Αγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα."

Transcript

1 Αγωγιμομετρία Η Πορεία των Υπολογισμών με Παραδείγματα. Πρώτα πρέπει να υπολογίσουμε την ισοδύναμη αγωγιμότητα άπειρης αραίωσης για κάθε ηλεκτρολύτη. Εδώ πρέπει να προσέξουμε τις μονάδες. Τα μεγέθη που θα υπολογίσουμε και οι αντίστοιχες εξισώσεις και μονάδες είναι: Αγωγιμότητα, L (δηλαδή αυτό που μετρήσαμε στο εργαστήριο), σε μονάδες ms 1. Προσοχή! Όπου χρησιμοποιήσαμε την κλίμακα του μετρητικού οργάνου για τα μs, να μην ξεχάσουμε να μετατρέψουμε σε ms διαιρώντας με το 1000! Ειδική αγωγιμότητα, κ = Lu, σε ms / cm, όπου u η σταθερά των γεωμετρικών χαρακτηριστικών του μετρητικού οργάνου (ίση με 0.94). Ισοδύναμη αγωγιμότητα, Λ = κ/c, αλλά επειδή τη συγκέντρωση την έχουμε μετρήσει σε greq / l και το ένα λίτρο (l) είναι 1000 cm 3 ενώ η ειδική αγωγιμότητα δίνεται σε ms / cm, οι μονάδες της ισοδύναμης αγωγιμότητας θα γίνουν (ms /cm) / (greq / l) = (ms /cm) / (greq / 1000 cm 3 ) = 1000 ms cm 2 / greq και τότε η σχέση για την ισοδύναμη αγωγιμότητα σε αυτές τις μονάδες θα γίνει: L = 1000κ/C όπου κ η ειδική αγωγιμότητα σε ms / cm και C η συγκέντρωση σε greq / l. Παράλληλα, θα χρειαστούμε την τετραγωνική ρίζα των συγκεντρώσεων για να κάνουμε τη γραφική παράσταση κατά Kohlrausch και να βρούμε την αποτέμνουσα Λ 0. Οι υπολογισμοί γίνονται πιο εύκολα αν τους διατάξουμε σε μορφή πίνακα, έναν για κάθε ηλεκτρολύτη, γράφοντας σε κάθε σειρά τους υπολογισμούς για κάθε μία συγκέντρωση αρχίζοντας από τη μικρότερη 1/1250 = και φτάνοντας στην υψηλότερη 1/10 = 0.1, όπως φαίνεται εδώ: Ηλεκτρολύτης:... α/α C σε greq/l C σε (greq/l) 1/2 L σε ms κ=lu σε ms / cm Λ=1000κ/C σε ms cm / greq 1 1/ / /50 4 1/20 5 1/10 Προσοχή, στη στήλη για την αγωγιμότητα L που μετρήσαμε εργαστηριακά, να μην ξεχάσουμε να μετατρέψουμε σε ms όποιa καταγεγραμμένη τιμή δινόταν σε μs! Παρακάτω δίνεται ένα παράδειγμα αποτελεσμάτων για ισχυρό ηλεκτρολύτη και ένα παράδειγμα για το οξικό οξύ (=ασθενής ηλεκτρολύτης) με τιμές από πραγματική εκτέλεση, για τιμή της σταθεράς μετρητικού οργάνου, u = 0.95 cm -1 : 1 Στις σημειώσεις δίνεται ως μονάδα το mho δηλαδή το S. Εδώ χρησιμοποιούμε το ms. Αυτό δεν πειράζει αρκεί να είμαστε συνεπείς στις μονάδες δηλαδή να χρησιμοποιούμε τις ίδιες σε όλα τα στάδια των υπολογισμών. Αν θέλετε να χρησιμοποιήσετε mho, απλώς διαιρέστε τις ενδείξεις που καταγράψατε σε ms διά του 1000.

2 ΠΙΝΑΚΑΣ 1 α) Υπολογισμός ισοδύναμης αγωγιμότητας ισχυρού ηλεκτρολύτη (υδροχλωρικό οξύ) HCl α/α C C L κ Λ β) Υπολογισμός ισοδύναμης αγωγιμότητας ασθενούς ηλεκτρολύτη (οξικό οξύ) CH 3 COOH α/α C C L κ Λ Ένα άλλο σημείο που πρέπει να τονιστεί, αφορά τις συγκεντρώσεις. Αν κάναμε κάποιο λάθος στις αραιώσεις, π.χ. αντί να αναμείξουμε 20 ml διαλύματος με 80 ml νερό, τα αναμείξαμε σε λίγο διαφορετική αναλογία, έστω 20:90, πρέπει να το σημειώσουμε, να υπολογίσουμε τις πραγματικές συγκεντρώσεις από την αραίωση αυτή και μετά με τη σχέση N 1 V 1 = N 2 V 2 και με αυτές τις συγκεντρώσεις να κάνουμε τους υπολογισμούς μας. Όπως έχουμε εξηγήσει στη θεωρία, η ισοδύναμη αγωγιμότητα μηδενικής συγκέντρωσης (άπειρης αραίωσης) του οξικού οξέος θα υπολογιστεί μέσω των αντίστοιχων μεγεθών για τους ισχυρούς ηλεκτρολύτες που χρησιμοποιήσαμε στην άσκηση, από τη σχέση: Λ 0 CH3COOH = Λ 0 CH3COONa + Λ 0 HCl Λ 0 NaCl Για να βρούμε τις ισοδύναμες αγωγιμότητες των ισχυρών ηλεκτρολυτών θα κάνουμε τα αντίστοιχα διαγράμματα των Λ έναντι της τετραγωνικής ρίζας της συγκέντρωσης. Ένα παράδειγμα από πραγματικό πείραμα (περιλαμβάνει και τα δεδομένα του Πίνακα 1), φαίνεται στην επόμενη γραφική παράσταση Εικόνα 1.

3 Ισοδύναμη Αγωγιμότητα, Λ, ms cm^2 / greq Ισοδύναμη Αγωγιμότητα Ισχυρών Ηλεκτρολυτών HCl CH3COONa NaCl Εικόνα 1 Μεταβολή ισοδύναμης αγωγιμότητας ισχυρών ηλεκτρολυτών με την τετραγωνική ρίζα της συγκέντρωσης Παρατηρούμε ότι η γραμμική σχέση κατά Kohlrausch ισχύει με αρκετά καλή προσέγγιση αν και υπάρχουν αποκλίσεις, προφανώς λόγω πειραματικών σφαλμάτων. Παρατηρούμε όμως ότι υπάρχει και μια συστηματική απόκλιση στις πολύ χαμηλές συγκεντρώσεις, δηλαδή και στους τρεις ηλεκτρολύτες συμβαίνει πιο γρήγορη άνοδος της αγωγιμότητας όταν πλησιάζουμε στη μηδενική συγκέντρωση. Φαίνεται λοιπόν ότι ίσως η σχέση Kohlrausch παύει να αποτελεί ικανοποιητική προσέγγιση σε πολύ μεγάλες αραιώσεις. Επειδή θέλουμε να χρησιμοποιήσουμε τις τιμές του Λ που αντιστοιχούν στην άπειρη αραίωση (μηδενική συγκέντρωση) ίσως θα ήταν πιο ασφαλές να ακολουθήσουμε αυτή την πιο γρήγορη άνοδο (π.χ. προεκτείνοντας τις καμπύλες με το χέρι) παρά να κάνουμε γραμμική προεκβολή βασιζόμενοι σε όλα τα σημεία. Πάντως, οι δοκιμές που κάναμε με τα δεδομένα που διαλέξαμε γι' αυτό το παράδειγμα, έδειξαν πως είτε ακολουθήσουμε τη γραμμική προσέγγιση βάσει όλων των σημείων είτε ακολουθήσουμε την πιο γρήγορη αυξητική τάση που σημειώνεται στις χαμηλότερες συγκεντρώσεις, το τελικό αποτέλεσμα για τη σταθερά του οξικού οξέος είναι περίπου ίδιο. Για τα δικά σας αποτελέσματα μπορείτε να δοκιμάσετε και τους δύο τρόπους και να κρατήσετε τις τιμές που δίνουν λογικότερο τελικό αποτέλεσμα για τη σταθερά διάστασης του οξικού οξέος. Για παράδειγμα, μπορείτε με ένα χάρακα να περάσετε μια ευθεία ανάμεσα στα σημεία κάθε ηλεκτρολύτη για να βρείτε το Λ 0 προεκτείνοντας μέχρι την τομή με τον κατακόρυφο άξονα και ύστερα να το προσδιορίσετε ξανά προεκτείνοντας μόνο βάσει των δύο σημείων στις χαμηλότερες συγκεντρώσεις. Ακριβέστερους υπολογισμούς μπορείτε να κάνετε εφαρμόζοντας τη μέθοδο της γραμμικής παρεμβολής, πιθανά με τη βοήθεια λογιστικών φύλλων όπως Microsoft Excel ή OpeOffice Calc. Για τα δεδομένα του συγκεκριμένου παραδείγματος βρέθηκαν, με γραμμική παρεμβολή, οι τιμές: και κατά συνέπεια 0 0,00 0,10 0,20 0,30 0,40 Ρίζα της συγκέντρωσης, (greq / l)^0.5 Λ 0 HCl = , Λ 0 NaCl = , Λ 0 CH3COONa = , Λ 0 CH3COOH = Λ 0 CH3COONa + Λ 0 HCl Λ 0 NaCl =

4 Αξίζει να δείξουμε και το διάγραμμα της ισοδύναμης αγωγιμότητας του οξικού οξέος ως προς τη ρίζα της συγκέντρωσης, που επιβεβαιώνει την κατάρρευση της γραμμικής προσέγγισης στους ασθενείς ηλεκτρολύτες και την ανάγκη για έμμεσο προσδιορισμό με τη βοήθεια των ισχυρών ηλεκτρολυτών Εικόνα 2: Ισοδύναμη Αγωγιμότητα Οξικού Οξέος Ισοδύναμη Αγωγιμότητα, Λ, ms cm^2 / greq Εικόνα 2 Μεταβολή ισοδύναμης αγωγιμότητας ασθενούς ηλεκτρολύτη (οξικού οξέος) με την τετραγωνική ρίζα της συγκέντρωσης Τώρα, απομένει να χρησιμοποιήσουμε τα μέχρι στιγμής αποτελέσματά μας για να προσδιορίσουμε τη σταθερά διάστασης του οξικού οξέος. Αυτή, όπως έχουμε εξηγήσει στη σχετική θεωρία, θα δοθεί από τη σχέση K = a 2 C/(1-a), όπου α ο βαθμός διάστασης που υπολογίζεται ως a = Λ / Λ 0 και C η αρχική συγκέντρωση κάθε διαλύματος. Αφού το Κ είναι σταθερή ποσότητα, χαρακτηριστική για τον υπό μελέτη ηλεκτρολύτη, συνεπάγεται ότι για διαφορετικό C θα προκύπτει διαφορετικό α ώστε το Κ να μην αλλάζει (συγκεκριμένα, το α θα αυξάνεται καθώς αραιώνουμε το οξύ). Παρ' όλα αυτά, λόγω σφαλμάτων θα υπάρχουν αποκλίσεις και θα παίρνουμε ελαφρά διαφορετικές τιμές του Κ για κάθε συγκέντρωση οξικού οξέος. Έτσι, θα λάβουμε τη μέση τιμή των παρατηρούμενων τιμών, καθώς επίσης και την τυπική απόκλιση για να εκφράσουμε το εύρος των αποκλίσεων. Οι σχέσεις για τη μέση τιμή και την τυπική απόκλιση, ως γνωστόν είναι: Μέση τιμή: K = K i και Τυπική απόκλιση: s= K i K 2, 1 που επίσης δίνεται και από την ισοδύναμη με την παραπάνω, σχέση: Τυπική απόκλιση (δεύτερη σχέση): s= 1 K 2 K 2, όπου K 2 = 2 K i 0 0,00 0,10 0,20 0,30 0,40 Ρίζα της συγκέντρωσης, (greq/l)^0.5, (δηλαδή, μέση τιμή τετραγώνου) και ο αριθμός των τιμών του Κ που

5 υπολογίσαμε, εν προκειμένω, 5. Τέλος, θα πρέπει να υπολογίσουμε την ποσοστιαία απόκλιση από τη γνωστή από τη σχετική βιβλιογραφία, πειραματική τιμή που είναι ίση με 1.80 x 10 5, για να αξιολογήσουμε την ακρίβεια των δικών μας μετρήσεων. Αυτή, όπως γνωρίζουμε, θα είναι: 100 K υπολογισμένο Κ βιβλιογραφίας Κ βιβλιογραφίας Οι υπολογισμοί με πραγματικές τιμές που δόθηκαν πιο πάνω για το οξικό οξύ, συνοψίζονται στον ακόλουθο πίνακα (με χρήση της δεύτερης σχέσης για την τυπική απόκλιση). Τα τελικά αποτελέσματα (μέση τιμή σταθεράς Κ και τυπική απόκλιση) φαίνονται με πιο έντονα στοιχεία. ΠΙΝΑΚΑΣ 2 Υπολογισμός μέσης τιμής και τυπικής απόκλισης για τη σταθερά διάστασης του οξικού οξέος CH 3 COOH α/α C Λ α = Λ / Λ 0 Κ x 10 5 Κ 2 x Λ 0 CH3COOH = Μέσες Τιμές: K 2 K 2 x Τυπική απόκλιση x 10 5 : 0.22 Σημειώστε ότι λόγω των πολύ μικρών τιμών, αυτές αναγράφονται στον πίνακα πολλαπλασιασμένες επί κατάλληλη δύναμη του 10. Οι πραγματικές τιμές προκύπτουν αν διαιρέσουμε αυτές του πίνακα με αυτή τη δύναμη που αναφέρεται στην αντίστοιχη επικεφαλίδα, π.χ. η πρώτη πειραματική τιμή της σταθεράς διάστασης είναι 2.16 x Από τους υπολογισμούς όπως εκτέθηκαν στον Πίνακα 2, προκύπτει ότι το τελικό αποτέλεσμα για τη σταθερά του οξικού οξέος είναι Κ = (1.89 ± 0.22) x 10 5 που διαφέρει μόνο κατά 5% από τη βιβλιογραφική τιμή. Παρατηρούμε επίσης ότι οι αποκλίσεις όπως εκφράζονται από την τυπική απόκλιση, είναι περίπου το 11.5% της υπολογισμένης τιμής. Αν είχαμε πολύ μεγάλες αποκλίσεις, η εύρεση τιμής κοντά στη σωστή θα μπορούσε να ήταν συμπτωματική. Η σχετικά μικρή απόκλιση δείχνει ότι δε συμβαίνει κάτι τέτοιο, αλλά το πείραμα έδινε συστηματικά τιμές με ικανοποιητική ακρίβεια.

ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ

ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ ΠΕΙΡΑΜΑ 1 ΗΛΕΚΤΡΟΧΗΜΕΙΑΣ (ΗΧ1) Τίτλος Πειράματος: ΑΓΩΓΙΜΟΤΗΤΑ

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Στόχοι. Θεωρητικές Επισημάνσεις. Εκφε Κεφαλονιάς

Στόχοι. Θεωρητικές Επισημάνσεις. Εκφε Κεφαλονιάς ΜΕΘΟΔΟΙ ΠΡΟΔΙΟΡΙΜΟΤ ΣΟΤ ΣΕΛΙΚΟΎ ΗΜΕΙΟΤ Ε ΜΙΑ ΟΓΚΟΜΕΣΡΗΗ. (εξουδετέρωση ασθενούς οξέος από ισχυρή βάση) ΜΕ ΣΗ ΒΟΗΘΕΙΑ ΣΟΤ ΤΣΗΜΑΣΟ ΤΓΧΡΟΝΙΚΗ ΛΗΨΗ ΚΑΙ ΑΠΕΙΚΟΝΙΗ (..Λ.Α) LoggerProGr της Vernier. Στόχοι Οι

Διαβάστε περισσότερα

πεχαμετρικός προσδιορισμός της σταθεράς οξύτητας οξέων εισαγωγή [H 3O +][A ] Θεωρία της μεθόδου

πεχαμετρικός προσδιορισμός της σταθεράς οξύτητας οξέων εισαγωγή [H 3O +][A ] Θεωρία της μεθόδου Εργαστήριο Φυσικοχημείας Τμήμα Χημείας ΑΠΘ πεχαμετρικός προσδιορισμός της σταθεράς οξύτητας οξέων εισαγωγή H ισχύς ενός μονοπρωτικού οξέος κατά τη διάστασή του στο νερό, σύμφωνα με την αντίδραση πρωτόλυσης

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών Τοπικός διαγωνισμός στη Φυσική και Χημεία Στόχοι της εργαστηριακής άσκησης

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών Τοπικός διαγωνισμός στη Φυσική και Χημεία Στόχοι της εργαστηριακής άσκησης ΕΡΓΑΣΤΗΡΙΑΚΑ ΚΕΝΤΡΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2012-13 Τοπικός διαγωνισμός στη Φυσική και Χημεία 08-12-2012 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2)

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Εργαστηριακό Μέρος Ενότητα 4: Ογκομετρική Ανάλυση Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

Αυτoϊοντισμός του νερού ph

Αυτoϊοντισμός του νερού ph Αυτoϊοντισμός του νερού ph Το καθαρό νερό είναι ηλεκτρολύτης; Το καθαρό νερό είναι ομοιοπολική ένωση και θα περιμέναμε να είναι μην εμφανίζει ηλεκτρική αγωγιμότητα. Μετρήσεις μεγάλης ακρίβειας όμως έδειξαν

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Στο Αναλυτικό Πρόγραμμα Σπουδών Χημείας Θετικής κατεύθυνσης Γ' Λυκείου προβλέπεται η διδασκαλία του μαθήματος «Ογκομέτρηση, Οξυμετρία Αλκαλιμετρία».

Στο Αναλυτικό Πρόγραμμα Σπουδών Χημείας Θετικής κατεύθυνσης Γ' Λυκείου προβλέπεται η διδασκαλία του μαθήματος «Ογκομέτρηση, Οξυμετρία Αλκαλιμετρία». ΔΙΔΑΚΤΙΚO ΣΕΝΑΡΙO ΣΤΟ «IRYDIUM CHEMISTRY LAB» ΟΓΚΟΜΕΤΡΗΣΗ - ΑΛΚΑΛΙΜΕΤΡΙΑ ΣΤΟ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ «IRYDIUM» 1. ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΣΕΝΑΡΙΟΥ 1.1. ΤΙΤΛΟΣ ΔΙΔΑΚΤΙΚΟΥ ΣΕΝΑΡΙΟΥ Προσδιορισμός

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

8. Μελέτη ρυθμιστικών διαλυμάτων

8. Μελέτη ρυθμιστικών διαλυμάτων 8. Μελέτη ρυθμιστικών διαλυμάτων Σκοπός Σκοπός της παρούσας εργαστηριακής άσκησης είναι να γνωρίσουμε τον τρόπο παρασκευής ενός ρυθμιστικού διαλύματος και ακολούθως να μελετήσουμε τη δράση του, δηλαδή

Διαβάστε περισσότερα

ΑΓΩΓΙΜΟΤΗΤΑ ΗΛΕΚΤΡΟΛΥΤΩΝ

ΑΓΩΓΙΜΟΤΗΤΑ ΗΛΕΚΤΡΟΛΥΤΩΝ 1-1 ΑΓΩΓΙΜΟΤΗΤΑ ΗΛΕΚΤΡΟΛΥΤΩΝ Θέμα ασκήσεως: Μελέτη της μεταβολής της αγωγιμότητας ισχυρού και ασθενούς ηλεκτρολύτη με την συγκέντρωση, προσδιορισμός της μοριακής αγωγιμότητας σε άπειρη αραίωση ισχυρού

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ 2

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ 2 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Άσκηση η : Φασματοφωτομετρικός Προσδιορισμός Σακχάρων σε Τοματοχυμό Μετρήσεις Πειράματος Πίνακας Τιμών 1 Διάλυμα Απορρόφηση Τυφλό 0 Πρότυπο Α ( γλυκόζη) 0,008 Πρότυπο Β (5 γλυκόζη)

Διαβάστε περισσότερα

Β. Εξήγησε με λίγα λόγια τις προβλέψεις σου:...

Β. Εξήγησε με λίγα λόγια τις προβλέψεις σου:... ΟΓΚΟΜΕΤΡΗΣΗ - ΟΞΥΜΕΤΡΙΑ ΣΤΟ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ «IRYDIUM» 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΣΥΝΘΕΣΗ ΚΑΙ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ pη ΔΙΑΛΥΜΑΤΟΣ NaCl ΠΟΥ ΠΡΟΚΥΠΤΕΙ ΑΠΟ ΕΞΟΥΔΕΤΕΡΩΣΗ ΙΣΟΔΥΝΑΜΩΝ ΠΟΣΟΤΗΤΩΝ ΔΙΑΛΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017 1ο και 2ο ΕΚΦΕ Ηρακλείου ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017 Σάββατο 3 Δεκεμβρίου 2016 Διαγωνισμός στη Φυσική (Διάρκεια 1 ώρα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΩΝ 1)... 2)...

Διαβάστε περισσότερα

3.ΟΞΥΜΕΤΡΙΑ ΑΛΚΑΛΙΜΕΤΡΙΑ

3.ΟΞΥΜΕΤΡΙΑ ΑΛΚΑΛΙΜΕΤΡΙΑ 3.ΟΞΥΜΕΤΡΙΑ ΑΛΚΑΛΙΜΕΤΡΙΑ Όπως ήδη αναφέρθηκε η ογκομετρήση εξουδετέρωσης ονομάζεται οξυμετρία όταν το πρότυπο διάλυμα είναι οξύ και αλκαλιμετρία όταν το πρότυπο διάλυμα είναι βάση.χρησιμοποιούνται ως πρότυπα

Διαβάστε περισσότερα

CH COOC H H O CH COOH C H OH

CH COOC H H O CH COOH C H OH ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 2 ΧΗΜΙΚΗΣ ΚΙΝΗΤΙΚΗΣ (ΧΚ2) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΚΙΝΗΤΙΚΗ

Διαβάστε περισσότερα

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΑΠΟ ΤΟ 2001 ΣΤΟ ph 2001

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΑΠΟ ΤΟ 2001 ΣΤΟ ph 2001 ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΑΠΟ ΤΟ 2001 ΣΤΟ ph 2001 1 2002 (Σωστό-Λάθος, μονάδα 1/100) 2 200 2004 4 (Σωστό-Λάθος, μονάδα 1/100) 2005 5 (Σωστό-Λάθος, μονάδα 1/100) 6 2006 (Σωστό-Λάθος, μονάδα 1/100) 7 8 2007 (Σωστό-Λάθος,

Διαβάστε περισσότερα

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1)

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1) ΑΓΩΓΙΜΟΤΗΤΑ ΗΕΚΤΡΟΥΤΩΝ Θέµα ασκήσεως Μελέτη της µεταβολής της αγωγιµότητας ισχυρού και ασθενούς ηλεκτρολύτη µε την συγκέντρωση, προσδιορισµός της µοριακής αγωγιµότητας σε άπειρη αραίωση ισχυρού οξέος,

Διαβάστε περισσότερα

πεχαμετρικός προσδιορισμός της σταθεράς οξύτητας οξέων εισαγωγή Εργαστήριο Φυσικοχημείας Μάθημα: «Εργαστήριο Ηλεκτροχημείας»

πεχαμετρικός προσδιορισμός της σταθεράς οξύτητας οξέων εισαγωγή Εργαστήριο Φυσικοχημείας Μάθημα: «Εργαστήριο Ηλεκτροχημείας» πεχαμετρικός προσδιορισμός της σταθεράς οξύτητας οξέων εισαγωγή H ισχύς ενός μονοπρωτικού οξέος κατά τη διάστασή του στο νερό, σύμφωνα με την αντίδραση πρωτόλυσης HA + H O H 3 O + + A - εκφράζεται με βάση

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 4: Μερικός γραμμομοριακός όγκος Αθανάσιος Τσεκούρας Τμήμα Χημείας . Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 4. Τελικά αποτελέσματα... 7 Σελίδα

Διαβάστε περισσότερα

23 Ιανουαρίου 2016 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

23 Ιανουαρίου 2016 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΒΟΡΕΙΑΣ ΕΛΛΑΔΑΣ ΧΗΜΕΙΑ 23 Ιανουαρίου 2016 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Στοιχεία από τη θεωρία: Α. Τα οξέα, οι βάσεις και τα άλατα ανήκουν στην κατηγορία

Διαβάστε περισσότερα

Ασκήσεις διερεύνησης... χωρίς διερεύνηση!!!

Ασκήσεις διερεύνησης... χωρίς διερεύνηση!!! Ασκήσεις διερεύνησης... χωρίς διερεύνηση!!! Λυμένα παραδείγματα Να υπολογίσετε την ποσότητα στερεού NaOH ^óå h που πρέπει να προστεθεί σε 00 m διαλύματος του ασθενούς οξέος H συγκέντρωσης 0,, χωρίς μεταβολή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 19/02/2012 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 19/02/2012 ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 19/02/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που

Διαβάστε περισσότερα

Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 1

Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 1 ΒΑΘΜΟΛΟΓΙΑ ΟΜΑΔΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ Υπολογισμός της περιεκτικότητας του ξιδιού σε οξικό οξύ με την κλασική μέθοδο. ΣΧΟΛΕΙΟ 1 ο ΓΕΛ ΑΜΠΕΛΟΚΗΠΩΝ ΤΜΗΜΑ Γ θετ ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

[ ] [ ] CH3COO [ ] CH COOH. Cοξ. Cαλ

[ ] [ ] CH3COO [ ] CH COOH. Cοξ. Cαλ Πριν από κάθε απάντηση, προηγείται η καλή ανάγνωση και η προσπάθεια κατανόησης της ερώτησης. Η κάθε απάντηση πρέπει να σχετίζεται µε την ακριβή διατύπωση της ερώτησης και όχι µε την γενική της ιδέα. Κάθε

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης

Διαβάστε περισσότερα

3.15 Μέτρηση ph Ρυθμιστικά Διαλύματα

3.15 Μέτρηση ph Ρυθμιστικά Διαλύματα 3.15 Μέτρηση ph Ρυθμιστικά Διαλύματα 1. Οι περιοχές ph αλλαγής χρώματος των δύο δεικτών είναι: Πορτοκαλί του μεθυλίου: 3,1 4,5 (σε ph < 3,1 χρωματίζει το διάλυμα κόκκινο και σε ph > 4,5 χρωματίζει το διάλυμα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1) Γραμμική εξίσωση με δύο αγνώστους λέγεται κάθε εξίσωση της μορφής αχ+βψ=γ, όπου α,β,γr. α) Λύση της γραμμικής αυτής εξίσωσης λέγεται κάθε ζεύγος (χ,ψ)=(χ 0,ψ 0 ) που την

Διαβάστε περισσότερα

Γεωργική Χημεία Εργαστηριακές ασκήσεις

Γεωργική Χημεία Εργαστηριακές ασκήσεις Γεωργική Χημεία Εργαστηριακές ασκήσεις Γεώργιος Παπαδόπουλος, Καθηγητής Τμ. Τεχνολόγων Γεωπόνων Τ.Ε. Άρτα, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από Στη θεωρία, θεωρία και πείραμα είναι τα ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ... υπό ισχυρή συμπίεση ίδια αλλά στο πείραμα είναι διαφορετικά, A.Ensten Οι παρακάτω σημειώσεις περιέχουν τα βασικά σημεία που πρέπει να γνωρίζει

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΩΝ ΡΥΘΜΙΣΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ MS EXCEL

ΜΕΛΕΤΗ ΤΩΝ ΡΥΘΜΙΣΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ MS EXCEL 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 427 ΜΕΛΕΤΗ ΤΩΝ ΡΥΘΜΙΣΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ MS EXCEL Αγγελόπουλος Βασίλειος Καθηγητής Πειραματικού Λυκείου Ιωνιδείου Σχολής Πειραιά anavasi@mail.otenet.gr,

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή καμπυλών και να μπορέσει εν τέλει

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής 0 6 Να βρείτε την εξίσωση της διπλανής ευθείας =α 0 +α 8 4 0 0.0 0. 0.4 0.6 0.8.0..4.6.8.0 X =3.8+6.5 Δίνεται ότι η εξίσωση ευθείας που περνάει

Διαβάστε περισσότερα

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών.

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών. ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σημειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Όταν η ζήτηση ενός αγαθού είναι ελαστική, η συνολική δαπάνη των καταναλωτών για το αγαθό αυτό μειώνεται καθώς αυξάνεται

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Ονοματεπώνυμο Φοιτητή. Εργαστηριακό Τμήμα Π.χ. Δευτέρα

Ονοματεπώνυμο Φοιτητή. Εργαστηριακό Τμήμα Π.χ. Δευτέρα Ονοματεπώνυμο Φοιτητή Εργαστηριακό Τμήμα Π.χ. Δευτέρα 11 00 13 00 Ομάδα Π.χ. 1A Πειραματική άσκηση Ελεύθερη πτώση Ημερομηνία Εκτέλεσης Άσκησης... / / 2015 Ημερομηνία παράδοσης εργαστ.αναφοράς... / / 2015

Διαβάστε περισσότερα

Γ) Ι ΑΚΤΙΚΑ ΜΕΣΑ & ΥΛΙΚΑ

Γ) Ι ΑΚΤΙΚΑ ΜΕΣΑ & ΥΛΙΚΑ Ρυθμιστικά διαλύματα Τάξη: Γ Λυκείου A.MAΥΡΟΠΟΥΛΟΣ Α) Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ Οι µαθητές µετά το τέλος της διδασκαλίας να είναι σε θέση: 1. Να διατυπώνουν τον ορισµό των ρυθµιστικών διαλυµάτων και να αναφέρουν

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ ΣΥΡΜΑΤΟΣ

ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ ΣΥΡΜΑΤΟΣ 14 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ και ΝΕΑΣ ΙΩΝΙΑΣ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 05 Δεκεμβρίου 2015 Μαθητές Σχολείο 1. 2. 3. ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΦΥΣΙΚΗΣ ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ

Διαβάστε περισσότερα

Θέμα: Έρευνα για την αλατότητα του νερού

Θέμα: Έρευνα για την αλατότητα του νερού Τίτλος: Έρευνα για την αλατότητα του νερού Θέμα: Έρευνα για την αλατότητα του νερού Χρόνος: 90 λεπτά (2 μαθήματα) Ηλικία: μαθητές 14 15 χρονών Διαφοροποίηση: Οι χαρισματικοί μαθητές καλούνται να καταγράψουν

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

Περί σφαλμάτων και γραφικών παραστάσεων

Περί σφαλμάτων και γραφικών παραστάσεων Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. = 4 Να λύσετε το σύστηµα + = αλγεβρικά γραφικά = 4 = 4+ + = + = = 4+ 4 + + = = 4+ = = 4+ = = 4 = = = = 4 = 4 παριστάνει ευθεία ε Για = 0

Διαβάστε περισσότερα

ΧΗΜΕΙΑ-ΒΙΟΧΗΜΕΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΧΗΜΕΙΑ-ΒΙΟΧΗΜΕΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ-ΒΙΟΧΗΜΕΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Για τις προτάσεις Α1 και Α να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή. Α1. Ποιο

Διαβάστε περισσότερα

Δείκτες. Δείκτες οξέων βάσεων ή ηλεκτρολυτικοί ή πρωτολυτικοί δείκτες είναι ουσίες των

Δείκτες. Δείκτες οξέων βάσεων ή ηλεκτρολυτικοί ή πρωτολυτικοί δείκτες είναι ουσίες των Δείκτες Δείκτες οξέων βάσεων ή ηλεκτρολυτικοί ή πρωτολυτικοί δείκτες είναι ουσίες των οποίων το χρώμα αλλάζει ανάλογα προστίθενται. με το ph του διαλύματος στο οποίο Οι δείκτες είναι συνήθως ασθενή οργανικά

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

H επίδραση της συγκέντρωσης των συστατικών του ρυθµιστικού διαλύµατος, στη ρύθµιση του ph.

H επίδραση της συγκέντρωσης των συστατικών του ρυθµιστικού διαλύµατος, στη ρύθµιση του ph. Ε. Κ. Φ. Ε. Χ α λ α ν δ ρ ί ο υ H επίδραση της συγκέντρωσης των συστατικών του ρυθµιστικού διαλύµατος, στη ρύθµιση του ph. Συντάκτης: Παύλος Αρβανίτης, Χηµικός ΓΝΩΣΕΙΣ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ Ρυθµιστικά διαλύµατα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY)

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) 1) Ανάλυση 1 δείγματος (Πιστοποιημένο Υλικό Αναφοράς (CRM), εμπορικό δείγμα ελέγχου (control sample), υπόλειμμα διεργαστηριακού) με γνωστή τιμή αναφοράς (μ). Αναλύεται

Διαβάστε περισσότερα

ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΡΥΘΜΙΣΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ

ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΡΥΘΜΙΣΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ 2o ΕΚΦΕ ΗΡΑΚΛΕΙΟΥ Επιμέλεια : Ορφανάκη Πόπη-χημικός ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΡΥΘΜΙΣΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ ΘΕΩΡΗΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ Το ph ενός ρυθμιστικού διαλύματος δίδεται από την εξίσωση Henderson-Hasselbach:

Διαβάστε περισσότερα

4. Πόσο οξικό οξύ περιέχει το ξίδι;

4. Πόσο οξικό οξύ περιέχει το ξίδι; 4. Πόσο οξικό οξύ περιέχει το ξίδι; Σκοπός Σκοπός αυτού του πειράματος είναι να προσδιορίσετε την ποσότητα (γραμμομοριακή συγκέντρωση) του οξικού οξέος που υπάρχει σε ένα λευκό ξίδι μέσω ογκομέτρησης με

Διαβάστε περισσότερα

Ογκοµέτρηση, Οξυµετρία - Αλκαλιµετρία - Οδηγίες για τον καθηγητή

Ογκοµέτρηση, Οξυµετρία - Αλκαλιµετρία - Οδηγίες για τον καθηγητή Ογκοµέτρηση, Οξυµετρία - Αλκαλιµετρία - Τάξη Μάθηµα Γνωστικό αντικείµενο ιδακτική ενότητα Απαιτούµενος χρόνος Γ Λυκείου Χηµεία Οξέα Βάσεις και ιοντική ισορροπία Ογκοµέτρηση, Οξυµετρία - Αλκαλιµετρία 2

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ. ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,

Διαβάστε περισσότερα

ΕΚΦΕ /ΝΣΗΣ ΕΥΤ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΑΘΗΝΑΣ

ΕΚΦΕ /ΝΣΗΣ ΕΥΤ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΑΘΗΝΑΣ ΕΚΦΕ /ΝΣΗΣ ΕΥΤ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΑΘΗΝΑΣ (ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ) Συνεργάτες Χηµικοί: Ερρίκος Γιακουµάκης Γιώργος Καπελώνης Μπάµπης Καρακώστας εκέµβριος 2004 2 ΕΝΘΑΛΠΙΑ ΕΞΟΥ ΕΤΕΡΩΣΗΣ Εισαγωγή ΠΕΙΡΑΜΑΤΙΚΟΣ

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Γραφικές παραστάσεις Μαρία Κατσικίνη E-mail: katsiki@auth.gr Web: users.auth.gr/katsiki Παρουσίαση αποτελεσμάτων με τη μορφή πινάκων Πίνακας : χρόνος και ταχύτητα του κινητού

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισμα Ιοντικής Ισορροπίας

Επαναληπτικό διαγώνισμα Ιοντικής Ισορροπίας Εξεταστέα ύλη: Μάθημα: Χημεία Τάξη: Γ Λυκείου Κατεύθυνση: Θετική Ονοματεπώνυμο:. Ζήτημα 1:.../25 Ημερομηνία: Ζήτημα 2:../25 Διάρκεια: hr Ζήτημα :../25 Ζήτημα 4:../25 Επιμέλεια: Δρ. Ιωάννης Σ. Καλαμαράς,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΤΟ ΟΠΟΙΟ ΑΣΚΕΙΤΑΙ ΣΤΑΘΕΡΗ ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΗ. 1. ΣΤΟΧΟΙ :

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΤΟ ΟΠΟΙΟ ΑΣΚΕΙΤΑΙ ΣΤΑΘΕΡΗ ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΗ. 1. ΣΤΟΧΟΙ : ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΤΟ ΟΠΟΙΟ ΑΣΚΕΙΤΑΙ ΣΤΑΘΕΡΗ ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΗ. Μαθητής/Μαθήτρια ------------------------------------------- Οµάδα------------------ Τµήµα:----------- Ηµεροµηνία-----------------------

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ- Γ ΗΜΕΡΗΣΙΩΝ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ.gr ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α5 να γράψετε τον αριθμό της

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών Τοπικός διαγωνισµός στη Φυσική και Χηµεία. Σχολείο: Εργαστηριακή Θέση:

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών Τοπικός διαγωνισµός στη Φυσική και Χηµεία. Σχολείο: Εργαστηριακή Θέση: ΕΡΓΑΣΤΗΡΙΑΚΑ ΚΕΝΤΡΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2010-11 Τοπικός διαγωνισµός στη Φυσική και Χηµεία 27-11-2010 Σχολείο: Εργαστηριακή Θέση: Ονόµατα των µαθητών

Διαβάστε περισσότερα

π.χ. σε ένα διάλυμα NaOH προσθέτουμε ορισμένη ποσότητα στερεού. ΝαΟΗ, χωρίς να μεταβληθεί ο όγκος του διαλύματος.

π.χ. σε ένα διάλυμα NaOH προσθέτουμε ορισμένη ποσότητα στερεού. ΝαΟΗ, χωρίς να μεταβληθεί ο όγκος του διαλύματος. XHMEIA Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5 ΟΞΕΑ-ΒΑΣΕΙΣ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ 13 Όταν αναμειγνύουμε διαλύματα μια πιο ολοκληρωμένη αντιμετώπιση του θέματος Στο σχέδιο μαθήματος 7 είδαμε μια πρώτη προσέγγιση

Διαβάστε περισσότερα

Ρυθμιστικά διαλύματα

Ρυθμιστικά διαλύματα Ρυθμιστικά διαλύματα Ρυθμιστικά διαλύματα ονομάζονται διαλύματα των οποίων το ph παραμένει πρακτικά σταθερό, όταν προστεθεί μικρή αλλά υπολογίσιμη ποσότητα ισχυρών οξέων ή βάσεων. Επίσης μπορούν μέσα σε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - «ΠΑΝΕΚΦE»

ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - «ΠΑΝΕΚΦE» ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - «ΠΑΝΕΚΦE» Αθήνα, email: panekfe@yahoo.gr www.ekfe.gr Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή ομάδων μαθητών που θα συμμετάσχουν

Διαβάστε περισσότερα

Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 1

Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 1 ΒΑΘΜΟΛΟΓΙΑ ΟΜΑΔΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ Υπολογισμός της περιεκτικότητας του ξιδιού σε οξικό οξύ με την κλασική μέθοδο. ΣΧΟΛΕΙΟ 1 ο ΓΕΛ ΑΜΠΕΛΟΚΗΠΩΝ ΤΜΗΜΑ Γ θετ ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

Τι ορίζεται ως επίδραση κοινού ιόντος σε υδατικό διάλυμα ασθενούς ηλεκτρολύτη;

Τι ορίζεται ως επίδραση κοινού ιόντος σε υδατικό διάλυμα ασθενούς ηλεκτρολύτη; Τι ορίζεται ως επίδραση κοινού ιόντος σε υδατικό διάλυμα ασθενούς ηλεκτρολύτη; Επίδραση κοινού ιόντος έχουμε όταν σε διάλυμα ασθενούς ηλεκτρολύτη προσθέσουμε έναν άλλο ηλεκτρολύτη που έχει κοινό ιόν με

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ (-6-) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Α. Αν η συνάρτηση είναι παραγωγίσιμη σ ένα σημείο του πεδίου ορισμού της, να γραφεί η εξίσωση της εφαπτομένης της

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013

ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΘΕΜΑ Α Α1 : γ Α2 : β Α3 : δ Α4 : β Α5 : α) Βάσεις κατά Arrhenius : - Ενώσεις που όταν διαλυθούν στο νερό δίνουν ΟΗ -. - Ουδέτερα μόρια. -

Διαβάστε περισσότερα

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΑΓΓΕΛΙΚΗ ΛΕΒΑΝΤΗ ΖΑΝΝΕΙΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΤΜΗΜΑ Α 2 10 ΙΑΝΟΥΑΡΙΟΥ 2010 ΣΕΝΑΡΙΟ : Πρόκειται να μετατρέψουμε τα εμπρός ελατήρια μιας μοτοσυκλέτας

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ. Α1. H ένωση HC C C(CΗ 3 ) CΗ 2 έχει α. 8σ και 3π δεσμούς. β. 9σ και 4π δεσμούς. γ. 10σ και 3π δεσμούς. δ. 11σ και 2π δεσμούς.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ. Α1. H ένωση HC C C(CΗ 3 ) CΗ 2 έχει α. 8σ και 3π δεσμούς. β. 9σ και 4π δεσμούς. γ. 10σ και 3π δεσμούς. δ. 11σ και 2π δεσμούς. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΑΡΑΣΚΕΥΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΧΗΜΕΙΑ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΧΗΜΕΙΑ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΧΗΜΕΙΑ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 1.1 Το στοιχείο X έχει ατομικό αριθμό z 16. i. Σε ποιά ομάδα και

Διαβάστε περισσότερα

ΡΥΘΜΙΣΤΙΚΑ ΔΙΑΛΥΜΑΤΑ 1

ΡΥΘΜΙΣΤΙΚΑ ΔΙΑΛΥΜΑΤΑ 1 Θεωρητικό Μέρος ΡΥΘΜΙΣΤΙΚΑ ΔΙΑΛΥΜΑΤΑ 1 Ορισμένα ζεύγη οξέων και των συζυγών τους βάσεων (καθώς και βάσεων και των συζυγών τους οξέων) έχουν την ιδιότητα να διατηρούν το ph των διαλυμάτων τους σταθερό όταν

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος, . ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -

Διαβάστε περισσότερα

3. Κατά Arrhenius απαραίτητο διαλυτικό μέσο είναι το νερό ενώ η θεωρία των. β) 1. Η ηλεκτρολυτική διάσταση αναφέρεται στις ιοντικές ενώσεις και είναι

3. Κατά Arrhenius απαραίτητο διαλυτικό μέσο είναι το νερό ενώ η θεωρία των. β) 1. Η ηλεκτρολυτική διάσταση αναφέρεται στις ιοντικές ενώσεις και είναι ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ 01 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ Α. β Α. δ Α4. Β Α5. α) 1. Κατά Arrhenius μια βάση όταν διαλυθεί στο νερό μπορεί να δώσει λόγω διάστασης OH - ενώ κατά

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Οξέα Βάσεις και ιοντική ισορροπία. Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων. Απαιτούµενος χρόνος 2 διδακτικές ώρες Ηµεροµηνία...

Οξέα Βάσεις και ιοντική ισορροπία. Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων. Απαιτούµενος χρόνος 2 διδακτικές ώρες Ηµεροµηνία... Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων Φύλλο εργασίας Τάξη Γ Λυκείου Ονοµατεπώνυµο Μάθηµα Γνωστικό αντικείµενο ιδακτική ενότητα Χηµεία Οξέα Βάσεις και ιοντική ισορροπία Σύνθεση και προσδιορισµός

Διαβάστε περισσότερα

Τοπικός Μαθητικός Διαγωνισμός EUSO

Τοπικός Μαθητικός Διαγωνισμός EUSO Τοπικός Μαθητικός Διαγωνισμός EUSO 2014-2015 ΟΜΑΔΑ : 1] 2] 3] Γενικό Λύκειο Άργους Ορεστικού. 6 - Δεκ. - 1014 Φυσική Θέμα: Μέτρηση επιτάχυνσης. 1] Θεωρητική εισαγωγή Κίνηση είναι η αλλαγή της θέσης ενός

Διαβάστε περισσότερα

1. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ

1. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ Επαναληπτικά δέντρα.. Ανόργανης στο ph. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ αναφέρονται σε υδατικά διαλύματα. Το διάλυμα Α έχει όγκο 00mL και ph = HCl 00mL Ca(OH) 2 900mLH2O 0,448L

Διαβάστε περισσότερα

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Δείκτες Ογκομέτρηση. Ορισμός των δεικτών

Δείκτες Ογκομέτρηση. Ορισμός των δεικτών Μάθημα 1 Δείκτες Ογκομέτρηση Ορισμός των δεικτών Οι δείκτες οξέων - βάσεων ή ηλεκτρολυτικοί ή πρωτολυτικοί δείκτες, είναι ουσίες των οποίων το χρώμα αλλάζει ανάλογα με την τιμή του ph του διαλύματος στο

Διαβάστε περισσότερα

Διαλύματα ασθενών οξέων ασθενών βάσεων.

Διαλύματα ασθενών οξέων ασθενών βάσεων. Διαλύματα ασθενών οξέων ασθενών βάσεων. Η ισχύς ενός οξέος σε υδατικό διάλυμα περιγράφεται από τη σταθερά ισορροπίας ιοντισμού του οξέος. Σε ένα αραιό υδατικό διάλυμα ασθενούς μονοπρωτικού οξέος ΗΑ, έχουμε

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

8. Η ζήτηση ενός αγαθού µεταβάλλεται προς την αντίθετη κατεύθυνση µε τη µεταβολή της τιµής του υποκατάστατου αγαθού.

8. Η ζήτηση ενός αγαθού µεταβάλλεται προς την αντίθετη κατεύθυνση µε τη µεταβολή της τιµής του υποκατάστατου αγαθού. ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σηµειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Η επιδίωξη της µέγιστης χρησιµότητας αποτελεί βασικό χαρακτηριστικό της συµπεριφοράς του καταναλωτή στη ζήτηση αγαθών.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 09 / 02 /2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 09 / 02 /2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 09 / 02 /2014 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Συγγραφέας: Νικόλαος Παναγιωτίδης

Συγγραφέας: Νικόλαος Παναγιωτίδης Τίτλος: Β Νόμος του Newton. Τάξη: Α Λυκείου Συγγραφέας: Νικόλαος Παναγιωτίδης e-mail: ekfe@dide.ioa.sch.gr ΕΚΦΕ: Ιωαννίνων 1 Υλικά: 1. Αμαξίδιο, 2. Τροχαλία, 3. Νήμα, 4. Κυλινδρικές μάζες 200 g με γάντζο,

Διαβάστε περισσότερα

Μέτρα θέσης και διασποράς

Μέτρα θέσης και διασποράς Μέτρα θέσης και διασποράς Η επικρατούσα τιμή ως μέτρο κεντρικής τάσης Εύκολο στον υπολογισμό Επικρατούσα τιμή Η πιο συχνή ή η πιο συχνά εμφανιζόμενη τιμή σε ένα σύνολο τιμών 11, 3, 8, 2, 1, 5, 3, 7 Επικρατούσα

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β. Ενότητα 1 Εξισώσεις Ανισώσεις α βαθμού Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, με βάση τη γραφική παράσταση της ευθείας y = ax + β. Να επιλύουμε την ανίσωση

Διαβάστε περισσότερα

3. Ιοντικές αντιδράσεις σε υδατικά διαλύματα

3. Ιοντικές αντιδράσεις σε υδατικά διαλύματα Σκοπός 3. Ιοντικές αντιδράσεις σε υδατικά διαλύματα Σκοπός των πειραμάτων της παρούσας εργαστηριακής άσκησης είναι να γνωρίσετε, πρώτον, ορισμένες αντιδράσεις καταβύθισης, βάσει των οποίων θα ελέγξετε

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΗ ΒΟΗΘΕΙΑ

Διαβάστε περισσότερα