ΣΦΑΛΜΑΤΑ. Όσο μικρότερο είναι το σφάλμα, τόσο μεγαλύτερη είναι η ακρίβεια.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΦΑΛΜΑΤΑ. Όσο μικρότερο είναι το σφάλμα, τόσο μεγαλύτερη είναι η ακρίβεια."

Transcript

1 ΣΦΑΛΜΑΤΑ Αληθινήηπραγματικήτιμή(μ) είναι μια παραδεκτή τιμή προς την οποία μπορούν να συγκριθούν όλες οι πειραματικές τιμές. Μετά την εκτέλεση αριθμού (n) επαναλαμβανόμενων μετρήσεων και τη λήψη xi αριθμητικών τιμών, ως αντιπροσωπευτικότερη της (μ) προτείνεται η μέση τιμή των πειραματικών μετρήσεων. x x x 1 n x n x i n Ακρίβεια είναι η συμφωνία της μέσης τιμής μιας σειράς αναλύσεων, με την αληθινή τιμή μ. Εκφράζεται με το σφάλμα, Εκαιτο%σχετικό σφάλμα, %Er. Όσο μικρότερο είναι το σφάλμα, τόσο μεγαλύτερη είναι η ακρίβεια.

2 Επαναληπτικότητα είναι η διασπορά των μετρούμενων τιμών γύρω από τη μέση τιμή. Εκφράζεται με την τυπική απόκλιση, s (standard deviation) και την %σχετική τυπική απόκλιση, %RSD (%relative standard deviation). s n ι 1 ( x i x n 1 ) s %RSD 100 x H τυπική απόκλιση εκτός από s συμβολίζεται και με SD H%σχετική τυπική απόκλιση εκτός από %RSD συμβολίζεται και με CV (Coefficient of Variation) Όταν έχει γίνει σειρά αναλύσεων ως αποτέλεσμα δίνεται ο μέσος όρος των αναλύσεων, συνοδευμένος από την τυπική απόκλιση και τον αριθμό των αναλύσεων: ± SD, (n ), π.χ. 1,99 ± 0,0 mm (n5) Για υπολογισμό της τυπικής απόκλισης πρέπει n 3.

3 Ένα χρήσιμο μέτρο επαναληπτικότητας για μικρό αριθμό αναλύσεων είναι (range) και το σχετικό εύρος, %Rr το εύρος, R R R x max - x min %R r 100 x Η απόκλιση μιας τιμής di ορίζεται ως η διαφορά της μέσης τιμής από την τιμή αυτή. x Ημέσηαπόκλιση i x d i 1 n 1 n d i x i - x Η ποσότητα n-1 καλείται βαθμοί ελευθερίας.

4 Ανάλυση δείγματος αίματος για φωσφορικά δίνει: 4,00, 4,0, 3,60 και 4,0 mg PO 4-3 /100mL αίματος. Να υπολογιστεί η μέση τιμή, η τυπική απόκλιση και το εύρος τιμών. 4,00 4,00 4,0 4,0 3,60 3,60 4,0 4,0 Μέση τιμή 4,00 4,00 Τυπική απόκλιση 0,8 0,8843 S n ι 1 ( xi n 1 x) % RSD s 100 x

5 ΣΦΑΛΜΑΤΑ Κάθε πειραματική μέτρηση υπόκειται σε ένα βαθμό αβεβαιότητας (σφάλμα), που στην καλύτερη περίπτωση μπορεί να ελαττωθεί σε ένα αποδεκτό επίπεδο. Τα σφάλματα μπορούν να ταξινομηθούν σε κατηγορίες Σφάλματα Προσδιορίσιμα ή Συστηματικά Τυχαία Σταθερά Αναλογικά Σύνθετα Διάκριση των σφαλμάτων σε καθορισμένα ή τυχαία γίνεται με τη δοκιμασία t-test

6 Προσδιορίσιμα ή Συστηματικά σφάλματα Είναι μονοκατευθυνόμενα Οφείλονται σε συγκεκριμένα αίτια όπως: Ατέλειες οργάνων, προσμίξεις των αντιδραστηρίων, προσωπικά σφάλματα, σφάλματα της μεθόδου κ.α. Εξουδετερώνονται με διάφορους τρόπους όπως: Θεωρητικό υπολογισμό, βαθμονόμηση οργάνων, μέτρηση τυφλού, ανάλυση προτύπων κ.α. Το είδος και το μέγεθος καθορίζονται με ανάλυση προτύπων μ δειγμάτων διαφόρων περιεκτικοτήτων i Δμ x i αμ i β α Δμ/Δx Δx β Ο όρος β ισούται με το με το σταθερό καθορισμένο σφάλμα Το μέγεθος (α-1)x100 με το %σχετικό αναλογικό σφάλμα x i

7 Τυχαία σφάλματα Είναι δικατευθυνόμενα Δεν οφείλονται σε συγκεκριμένο αίτιο Εξουδετερώνονται ως ένα σημείο με αύξηση του αριθμού των αναλύσεων, αλλά δεν εξαλείφονται διότι απαιτείται άπειρος αριθμός αναλύσεων Η κατανομή τους ακολουθεί το νόμο της κανονικής κατανομής κατά Gauss y συχνότητα εμφανίσεως των σφαλμάτων x μ διαφορά μιας τιμής x και της αληθινής τιμής μ (σφάλμα) σ τυπική απόκλιση Το πλάτος της καμπύλης δηλώνει την επαναληπτικότητα και είναι τόσο μικρότερο όσο καλύτερη είναι η επαναληπτικότητα. Ηαληθινήτιμήμ αντιστοιχεί στο μέγιστο της καμπύλης.

8 Σταθερά Προσδιορίσιμα Σφάλματα Το σφάλμα (Ε) είναι το ίδιο σε όλα τα δείγματα ανεξάρτητα από την ποσότητα του προσδιοριζόμενου συστατικού. α) Μέθοδος χωρίς σφάλμα β) Μέθοδος με θετικό σταθερό καθορισμένο σφάλμα : 0.7 mm γ) Μέθοδος με αρνητικό σταθερό καθορισμένο σφάλμα : mm

9 Σταθερά Προσδιορίσιμα Σφάλματα Περιεκτικότητα χυμού σε βιταμίνη C, mm Πραγματική (μ) Ευρεθείσα ( X ) Σφάλμα (Ε) %Σχετικό Σφάλμα (%Ε r ) 1,00 1,36 0,16 10,5%,000,100 0,100 5,0% 3,000 3,10 0,10 3,4% 4,500 4,605 0,105,3%

10 Αναλογικά Προσδιορίσιμα Σφάλματα Το σφάλμα (Ε) είναι ανάλογο της ποσότητας του προσδιοριζόμενου συστατικού ενώ το %σχετικό σφάλμα σταθερό. α) Μέθοδος χωρίς σφάλμα β) Μέθοδος με θετικό αναλογικό σφάλμα : 30% γ) Μέθοδος με αρνητικό σταθερό καθορισμένο σφάλμα : - 30%

11 Περιεκτικότητα χυμού σε βιταμίνη C, mm Πραγματική (μ) Ευρεθείσα ( X ) Σφάλμα (Ε) % Σχετικό Σφάλμα (% Ε r ) 1,00 1,36 0,16 10,5%,000,01 0,01 10,1% 3,000 3,304 0,304 10,1% 4,500 4,950 0,450 10,0%

12 Εφαρμογές στην Αναλυτική Χημεία Σύγκριση μέσης τιμής, με την αληθή, μ Κατάταξη του σφάλματος σε συστηματικό ή τυχαίο Υπολογισμός του διαστήματος εμπιστοσύνης στο οποίο θα βρίσκεται με δεδομένη πιθανότητα η αληθής τιμή (τιμή αναφοράς), μ Σύγκριση δύο μεθόδων για την ισοδυναμία αποτελεσμάτων Απόρριψη πειραματικών τιμών που αποκλίνουν (outliers)

13 Εκτιμητική Στατιστική Η πραγματική τιμή (μ) είναι μια σταθερά που πάντα παραμένει άγνωστη Με ένα βαθμό πιθανότητας, μπορούν όμως να τεθούν όρια γύρω από την πειραματική μέση τιμή, μέσα στα οποία αναμένεται να βρίσκεται η πραγματική τιμή. Όρια και περιοχή εμπιστοσύνης είναι τιμές, αριστερά και δεξιά της μέσης τιμής που καθορίζουν την περιοχή τιμών, (διάστημα εμπιστοσύνης, confidence interval) μέσα στην οποία προβλέπεται με ορισμένη πιθανότητα ότι βρίσκεται η μ. Η πιθανότητα αυτή εκφράζεται στα % καικαλείταιστάθμηεμπιστοσύνης (confidence level). Συνήθως αρκούμαστε σε στάθμη εμπιστοσύνης 95% ή 99% και μερικές φορές σε 90%. Τα όρια εμπιστοσύνης υπολογίζονται από την σχέση μ x tμεταβλητήηοποίααυξάνεταιμετηστάθμηεμπιστοσύνηςκαιόταν ελαττώνονται οι βαθμοί ελευθερίας ν (ν n-1). Ηδιαφορά(100 στάθμη εμπιστοσύνης) καλείται πιθανότητα σφάλματος (%) και παρέχει την πιθανότητα (P), με την οποία η μ βρίσκεται έξω από το διάστημαεμπιστοσύνης. ± ts n

14 Π.χ. για P 0.05 η πιθανότητα σφάλματος είναι 5% και το διάστημα εμπιστοσύνης 95%. Τιμές του t(θεωρητικού) σε συνάρτηση των βαθμών ελευθερίας και της στάθμης εμπιστοσύνης.

15 Κατά τον έλεγχο 3 φασματοφωτομετρικών μεθόδων, Α, Β και Γ, για τον προσδιορισμό ενός φαρμάκου σ ένα σκεύασμα αναλύθηκε πρότυπο δείγμα περιεκτικότητας 15.6% σε φάρμακο και πάρθηκαν τα παρακάτω αποτελέσματα (μέσος όρος 5 μετρήσεων με τυπική απόκλιση και για τις τρεις μεθόδους 0.mg) Τι συμπεραίνετε από τα δεδομένα, ως προς το εάν υπάρχει καθορισμένο σφάλμα σε κάθε μια από τις μεθόδους αναλύσεως.

16

17 Σύγκριση της πειραματικής μέσης τιμής, με την αληθή τιμή, μ: Δοκιμασία Student ή t-test Eρώτημα: Ηδιαφορά x - μ οφείλεται σε προσδιορίσιμο σφάλμα ή σε τυχαίο. Αν Τότε το μ είναι σημαντικά διαφορετικό από το για καθορισμένο επίπεδο εμπιστοσύνης (υπάρχει προσδιορίσιμο σφάλμα) Γίνεται σύγκριση του x με το μ και υπολογίζεται η τιμή Αν : tπειρ > tθεωρητικότότετομείναισημαντικάδιαφορετικόαπότογια καθορισμένο επίπεδο εμπιστοσύνης (υπάρχει σφάλμα) Αν : tπειρ < tθεωρητικό τότε το μ δεν διαφέρει σημαντικά από το για καθορισμένο επίπεδο εμπιστοσύνης (δεν υπάρχει σφάλμα). Η στάθμη εμπιστοσύνης είναι αντίστροφα ανάλογη της πιθανότητας να διαφέρουν οι δύο τιμές Η δοκιμασίαt γίνεται πιο αυστηρή, δηλαδή περισσότερες πειραματικές τιμές φαίνεται να διαφέρουν σημαντικά από το μ όταν: Μειώνεται η στάθμη εμπιστοσύνης Αυξάνεται ο αριθμός μετρήσεων, n Μειώνεται η τυπική απόκλιση, s

18 ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1: Αναλύεται πιστοποιημένο ελαιόλαδο αναφοράς με οξύτητα,00 % (w/w) πέντε φορές και βρίσκεται ότι έχει οξύτητα (%, w/w): a) 1,99 b),10 c),08 d) 1,97 e),09. Να εξεταστεί αν υπάρχει προσδιορίσιμο σφάλμα στη μέθοδο για στάθμη εμπιστοσύνης 95%. μ,00 %, 1,99,10,08 1,97,09 x,05 % 5 s (1,99,05) (,10,05) (,08,05) 5 1 (1,97,05) (,09,05) 0,06%,00 t πειρ -,09 0,06 5 3,35 tθεωρητικό,78 για 4 (5-1) βαθμούς ελευθερίας και στάθμη εμπιστοσύνης 95% Επειδή tπειρ> tθεωρητικό υπάρχει προσδιορίσιμο σφάλμα στη μέθοδο

19 Παράδειγμα : Δοκιμάστηκε μια νέα μέθοδος ταχείας ανάλυσης θείου (S) σε κηροζίνες με ανάλυση δείγματος που από την μέθοδο παρασκευής του ήταν γνωστό ότι περιείχε 0,13% S. Τα αποτελέσματα ήταν %S 0,11, 0,118, 0,115 και 0,119. Τα αποτελέσματα παρουσιάζουν αρνητικό συστηματικό σφάλμα της νέας μεθόδου; _ x _ x 0,11 0,118 0,115 4 μ 0,116 0,13 0,119 0,007 0,116 s ( 0,0040 ) ( 0,000 ) 4 ( 0, ) ( 0,0030 ) 0,003 t πειραματικ ό 0,13 0,116 0, ,375 Το t θεωρητικό για στάθμη εμπιστοσύνης 95% και για 3 (4-1) βαθμούςελευθερίαςείναι 3,18

20 Σύγκριση δύο μέσων πειραματικών τιμών x 1 και x Ερώτημα: Ηδιαφορά x 1 -x είναι σημαντική ή οφείλεται σε τυχαίους παράγοντες Χρήση: Σύγκριση αποτελεσμάτων που λαμβάνονται από δύο μεθόδους, δύο εργαστήρια, δύο πειραματικές συνθήκες (κλπ). Υπολογίζεται η συγκεντρωτική τυπική απόκλιση, S pooled : Αν : tπειρ > tθεωρητικό τότε το είναι σημαντικά διαφορετικό από το για καθορισμένο επίπεδο εμπιστοσύνης Αν : tπειρ < tθεωρητικό τότε το δεν διαφέρει σημαντικά από το για καθορισμένο επίπεδο εμπιστοσύνης.

21 Παράδειγμα: Σε δείγμα ελαιόλαδου προσδιορίζεται ο αριθμός υπεροξειδίων (meq O /kg) με δύο μεθόδους α) με την πρότυπη μέθοδο του AOAC (Association of Official Analytical Chemists) και β) με μέθοδο flow injection (FI). Να εξεταστεί αν οι δύο μέθοδοι διαφέρουν για στάθμη εμπιστοσύνης 99%. Αριθμός υπεροξειδίων, meq O /kg Mέξοδος AOAC: 39,5 40,1 39,7 40,5 39,7 Μέθοδος FI: 40,0 41,0 40,7 40, 40,5 40,6 Μέθοδος AOAC: n ,5 40,1 39,7 40,5 39,7 x 1 39,9 meq O /kg 5 Μέθοδος FI: s (39,5 39,9) (40,1 39,9) (39,7 39,9) (40,5 39,9) (39,7 39,9) n 6 40,0 41,0 40,7 40, 40,5 40,6 x 40,5 meq O /kg 6 0,40 s (41,0 40,5) (40,7 40,5) (40, 40,5) 6 1 (40,5 40,5) (40,6 40,5) (40,0 40,5) 0,36

22 Εύρεση tπειρ.: S pooled 0,40(5 1) 0,36(6 1) 0, t πειρ. 39,9 40,5 0,38 5 6, tθεωρητικό 3,5 για 9 (56-) βαθμούς ελευθερίας και στάθμη εμπιστοσύνης 99%. Επειδή tπειρ< tθεωρητικό οι δύο μέθοδοι είναι ισοδύναμες. Για στάθμη εμπιστοσύνης 90% tθεωρητικό 1,83 οπότε tπειρ> tθεωρητικό και οι δύο μέθοδοι δεν είναι ισοδύναμες.

23 Παράδειγμα: Μια ενζυματική μέθοδος (ENZ) προσδιορισμού αιθυλικής αλκοόλης στο αίμα συγκρίνεται με μια μέθοδο αέριας χρωματογραφίας (GC). Το δείγμα αναλύεται πολλές φορές με τα ακόλουθα αποτελέσματα (% EtOH). ENZ: 13.1, 1.7, 1.6, 13.3, 13.3; GC: 13.5, 13.3, 13.0, 1.9. Διαφέρει σημαντικά η ΕΝΖ μέθοδος από τη GC για στάθμη εμπιστοσύνης 95% (tθεωρητικό,365 για 7 βαθμούς ελευθερίας).

24 1, *5 0,8 13, 13,0 0, ) (4 (0,4) 1) (5 (0,30) 0,4 4 (0,3) (0,) (0,1) (0,3) 0,30 5 (0,3) (0,3) (0,4) (0,3) (0,1) 1 13, 4 1,9 13,0 13,3 13,5 13,0 5 13,3 13,3 1,6 1,7 13,1 1 ό pooled t s s s x x πειραματικ

25 Παράδειγμα: Κατά την ανάλυση δύο παρτίδων δισκίων Νιφεδιπίνης με την ίδια αναλυτική μέθοδο και τον ίδιο αναλυτή, πάρθηκαν τα παρακάτω αποτελέσματα: xi1(mg/δισκίο): 395,4, 401,1, 397,8, 405,0, 397,5 xi(mg/δισκίο): 400,5, 410,9, 407,1, 40,6, 405,9, 406,3 Να εξετασθεί αν οι δύο παρτίδες διαφέρουν ως προς την περιεκτικότητα τους σε Νιφεδιπίνη, για στάθμη εμπιστοσύνης 99%. (tθεωρ. 3.5 για 9 βαθμούς ελευθερίας).

26 3, *6 3,3 405,6 399,4 3, ) (6 (3,9) 1) (5 (3,36) 3,36 5 (1,9) (5,6) (1,6) (1,7) (4) 1 3,9 6 (0,7) (0,3) (3) (1,5) (5,3) (5) 405, ,3 405,9 40,6 407,1 410,9 400,6 399, ,5 405,0 397,8 401,1 395,4 1 ό pooled t s s s x x πειραματικ

27 Σύγκριση δύο μεθόδων με τη δοκιμασία t κατά ζεύγη (paired t-test) Ερώτημα: Η διαφορά στα αποτελέσματα με δύο μεθόδους είναι σημαντική ή οφείλεται σε τυχαίους παράγοντες Αντικαθιστά το t-test (σύγκριση μεταξύ δύο μεθόδων, εργαστηρίων, πειραματικών συνθηκών κλπ) όταν δεν υπάρχουν στοιχεία επαναληπτικότητας των δύο μεθόδων (s 1 και s ) διότι: -η ποσότητα του δείγματος είναι επαρκής μόνο για ένα προσδιορισμό με κάθε μέθοδο δείγματα αναλύονται σε μεγάλη χρονική περίοδο Υπολογίζονται οι διαφορές τιμών των ζευγώναπότιςδύομεθόδους, Dι καθώςκαιημέσητιμήτωνδιαφορών: D i n 1 n D i Υπολογίζεται η τυπική απόκλιση των διαφορών, SD : t πειρ. Υπολογίζεται το tπειρ D n S D S D n ι 1 ( Di D) n 1

28 Παράδειγμα: Δείγματα ελαιολάδου αναλύονται για τον προσδιορισμό της οξύτητας με την πρότυπη μέθοδο της ΕΟΚ και με μέθοδο flow injection (FI) και λαμβάνονται τα πιο κάτω αποτελέσματα. Να εξεταστεί αν οι δύο μέθοδοι διαφέρουν για στάθμη εμπιστοσύνης 99%. Αποτελέσματα προσδιορισμού οξύτητας στο ελαιόλαδο Οξύτητα (w/w%) Δείγμα Μέθοδος Μέθοδος D i FI ΕΟΚ , , , , , , , , , ,03

29 Λύση 0,005 0,013 0,006 0,00 0,005 0,06 0,03 ( 0,05) ( 0,06) 0,03 D 0, S D ( 0,0081) (0,0099) (0,009) ( 0,0011) (0,0019) (0,0569) (0,069) ( 0,0531) ( 0,0631) (0,069) 0, t πειρ. 0,031 10,7 0,036 tθεωρητικό 3,5 για 9 (10-1) βαθμούς ελευθερίας και στάθμη εμπιστοσύνης 99%. Επειδή tπειρ< tθεωρητικό οι δύο μέθοδοι είναι ισοδύναμες. Για στάθμη εμπιστοσύνης 95% tθεωρητικό,6 οπότε tπειρ> tθεωρητικό και οι δύο μέθοδοι δεν είναι ισοδύναμες.

30 Απόρριψη πειραματικών τιμών που αποκλίνουν (outliers) H περιεκτικότητα χυμού σε βιταμίνη C μετρείται πέντε φορές και τα αποτελέσματα που λαμβάνονται είναι: αριθμός μέτρησης βιταμίνη C, mm 1,01,00 3 1,99 4 1,98 5 1,00 Διάμεση τιμή Μέση τιμή με την αμφίβολη 1,80 Μέση τιμή χωρίς την αμφίβολη 1,99 Διάμεση τιμή 1,99 Κριτήριο Q Η πέμπτη τιμή αποκλίνει και ίσως πρέπει να απορριφθεί. Όταν υπάρχει αμφιβολία για την απόρριψη κάποιας τιμής εφαρμόζεται το κριτήριο Q: Ο αριθμός αυτός συγκρίνεται με τον θεωρητικό από πίνακες για δεδομένη στάθμη εμπιστοσύνης και αριθμό μετρήσεων:

31 Τιμές του Q συναρτήσει της στάθμης εμπιστοσύνης και του αριθμού μετρήσεων Αριθμός μετρήσεων Q 0,90 Q 0,95 Q 0,99 3 0,94 0,98 0,99 4 0,76 0,85 0,93 5 0,64 0,73 0,8 6 0,56 0,64 0,74 7 0,51 0,59 0,68 Για στάθμη εμπιστοσύνης 90% και 5 μετρήσεις Q θεωρητικό 0,64 Q πειρ. > Q θεωρητικό απόρριψη Με το κριτήριο Q απορρίπτονται δυσκολότερα τιμές όταν: αυξάνεται η στάθμη εμπιστοσύνης μειώνεται ο αριθμός μετρήσεων

32 Παράδειγμα Κατά την ανάλυση χλωριούχων ιόντων σε ορό του αίματος βρέθηκαν οι παρακάτω τιμές: 103, 106, 107, 114 mmol/l. Μια από τις τιμές φαίνεται αμφίβολη. Να προσδιοριστεί αν η τιμή αυτή μπορεί να απορριφθεί με 90% εμπιστοσύνη (Q 90 % 0,76). Η αμφίβολη τιμή είναι η 114 και διαφέρει από την πλησιέστερη τιμή της 107 κατά α Αντίστοιχα το εύρος ισούται με w meq/l. Επομένως Q 7/110,64.

33 Παράδειγμα Κατά τον προσδιορισμό του συντελεστή επιβράδυνσης ενός φαρμάκου πάρθηκαν οι τιμές: 0,60, 0,57, 0,57, 0,58, 0,59, 0,74, 0,59. Να χρησιμοποιηθεί το κριτήριο Q90 για να καθορισθεί, εάν οποιοδήποτε από τα αποτελέσματα πρέπει να απορριφθεί (Q90, θεωρ. 0,51). Η αμφίβολη τιμή είναι η 0,74 και διαφέρει από την πλησιέστερη τιμή της 0,60 κατά α0,74-0,600,14. Αντίστοιχα το εύρος ισούται με w 0,74-0,570,17. Επομένως Q 0,14/0,170,8.

34 Διάδοση και συσσώρευση προσδιορίσιμων σφαλμάτων

35 Παραδείγματα Παράδειγμα: Έστω το άθροισμα και οι αντίστοιχες τυπικές αποκλίσεις, 0,50 4,10 1,97,63 (0,0), (-0.03), (-0,05) Άρα y,6 ± 0,06 Παράδειγμα: Να βρεθεί το σφάλμα του κάτωθι αποτελέσματος

36 ΑΚΡΙΒΕΙΑ ΑΝΑΛΥΤΙΚΩΝ ΣΚΕΥΩΝ ΚΑΙ ΟΡΓΑΝΩΝ ΜΕΤΡΗΣΗΣ Σκεύος η Όργανο Μέγεθος Απόλυτη Ακρίβεια Αναλυτικός Ζυγός 100gr ±0,0001gr Απλός Ζυγός 1000gr ±0,001gr Προχοϊδα 50mL ±0,0mL Σιφώνιο πλήρωσης Ογκομετρικές Φιάλες 5mL 10mL 5mL 50mL 5mL 50mL 100mL 50mL 500mL 1000mL ±0,01mL ±0,0mL ±0,03mL ±0,05mL ±0,03mL ±0,05mL ±0,08mL ±0,1mL ±0,15mL ±0,30mL

37 Παράδειγμα: Να υπολογισθεί η ακρίβεια του προσδιοριζόμενου τίτλου ενός διαλύματος HCl όταν, κατά την τιτλοδότηση με στερεό Na CO 3 παρουσία δείκτη ηλιανθίνης λαμβάνονται τα παρακάτω αποτελέσματα και δεδομένα ακριβείας. Απόβαρο σκεύους 46,0419 g ± 0,0001 Συνολικό βάρος σκεύους και NaCO3 46,541 g ± 0,0001 Καθαρή μάζα NaCO3 0,1 g Αλλαγή χρώματος δείκτη ± 0,03 ml Αρχική ανάγνωση προχοΐδας 0,5 ml ± 0,0 ml Τελική ανάγνωση προχοΐδας 45,1 ml ± 0,0 ml Όγκος HCl που καταναλώθηκε 44,69 ml α) Η αβεβαιότητα της ζύγισης εκφράζεται με τη συνδυασμένη τυπική απόκλιση των δύο ζυγίσεων: s (0,0001) (0,0001) ± 0,00014 g 0,00014 H συνδυασμένη σχετική τυπική απόκλιση είναι: s r 100 0,07 % 0,1 H αβεβαιότητα του όγκου του HCl επηρεάζεται από τις αποκλίσεις των δύο αναγνώσεων και την απόκλιση λόγω αλλαγής χρώματος του δείκτη: s (0,0) (0,0) (0,03) ± 0,041mL 0,041 H σχετική τυπική απόκλιση είναι: s ' ' r 100 0,09 % 44,69 H συνολική αβεβαιότητα του τίτλου του HCl είναι: s (0,07) (0,09) 0,1% r ±

38 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Η χρήση των αριθμητικών δεδομένων που προκύπτουν κατά την διάρκεια των μετρήσεων πρέπει να γίνεται με βάση των αριθμό των ψηφίων που γνωρίζουμε με βεβαιότητα συν ένα που αντιστοιχεί σε εκτίμηση. Π.χ. Η βεβαιότητα στην μέτρηση όγκου με προχοϊδα επιτρέπει την έκφραση με 3 ψηφία, τα δύο με βεβαιότητα και το 3ο μεεκτίμηση. Ως σημαντικά ψηφία ενός αριθμού λογίζονται τα ψηφία που είναι γνωστά με βεβαιότητα συν ένα. Εάν κατά την εκτέλεση μιας σειράς πειραματικών μετρήσεων ληφθούν οι τιμές 61,60, 61,46, 61,55 και 61,61, με x 61,555 και s ±0,069. Τα αποτελέσματα πρέπει να δίνονται ως: x ± SD, (n ) x 6.56 ± 0.07

39 Κανόνες γραφής Χρησιμοποιούνται μόνο τα σημαντικά σημεία. Σταθερές όπως ατομική μάζα κλπ. Χρησιμοποιούνται με όλα τα ψηφία που δίνονται στους πίνακες. Όλα τα μη μηδενικά ψηφία ενός αριθμού, εφόσον αναγράφονται, είναι σημαντικά, είτε βρίσκονται στο ακέραιο είτε στο δεκαδικό μέρος. Το 0 είναι πάντοτε σημαντικό όταν βρίσκεται ανάμεσα σε άλλα ψηφία, π.χ. 1,043, 10,465, 0,0401 Το 0 προ ή μετά την υποδιαστολή αν δεν προηγείται άλλο ψηφίο, δεν είναι ποτέ σημαντικό, π.χ. 0,15, 0,0038 Τα 0 μετά την υποδιαστολή, εφόσον αναγράφονται, είναι σημαντικά, αλλιώς παραλείπονται, π.χ. 3,00, 101,0. Το 0 στο τέλος ενός αριθμού, αν δεν ακολουθεί υποδιαστολή, όταν είναι σημαντικό διατηρείται, ενώ αν δεν είναι σημαντικό γράφεται σαν δύναμη του 10, π.χ , Κατά την πρόσθεση ή αφαίρεση μεταξύ δύο δεκαδικών αριθμών, το αποτέλεσμα είναι αριθμός με τόσα δεκαδικά όσα έχει ο αριθμός με τα λιγότερα δεκαδικά, π.χ. 0,8 1,0194 (1,994) 1,30. Η πράξη μεταξύ σημαντικού και μη σημαντικού ή μεταξύ δύο μη σημαντικών οδηγεί σε μη σημαντικό αποτέλεσμα.

40 Κανόνες γραφής Όταν προσθέτοντας δυνάμεις, πρέπει πρώτα να γράφονται με τους ίδιους εκθέτες (διατηρώντας τα σημαντικά τους ψηφία) και στη συνέχεια να αθροίζονται, π.χ. 3, , (0, , ) 0, , Όταν προσθέτονται ή αφαιρούνται αριθμοί ή δυνάμεις με τον ίδιο αριθμό δεκαδικών σημαντικών ψηφίων, το αποτέλεσμα θα έχει τον ίδιο αριθμό δεκαδικών ψηφίων, ακόμη και αν το σύνολο των σημαντικών ψηφίων αυξήθηκε, π.χ. 4,35 8,70 13,05 ή 10, , , Κατά τον πολλαπλασιασμό ή τη διαίρεση μεταξύ δύο αριθμών, πρακτικά το αποτέλεσμα μπορεί να έχει τόσα σημαντικά ψηφία, όσα έχει ο αριθμός με τα λιγότερα σημαντικά. Για μεγαλύτερη ακρίβεια πρέπει να υπολογίζεται η σχετική αβεβαιότητα του κάθε αριθμού και το αποτέλεσμα να εκφράζεται με τόσα σημαντικά ψηφία έτσι ώστε η σχετική αβεβαιότητα του να είναι της τάξης του πιο αβέβαιου από τους αρχικούς αριθμούς.

41 π.χ. στον πολλαπλασιασμό 0,014 5,35,0185 0,15334 το αποτέλεσμα μπορεί να δοθεί ως 0,15 ή 0,153 ή 0,1533. Οι σχετικές αβεβαιότητες των αριθμών που πολλαπλασιάζονται είναι: 0,0001 0,014 0,01 5, ,70 % 100 0,19 % 0,0001, ,0050 % Οι σχετικές ακρίβειες των 0,15, 0,153 και 0,1533 είναι: 0,01 0,15 0,001 0, ,7 % 100 0,65% 100 0,065% 0,153 0,1533 Έτσι το αποτέλεσμα δίνεται ως 0,153

42 Κανόνες γραφής Κατά τον υπολογισμό του λογαρίθμου ενός αριθμού, το αποτέλεσμα πρέπει να έχει τόσα δεκαδικά όσα είναι τα σημαντικά ψηφία του αρχικού αριθμού, π.χ. log(3, ) (-3, ) -3,506 και log(5) (1,397940) 1,40. Κατά τον υπολογισμό αριθμού από ένα λογάριθμο (αντιλογάριθμος) το αποτέλεσμα πρέπει να έχει τόσα σημαντικά ψηφία, όσα είναι τα δεκαδικά ψηφία του λογαρίθμου., π.χ. log x 4,64 x 43651, ή ph 4,75, H 10-4,75 1, , Κατά την ύψωση ενός αριθμού στο τετράγωνο, το αποτέλεσμα έχει τόσα σημαντικά ψηφία, όπως προβλέπεται όταν πολλαπλασιάζονται δύο αριθμοί με ίδιο αριθμό σημαντικών ψηφίων.

43 Κανόνες γραφής Κατά την καταγραφή μιας μέτρησης ο αριθμός των σημαντικών ψηφίων δεν πρέπει να εκφράζει βεβαιότητα μεγαλύτερη από εκείνη που εγγυάται ο χρησιμοποιούμενος εξοπλισμός. Σκεύος η Όργανο Μέγεθος Απόλυτη Ακρίβεια Αναλυτικός Ζυγός 100gr ± 0,0001gr Απλός Ζυγός 1000gr ± 0,001gr Προχοϊδα 50mL ± 0,0mL Σιφώνιο πλήρωσης 5mL 10mL 5mL 50mL ± 0,01mL ± 0,0mL ± 0,03mL ± 0,05mL Ογκομετρικές Φιάλες 5mL 50mL 100mL 50mL ± 0,03mL ± 0,05mL ± 0,08mL ± 0,1mL 500mL ± 0,15mL 1000mL ± 0,30mL

44

45

ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ)

ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ) ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ) «Οι σύγχρονες τεχνικές βιο-ανάλυσης στην υγεία, τη γεωργία, το περιβάλλον και τη διατροφή» 1 ΕΙΣΑΓΩΓΗ Η Χημική Ανάλυση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ)

ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ) ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ) «Οι σύγχρονες τεχνικές βιο-ανάλυσης στην υγεία, τη γεωργία, το περιβάλλον και τη διατροφή» ΑΝΑΛΥΤΙΚΕΣ ΧΗΜΕΙΚΕΣ ΤΕΧΝΙΚΕΣ

Διαβάστε περισσότερα

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Έλεγχοι Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Το ρυθμό απελευθέρωσης του φαρμάκου από το σκεύασμα Έλεγχο ταυτότητας και καθαρότητας της πρώτης ύλης και των εκδόχων( βάση προδιαγραφών)

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY)

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) 1) Ανάλυση 1 δείγματος (Πιστοποιημένο Υλικό Αναφοράς (CRM), εμπορικό δείγμα ελέγχου (control sample), υπόλειμμα διεργαστηριακού) με γνωστή τιμή αναφοράς (μ). Αναλύεται

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ Περιεχόμενα 1. Στρογγυλοποίηση.... 2 1.1 Γενικά.... 2 1.2 Κανόνες Στρογγυλοποίησης.... 2 2. Σημαντικά ψηφία.... 2 2.1 Γενικά.... 2 2.2 Κανόνες για την

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΕΙΣΗΓΗΣΗ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΗΣΕΙΣ ΤΟΥ ISO/IEC 1705 ΟΡΙΣΜΟΙ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Εργαστηριακό Μέρος Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο

Διαβάστε περισσότερα

ΑΡΧΕΣ ΧΗΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΑΡΧΕΣ ΧΗΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΡΧΕΣ ΧΗΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Αναλυτική χημεία είναι ο κλάδος της χημείας που ασχολείται με τον χημικό χαρακτηρισμό της ύλης Προκειμένου να εκτελέσουμε μια χημική ανάλυση ακολουθούνται τα παρακάτω βήματα: ΔΙΑΤΥΠΩΣΗ

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΓΕΩΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ

ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΓΕΩΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΓΕΩΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ 1. Ορολογία αβεβαιότητας 2. Εκτίµηση επαναληψιµότητας 3. Εκτίµηση αναλυτικής ακρίβειας 4. Περιληπτικά στατιστικά µετρήσεων ΟΡΟΛΟΓΙΑ ΑΒΕΒΑΙΟΤΗΤΑΣ Αβεβαιότητα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ B ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ - ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ ΙΑ ΟΣΗ ΣΦΑΛΜΑΤΩΝ. Καθηγητή Κων/νου Ευσταθίου, Εργαστήριο Αναλυτικής Χηµείας Πανεπιστηµίου Αθηνών

ΕΝΟΤΗΤΑ B ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ - ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ ΙΑ ΟΣΗ ΣΦΑΛΜΑΤΩΝ. Καθηγητή Κων/νου Ευσταθίου, Εργαστήριο Αναλυτικής Χηµείας Πανεπιστηµίου Αθηνών ΕΝΟΤΗΤΑ B ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ - ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ ΙΑ ΟΣΗ ΣΦΑΛΜΑΤΩΝ Καθηγητή Κων/νου Ευσταθίου, Εργαστήριο Αναλυτικής Χηµείας Πανεπιστηµίου Αθηνών 1. ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Έχει ήδη τονισθεί ότι κανένα

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Τηλ: 0 99800 Γραφείο : Β όροφος, Τομέας Φυσικής Στερεάς Κατάστασης Σειρά των ασκήσεων Θεωρία : Σφάλματα Θεωρία :

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Μέτρα θέσης και διασποράς

Μέτρα θέσης και διασποράς Μέτρα θέσης και διασποράς Η επικρατούσα τιμή ως μέτρο κεντρικής τάσης Εύκολο στον υπολογισμό Επικρατούσα τιμή Η πιο συχνή ή η πιο συχνά εμφανιζόμενη τιμή σε ένα σύνολο τιμών 11, 3, 8, 2, 1, 5, 3, 7 Επικρατούσα

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Εργαστηριακό Μέρος Ενότητα 4: Ογκομετρική Ανάλυση Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

4. Πόσο οξικό οξύ περιέχει το ξίδι;

4. Πόσο οξικό οξύ περιέχει το ξίδι; 4. Πόσο οξικό οξύ περιέχει το ξίδι; Σκοπός Σκοπός αυτού του πειράματος είναι να προσδιορίσετε την ποσότητα (γραμμομοριακή συγκέντρωση) του οξικού οξέος που υπάρχει σε ένα λευκό ξίδι μέσω ογκομέτρησης με

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι: ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ

ΜΕΡΟΣ Ι: ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΜΕΡΟΣ Ι: ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 1: ΓΕΝΙΚΑ... 15 1.1. ΠΟΙΟΤΙΚΗ και ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ... 15 1.2. ΤΑΞΙΝΟΜΗΣΗ των ΑΝΑΛΥΤΙΚΩΝ ΜΕΘΟΔΩΝ... 16 1.3. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΑ

Διαβάστε περισσότερα

Ορισμός Αναλυτικής Χημείας

Ορισμός Αναλυτικής Χημείας Ορισμός Αναλυτικής Χημείας Αναλυτική Χημεία ορίζεται ως ο επιστημονικός κλάδος, που αναπτύσσει και εφαρμόζει μεθόδους, όργανα και στρατηγικές, για να δώσει πληροφορίες σχετικά με τη σύσταση και φύση υλικών

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΟΜΑΔΑ:RADIOACTIVITY Τα μέλη της ομάδας μας: Γιώργος Παπαδόγιαννης Γεράσιμος Κουτσοτόλης Νώντας Καμαρίδης Κωνσταντίνος Πούτος Παναγιώτης Ξανθάκος

Διαβάστε περισσότερα

Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 1

Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 1 ΒΑΘΜΟΛΟΓΙΑ ΟΜΑΔΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ Υπολογισμός της περιεκτικότητας του ξιδιού σε οξικό οξύ με την κλασική μέθοδο. ΣΧΟΛΕΙΟ 1 ο ΓΕΛ ΑΜΠΕΛΟΚΗΠΩΝ ΤΜΗΜΑ Γ θετ ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από Στη θεωρία, θεωρία και πείραμα είναι τα ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ... υπό ισχυρή συμπίεση ίδια αλλά στο πείραμα είναι διαφορετικά, A.Ensten Οι παρακάτω σημειώσεις περιέχουν τα βασικά σημεία που πρέπει να γνωρίζει

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

Έλεγχος ποιότητας φαρμακευτικών αναλύσεων

Έλεγχος ποιότητας φαρμακευτικών αναλύσεων Έλεγχος ποιότητας φαρμακευτικών αναλύσεων Ιωάννης Τσαγκατάκης, Ph.D. Κατερίνα Κανάκη, Ph.D. ΙΕΚ Ιεράπετρας, Βοηθός Φαρμακείου Το α και το ω μιας φαρμακευτικής ανάλυσης περιλαμβάνει μια ξεκάθαρη στρατηγική

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.

Διαβάστε περισσότερα

1.1. Με τι ασχολείται η Αριθμητική Ανάλυση

1.1. Με τι ασχολείται η Αριθμητική Ανάλυση Κεφάλαιο 1 Εισαγωγικά 1.1. Με τι ασχολείται η Αριθμητική Ανάλυση Πολλοί επιστημονικοί κλάδοι, στην προσπάθειά τους να επιλύσουν πρακτικά προβλήματα κάνουν χρήση μεθόδων Αριθμητικής Ανάλυσης. Οι μέθοδοι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

ΤΙΤΛΟΔΟΤΗΣΗ ΔΙΑΛΥΜΑΤΟΣ FeSO 4 ΜΕ ΠΡΟΤΥΠΟ ΔΙΑΛΥΜΑ KMnO 4 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΚΑΘΑΡΟΤΗΤΑΣ ΔΕΙΓΜΑΤΟΣ

ΤΙΤΛΟΔΟΤΗΣΗ ΔΙΑΛΥΜΑΤΟΣ FeSO 4 ΜΕ ΠΡΟΤΥΠΟ ΔΙΑΛΥΜΑ KMnO 4 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΚΑΘΑΡΟΤΗΤΑΣ ΔΕΙΓΜΑΤΟΣ ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ για το EUSO 2017 ΕΚΦΕ ΘΗΡΑΣ ΑΞΙΟΛΟΓΗΣΗ ΜΑΘΗΤΩΝ - ΧΗΜΕΙΑ Μαθητές: Σχολείο 1. 2. 3. ΤΙΤΛΟΔΟΤΗΣΗ ΔΙΑΛΥΜΑΤΟΣ FeSO 4 ΜΕ ΠΡΟΤΥΠΟ ΔΙΑΛΥΜΑ KMnO 4 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΚΑΘΑΡΟΤΗΤΑΣ ΔΕΙΓΜΑΤΟΣ ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

!n k. Ιστογράμματα. n k. x = N = x k

!n k. Ιστογράμματα. n k. x = N = x k Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς

Διαβάστε περισσότερα

Μέθοδοι και Όργανα Περιβαλλοντικών Μετρήσεων Μέρος Α. Διαπίστευση Εργαστηρίου Δοκιμών

Μέθοδοι και Όργανα Περιβαλλοντικών Μετρήσεων Μέρος Α. Διαπίστευση Εργαστηρίου Δοκιμών Μέθοδοι και Όργανα Περιβαλλοντικών Μετρήσεων Μέρος Α Διαπίστευση Εργαστηρίου Δοκιμών ΑΠΟΤΥΠΩΣΗ ΤΗΣ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΤΑΣΗΣ Πίνακας των προς διαπίστευση δοκιμών Περιγραφή Δοκιμής/Ανάλυσης Υλικό/α που ελέγχονται

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2015-2016 Ε.Κ.Φ.Ε. Νέας Σμύρνης Εξέταση στη Χημεία ΛΥΚΕΙΟ: Τριμελής ομάδα μαθητών: 1. 2. 3. Αναπληρωματικός: Συνεργάτης Χημικός: Ανδρέας Δαζέας Α Σειρά Θεμάτων (Χημεία)

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Γενικό Εργαστήριο Φυσικής Σφάλματα Μελέτη φυσικού φαινομένου Ποσοτική σχέση παραμέτρων Πείραμα Επαλήθευση Καθιέρωση ποσοτικής σχέσης Εύρεση τιμής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Ορισμοί διακρίβωσης. Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Ορισμοί διακρίβωσης. Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΟΡΙΣΜΟΙ (1) Διακρίβωση (Calibration): Σειρά δράσεων, οι οποίες καθορίζουν, κάτω από καθορισμένες

Διαβάστε περισσότερα

Επίσηµη Εφηµερίδα της Ευρωπαϊκής Ένωσης ΚΑΝΟΝΙΣΜΟΙ

Επίσηµη Εφηµερίδα της Ευρωπαϊκής Ένωσης ΚΑΝΟΝΙΣΜΟΙ 8.10.2016 L 273/5 ΚΑΝΟΝΙΣΜΟΙ ΕΚΤΕΛΕΣΤΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) 2016/1784 ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 30ής Σεπτεμβρίου 2016 για την τροποποίηση του κανονισμού (ΕΟΚ) αριθ. 2568/91 σχετικά με τον προσδιορισμό των χαρακτηριστικών

Διαβάστε περισσότερα

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Οι Ενόργανες Μέθοδοι Ανάλυσης είναι σχετικές μέθοδοι και σχεδόν στο σύνολο τους παρέχουν την αριθμητική τιμή μιας φυσικής ή φυσικοχημικής ιδιότητας, η

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.).

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). ΛΥΜΕΝΕΣ ΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). a. Τι μπορεί να συνέβη όταν η διάμεσος αυξήθηκε; Το γεγονός ότι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Περιγραφική στατιστική

Περιγραφική στατιστική Περιγραφική στατιστική Ιστογράμματα Mέτρα θέσης και διασποράς Κατανομές δεδομένων Γεωργία Σαλαντή Επικ. Καθηγήτρια Εργαστήριο Υγιεινής και Επιδημιολογίας Στατιστική 1. Εκτιμήσεις Μεγέθη και διαστήματα

Διαβάστε περισσότερα

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ 5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης

Διαστήματα Εμπιστοσύνης Διαστήματα Εμπιστοσύνης 00 % Διαστήματα Εμπιστοσύνης για τη μέση τιμή ενός πληθυσμού Κατανομή Διασπορά Μέγεθος δείγματος Διάστημα Εμπιστοσύνης Κανονική Γνωστή Οποιοδήποτε Οποιαδήποτε Γνωστή Μεγάλο 30 Z

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης

10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης 10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης Διαστήματα εμπιστοσύνης για τον μέσο ενός πληθυσμού (Μικρά δείγματα) Άσκηση 10.7.1: Ο επόμενος πίνακας τιμών δείχνει την αύξηση σε ώρες ύπνου που είχαν

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

ΛΟΗ Β. PDF created with pdffactory trial version

ΛΟΗ Β. PDF created with pdffactory trial version Αξιολόγηση προσδιορισμών Αναλυτική επίδοση προσδιορισμού Επιλογή μεθόδου προσδιορισμού βάσει αναλυτικών χαρακτηριστικών και ελέγχου ποιότητας των μετρήσεων Διαγνωστική αξία ανάλυσης Επιλογή δοκιμασίας

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

Στατιστική, Άσκηση 2. (Κανονική κατανομή) Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Γεωργική Χημεία Εργαστηριακές ασκήσεις

Γεωργική Χημεία Εργαστηριακές ασκήσεις Γεωργική Χημεία Εργαστηριακές ασκήσεις Γεώργιος Παπαδόπουλος, Καθηγητής Τμ. Τεχνολόγων Γεωπόνων Τ.Ε. Άρτα, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα