d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i
|
|
- Ἰεζάβελ Παπαδόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1
2 d d S = ()SI d d I = ()SI ()I d d R = ()I
3 d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r
4 d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)
5 d d P(n,) = (n 1, )P(n 1, ) + μ(n +1, )P(n +1, ) [ (n,) + μ(n,) ]P(n,) (n,) = ()n μ(n,) = μ()n
6 d d ()exp () [ M() ] g(z,) = ( ()z μ() )(z 1) z g(z,) dz d d d ( ) ()exp () M() = ( ()z μ() )( z 1) = ( () μ() ) + () ( [ ]) d = () = C () = ()d M() = μ()d
7 g(z,) = f V () z 1 W () V () g(z,) = f = z n z 1 [ V () W ()]z +V() +W () V() g(z,) = V () +W () W ()z ( [ ]) V () = exp () M() W () = ()V ()d n o p(,) =1 V () (n = ) p(n,) V () +W () ( ) = W () n 1 V ()V () V () +W () ( ) n +1 (n )
8 n 2 () = V () n() = V () V () V () 2W () +V () V() V () F = 2 n () n() 2W () +V() V () = V ()
9
10 1..5 y x
11 .2.1 y x
12
13 d d P(n,) = ()P(n 1, ) ()P(n,) P(n,) = ()n n! f ISI () = ()exp(()) exp( () ) (Rae Code) (Time Code) f ISI () = f ( )g()d f ( ) = () 1 exp() g() = = B(,) () 1 exp() 1 () = ()d Fano Facor =1(always) ( + ) + (Tsubo, [3]; Ikeda [4]) Ge good fi ISI in vivo Fracal-renewal process conradics synfire chain/ bursing fracional-gaussian-noise-driven Poisson process (fgndp)
14
15 Memory funcion ype Langevin equion d d A = ia ( s)a(s)ds + f () () f () f ()AA * 1 [6] H. Mori, Progr. Theor. Phys. 33 (1965) 423 Convoluion-less ype Langevin equaion d d A = i() ( )A() + g() () = (s)ds () = g()g * ()AA * 1 [7] M. Tokuyama and H. Mori, Progr. Theor. Phys. 55 (1976) 411.
16 d (i) Memory funcion ype Maser equaion [8] j [ ] d P(n,) = d K nj( )P( j,) K ( )P(n,) jn (ii) Non-saionary (Time-convoluion less) ype Maser equaion [9] d d P(n,) = j [ L ] ()P( j,) L ()P(n,) nj jn
17
18 w ISI () = exp ( ) Coefficien of Variabiliy (CV) CV = Var() E[] Local Coefficien of Variabiliy (LV) LV = 1 3( i i+1 ) 2 =1 m 1 ( i + i+1 ) 2 Fano FacorF Allan Facor (A) p(n,t) = (T)n n! exp( T) F(T) = Var[n] E[n] =1 A(T) = E[(n k +1 (T) n k (T))2 ] E[n k (T)] m1 i=1.. Index of clusering =1 Variance-o-mean raio = 2F(T) F(2T) =1
19 w ISI () = 1 () CV = 1 exp ( ) LV = Mixed Gamma disribuiondoubly Gamma process p ISI () = = d = w ISI (,;) f ()d 1 () ( + ) ()() exp( ) () 1 exp( ) 1 ( + ) + (in viro) (Ikeda [3]) (Bea funcion of The second kind) (Tsubo [4])
20 Number disribuion for Gamma Process is esimaed by p(n ;,T) = P(n,T /) P((n +1),T /) P(, x) = 1 () x 1 exp()d Mixed Gamma Disribuion semi-parameric model p(n F;,T) = b a p(n ;,T)dF() Incremen is no independen: i is desirable o avoid for analyzing sequences wih synfire chain/bursing
21 d d P(n,) = ()P(n 1, ) ()P(n,) P(n,) = ()n n! () = exp( () ) ()d E[n] = Var[n] = () F(T) =1 (always)
22 () () () E[n] = Var[n] = () W () =1 exp(()) exp( ) 1 exp( ) ( ) 1 exp 1 exp( ) ( ) 1+ 1 ln 1+ ( ) F(T) =1 (always) 1 (1 + ) 1 exp
23 f ISI () = ()exp () ( ) () = 1+ E[] = 1 Var[] = f ISI () = ( 1+ ) 1+ ( ) 2 ( 2 ) CV = Generalized Pareo disribuion Var[] E[] = 2 () = 1 f ISI () = 1 exp E[] = 1/ 1+ 1 Var[] = 2/ >1 (always) Weibull disribuion CV =
24 d d P(n,) = [ ( )P(n 1,) ( )P(n,) ] d
25 d d ( ) P(n,) = () [ (n 1) + ]P(n 1, ) [ n + ]P(n,) Feller (1963) [1] () = () = 1+, =1
26 p(n,) = n, n = p(n,) = ( exp(()) ) n exp(()) n ( ) n () = ()d
27
28 () () = ()d () = 1+ E[n] = exp(()) 1 [ ] Var[n] = exp(()) [ exp(()) 1] Fano Facor Allan Facor F(T) = exp( (T) )>1 A(T) = 2F(T) F(2T)
29 (i) (ii) () () = ()d exp( ) ( 1 exp( ) ) 1+ ln( 1+ ) F() = exp(()) exp 1 exp( ) (1 + ) ( ) (iii) 1 exp The second iem corresponds exacly he fracional power law In he Fano Facor
30 (In he limi of for he generalized Polya process) p(n,) = n,1 Soluion for, Geomeric Disribuion p(n,) = ( exp(()) )1 ( exp(()) ) n n =1 Mean and Variance E[n] = exp(()) [ ] Var[n] = exp(()) exp(()) 1 [ ] Fano Facor F(T) = exp( (T) )1> This is conradic he feaure of Fano Facor of experimens in he region of small T
31 p(n,) = exp( (1) )(1) n F() = L n ( ) L n (x) = Laguerre'sPolynomial E[n] = exp(()) + [ exp(()) 1] Var[n] = exp(()) [ 2 exp(()) 1]+ [ exp(()) 1] Fano Facor (of signal averaging) n p(n ) = n exp(()) [ 2 exp(()) 1]+ [ exp(()) 1] exp(()) + [ exp(()) 1] n! exp( )
32 wihin Pr(d P,n) = n P nd (1 P ) d d f (P r n,s n ) = Hence, one obains SDT disribuion 1 1 B(r n,s n ) P r 1 n (1 P ) s n 1 Pr(d n,r n,s n ) = Pr(d P,n) f (P r n,s n )dp = n B(n d + r,d + s ) n n d B(r n,s n )
33 6.8 spike duraion ime (SDT) disribuion Pr(d n,r n,s n ) = n B(n d + r,d + s ) n n d B(r n,s n ) (r n,s n ) = (1.2,3.2) (r n,s n ) = (2.3,.6) (r n,s n ) = (.5,.6)
34 (Omied here)
35 A(T) T A A value
36 From Lowen and Teich Fracal-Based Poin Processes (Weiley, NY, 25)
37 (iii) (ii) (i) cf. Table 6.4
38 () = f f ( 1 exp[ f ] )+ s log( 1+ s ) s FF() = exp( () ) Fas mode (conribue o decrease FF value) + Slow mode (conribue o fracional power law) s s =.5
39 LIBERMAN MC. Audiory-nerve response from cas raised in a low noise chamber. J. Acous. Soc. Am. 63(2): , Spiral Ganglion neuron Type-I neuron (fas) Type-II neuron (slow) are no found in 1978 Idenified by negaive binomial disribuion + Poisson disribuion he negaive binomial disribuion Pr(n) Number n
40 () = 1+
41
42 T Ts
43 ISI disribuion Parameer of exponenial disribuion is subjeced o Gamma disribuion f () = e () e 1 d = Pareo disribuion B(,1) 1 +1 ( + ) Spike-couning disribuion Parameer of Poisson couning process is subjeced o Gamma disribuion Negaive binomial disribuion P(N() = n) = ( + n 1)! n!( 1)! + n +
Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall
64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<
TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Γ. Κορίλη, Μοντέλα Εξυπηρέτησης
Γ. Κορίλη, Μοντέλα Εξυπηρέτησης 2-1 hp://www.seas.upenn.edu/~com501/lecures/lecure3.pdf Καθυστερήσεις στα ίκτυα Πακέτων Εισαγωγή στη Θεωρία Ουρών Ανασκόπηση Θεωρίας Πιθανοτήτων ιαδικασία Poisson Θεώρηµα
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
P13-2014-14. .. ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy
P13-2014-14.. ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3,,. ʳÌÊÊ Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ Ÿ ˆ ˆŸ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ ² μ Ê ² Annals of Nuclear Energy 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ² ² Œƒ Œˆ, Ê, μ Ö 3 ˆ É ÉÊÉ Ë ± É Ì μ²μ Œ,
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
The canonical 2nd order transfer function is expressed as. (ω n
Second order ransfer funcions nd Order ransfer funcion - Summary of resuls The canonical nd order ransfer funcion is expressed as H(s) s + ζ s + is he naural frequency; ζ is he damping coefficien. The
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo
(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
NPI Unshielded Power Inductors
FEATURES NON-SHIELDED MAGNETIC CIRCUIT DESIGN SMALL SIZE WITH CURRENT RATINGS TO 16.5 AMPS SURFACE MOUNTABLE CONSTRUCTION TAKES UP LESS PCB REAL ESTATE AND SAVES MORE POWER TAPED AND REELED FOR AUTOMATIC
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
SMD Transient Voltage Suppressors
SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
ITU-R BT ITU-R BT ( ) ITU-T J.61 (
ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb
D-Wave D-Wave Systems Inc.
D-Wave D-Wave sems Inc. Anaol Yu. mirnov D-Wave sems Inc. Vancouver Briish Columbia HE QUANUM COMPUING COMPANY M Decoherence and Noise Conrol in rongl Driven uperconducing Quanum Bis Collaboraion: M. Grajcar
& Risk Management , A.T.E.I.
Μεταβλητότητα & Risk Managemen Οικονοµικό Επιµελητήριο της Ελλάδας Επιµορφωτικά Σεµινάρια Σταύρος. Ντεγιαννάκης, Οικονοµικό Πανεπιστήµιο Αθηνών Χρήστος Φλώρος, A.T.E.I. Κρήτης Volailiy - Μεταβλητότητα
Financial Risk Management
Pricing of American options University of Oulu - Department of Finance Spring 2018 Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x
Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W
Features 1. Reliable low cost construction utilizing molded plastic technique 2. Both bi-directional and uni-directional devices are available 3. Fast response time 4. Excellent clamping capacity 5. 1500
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.
Page -1-10 8 10 7 10 6 10 5 10 4 334 ( Th) Counts/Channel 10 3 10 2 10 1 49 ( Th)/ 50 ( Th)/ 50 ( Fr) 0 100 200 300 400 500 600 700 800 900 1000 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Channel
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]
(Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear
2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F 441.6 441.6 441.6 441.6 30 50 70 100 TEM00 TEM00 TEM00 TEM00 BEAM DIAMETER ( 1/e2) 1.1 1.1 1.2 1.2 0.5 0.5 0.5 0.4 RATIO
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
The Student s t and F Distributions Page 1
The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in
Τέτοιες λειτουργίες γίνονται διαμέσου του
Για κάθε εντολή υπάρχουν δυο βήματα που πρέπει να γίνουν: Προσκόμιση της εντολής (fetch) από τη θέση που δείχνει ο PC Ανάγνωση των περιεχομένων ενός ή δύο καταχωρητών Τέτοιες λειτουργίες γίνονται διαμέσου
Alféa Extensa + and Extensa Duo +
Alféa Extensa + and Extensa Duo + FR Document n 1592-2~ 12/07/2013 EN Heat pumps air/water split 1 service and 2 services Technical manual Intended for professionals Completed by the installation and operating
Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ
Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Σχολή ασολογίας και Φυσικού Περιβάλλοντος,
3 Frequency Domain Representation of Continuous Signals and Systems
3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
V S C V C -10. V t C dv c dt
ÕÛÎÛ Το παρακάτω ηλεκτρικό κύκλωµα, διεγείρεται από παλµοσειρά περιόδου Τ s. Οι παράµετροι του κυκλώµατος είναι R = 0 ΚΩ και = 00 µf. Το κύκλωµα αρχικά (τη χρονική στιγµή 0) δεν έχει αποθηκευµένη ενέργεια.
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Monolithic Crystal Filters (M.C.F.)
Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09
NC Disc hermistors ND 03/06/09 NE 03/06/09 NV 06/09 APPLICAIONS ND or NE: Commerical, Industrial and Automotive Applications AEC-Q200 Qualified NV: Professional Applicationsl Alarm and temperature measurement
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
Hydraulic network simulator model
Hyrauc ntwor smuator mo!" #$!% & #!' ( ) * /@ ' ", ; -!% $!( - 67 &..!, /!#. 1 ; 3 : 4*
Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12
ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Pricing Asian option under mixed jump-fraction process
3 17 ( ) Journal of Eas China Normal Universiy (Naural Science) No. 3 May 17 : 1-641(17)3-9-1 - ( 18) : -. Iô.... : -; ; : O11.6 : A DOI: 1.3969/j.issn.1-641.17.3.3 Pricing Asian opion under mixed jump-fracion
Ceramic PTC Thermistor Overload Protection
FEATURES compliant CPTD type are bare disc type CPTL type are leaded Low, medium and high voltage ratings Low resistance; Small size No need to reset supply after overload No noise generated Stable over
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics
M645-POBBILIY & NDOM POCESS UNI-IV-COELION ND SPECL DENSIIES By K.VIJYLKSHMI Dp. of pplid mhmics COELION ND SPECL DENSIIES Dfiniion: uo Corrlion h uo Corrlion of rndom procss {x}is dfind by xx xx im vrg
Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.
Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges
By R.L. Snyder (Revised March 24, 2005)
Humidity Conversion By R.L. Snyder (Revised March 24, 2005) This Web page provides the equations used to make humidity conversions and tables o saturation vapor pressure. For a pd ile o this document,
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:
MnZn JFE No. 8 5 6 p. 32 37 MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer FUJITA Akira JFE Ph. D. FUKUDA Yutaka JFE NISHIZAWA Keitarou JFE TOGAWA Jirou MnZn Fe2O3 1 C NiO
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square
Appendix A3 Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS F Value Pr > F Model 107 374.68 3.50 8573.07
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:
Στοχαστικά σήµατα Έννοια του στοχαστικού σήµατος Θερούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: & α Γνρίζουµε µε απόλυτη βεβαιότητα (µε πιθανότητα ένα), ότι η αρχική
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Polymer PTC Resettable Fuse: KMC Series
Features 1. RoHS & Halogen-Free (HF) compliant 2. IA size: 0603, 0805, 1206, 1812 3. Hold current ratings from 0.05 to 3A 4. Voltage ratings from 6V computer and electronic applications to 60V 5. Small
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Riemann Hypothesis: a GGC representation
Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Μοντέλα χρονολογικών σειρών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Ceramic PTC Thermistor Overload Protection
FEATURES compliant CPTD type are bare disc type CPTL type are leaded Low, medium and high voltage ratings Low resistance; Small size No need to reset supply after overload No noise generated Stable over
Project: 296 File: Title: CMC-E-600 ICD Doc No: Rev 2. Revision Date: 15 September 2010
Project: 296 File: Title: CMC-E-600 ICD Doc No: 21029100-406 Rev 2. Revision Date: 15 September 2010 Contract No.: Revisions Table ECR/ECN LTR Description Date 0 Pre Contract draft 29 July 2010 1 Replace
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
Influence of Flow Rate on Nitrate Removal in Flow Process
J. Jpn. Soc. Soil Phys. No. 33, p.1-2-,**/, ******* Influence of Flow Rate on Nitrate Removal in Flow Process Toshio TABUCHI*, Hisao KURODA**, Akiko IKENOBE** and Mayumi HIRANO** * Former professor of
Electronic Supporting Information
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information robing steric influences on electrophilic phosphonium
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Approximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών
Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών 2017-2018 Σκοπός Διαλέξεων Κίνητρα για προσομοίωση
RSA3408A 24 GSM/EDGE
RSA3408A 24 GSM/EDGE 071-1676-00 1.0 www.tektronix.com Copyright Tektronix Japan, Ltd. All rights reserved. TektronixTek Tektronix, Inc. v 1 11 11 12 12 13 17 2 21 22 26 27 28 29 210 211 212 214 215 216