕΝΟΤΗΤΑ 2 η Νέα Τεχνικά Πεδία και Νέες Ανάγκες Αξιολόγησης ΕΝΟΤΗΤΑ 3 η Προτάσεις για

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

ΕΙΔΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΕΛΕΓΧΟΥ ΚΕΝΤΡΩΝ ΔΙΑΝΟΜΗΣ ΤΣΙΜΕΝΤΟΥ

ΕΙΔΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΕΛΕΓΧΟΥ ΚΕΝΤΡΩΝ ΔΙΑΝΟΜΗΣ ΤΣΙΜΕΝΤΟΥ ΕΙΔΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΕΛΕΓΧΟΥ ΚΕΝΤΡΩΝ ΔΙΑΝΟΜΗΣ ΤΣΙΜΕΝΤΟΥ Υπεύθυνος Έκδοσης : Υ.Δ.Π. Υπεύθυνος Έγκρισης : Δ.Σ. Σελίδα 1 από 16 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 - Γενικές Πληροφορίες 1.1 Η Ταυτότητα της Εταιρείας 1.2

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 249-258 Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Μανώλης Μανατάκης Τμήμα Μηχανολόγων και Αεροναυπηγών

Διαβάστε περισσότερα

ROLLER 20 (Test1 family Analyzers) Πλήρως αυτόματος αναλυτής για τον προσδιορισμό ΤΚΕ Σε μόλις 20 δευτερόλεπτα

ROLLER 20 (Test1 family Analyzers) Πλήρως αυτόματος αναλυτής για τον προσδιορισμό ΤΚΕ Σε μόλις 20 δευτερόλεπτα ROLLER 20 (Test1 family Analyzers) Πλήρως αυτόματος αναλυτής για τον προσδιορισμό ΤΚΕ Σε μόλις 20 δευτερόλεπτα Αποτελέσματα σε 20 δευτερόλεπτα, σχετικά με την κινητική της συσσωμάτωσης ερυθρών αιμοσφαιρίων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα