E [ -x ^2 z] = E[x z]

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "E [ -x ^2 z] = E[x z]"

Transcript

1 1 1.ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτήν την διάλεξη θα πάμε στο φίλτρο με περισσότερες λεπτομέρειες, και θα παράσχουμε μια νέα παραγωγή για το φίλτρο Kalman, αυτή τη φορά βασισμένο στην ιδέα της γραμμικής ελάχιστης εκτίμησης διαφοράς (LMV) διακριτού χρόνου συστήματα. 1.1 YΠΟΒΑΘΡΟ Το πρόβλημα που επιδιώκουμε να λύσουμε είναι η συνεχής εκτίμηση ενός συνόλου παραμέτρων των οποίων τιμές αλλάζουν με τον καιρό. Η ενημέρωση επιτυγχάνεται με το συνδυασμό ενός συνόλου παρατηρήσεων ή μετρήσεων z(t) όποιοι περιέχουν τις πληροφορίες για το σήμα ενδιαφέροντος x(t). Ο ρόλος του εκτιμητή είναι να παράσχει μια εκτίμηση (t+ τ) κάποια στιγμή t+ τ. Αν τ >0 έχουμε μια πρόβλεψη φίλτρου, αν τ<0 έχουμε μια λείανση φίλτρου και αν τ=0, η λειτουργία καλείται απλά φιλτράρισμα. Ένας εκτιμητής που κάνει ανάκλαση λέγεται ότι είναι αμερόληπτος εάν η προσδοκία της παραγωγής της είναι η προσδοκία ή ποσότητα που υπολογίζεται, Ε[ ]=Ε[x]. Επίσης υπενθυμίζουμε ότι ένας ελάχιστος αμερόληπτος εκτιμητής διαφοράς (MVUE) είναι ένας εκτιμητής που είναι αμερόληπτος και ελαχιστοποιεί το μέσο όρο του τετραγωνικού λάθους : = arg E [ -x ^2 z] = E[x z] Ο όρος E[ x- ^2], η αποκαλούμενη διαφορά του λάθους, είναι στενά συνδεδεμένη στη συνδιακύμανση λάθους μήτρας, Ε[(x- )(x- )^T]. Συγκεκριμένα, η διαφορά του λάθους ενός εκτιμητή είναι ίση με το ίχνος από τη μήτρα συνδιακύμανσης λάθους, E[ x- ^2]= trace[(x- )(x- )^T] Το φίλτρο Kalman είναι μια γραμμική ελάχιστη διαφορά του φίλτρου λάθους (δηλ. είναι το καλύτερο γραμμικό φίλτρο πέρα από κατηγορία όλων των γραμμικών φίλτρων) πέρα από τα χρονικά μεταβαλλόμενα και χρόνο-αμετάβλητα φίλτρα. Στην περίπτωση του κρατικού διανύσματος x και οι παρατηρήσεις z είναι από κοινού κατανομή Gauss, ο εκτιμητής MVUE είναι μια γραμμική λειτουργία από το σύνολο μέτρησης z και έτσι το MVUE είναι επίσης ένας εκτιμητής LMV, όπως είδαμε στο πρώτο μέρος της σειράς μαθημάτων.

2 2 Σημείωση Θα πρέπει να χρησιμοποιηθεί η ακόλουθη σημειογραφία διάνυσμα παρατήρησης στο χρόνο k το σύνολο όλων των παρατηρήσεων έως χρόνο k κατάσταση του συστήματος φορέα κατά το χρόνο k εκτίμηση x κατά το χρόνο k με βάση το χρόνο i, k i σφάλμα εκτίμησης, -, (περισπωμένη σημειογραφία) πίνακας συνδιασποράς μεταβατική κατάσταση μήτρας (έλεγχος) μήτρας μετάβασης έξοδος πίνακας μετάβασης διαδικασία (ή σύστημα), φορέας του θορύβου διάνυσμα θορύβου μέτρησης μήτρα συνδιακύμανσης θορύβου διαδικασίας (ή σύστημα) μήτρα συνδιακύμανσης θορύβου μέτρησης μήτρα κέρδους Kalman καινοτομία στο χρόνο k μήτρα συνδιακύμανσης καινοτομίας στο χρόνο k

3 3 1.2 Πρότυπο συστημάτων και παρατήρησης Τώρα θα ξεκινήσουμε την ανάλυση του φίλτρου Kalman. Ανατρέξτε στο σχήμα 1. Υποθέτουμε ότι το σύστημα μπορεί να είναι από την εξίσωση μεταβατικής κατάστασης = + + (1) όπου είναι η κατάσταση κατά το χρόνο k, είναι ένας φορέας ελέγχου εισόδου, είναι πρόσθετο σύστημα ή διαδικασία θορύβου, είναι η μετάβαση εισόδου μήτρας και είναι η μήτρα μετάβασης κατάστασης. Περαιτέρω υποθέτουμε ότι οι παρατηρήσεις του κράτους γίνονται μέσω ενός συστήματος μέτρησης που μπορεί να αντιπροσωπευθεί από μια γραμμική εξίσωση της μορφής, = + (2) όπου είναι η παρατήρηση ή μέτρηση γίνεται κατά τη στιγμή k, είναι η κατάσταση κατά το χρόνο k, είναι η μήτρα παρατήρησης και προσθετικός θόρυβος μέτρησης.

4 4 1.3 Yποθέσεις Κάνουμε τις ακόλουθες υποθέσεις H διαδικασία και η μέτρηση του θορύβου,τυχαίες διαδικασίες και είναι ασυσχέτιστες, μηδενική μέση διαδικασίες λευκού θορύβου με γνωστούς πίνακες συνδιασποράς. Τότε, E [ ] = { (3) E [ ] = { (4) E [ ] = 0 για k, l (5) Όπου και είναι συμμετρικές θετικές ημιορισμένες μήτρες. Η αρχική κατάσταση του συστήματος, είναι ένα τυχαίο διάνυσμα που είναι συσχετισμένο τόσο το σύστημα όσο και με τις διαδικασίες του θορύβου μέτρησης.

5 5 Η αρχική κατάσταση του συστήματος έχει μία γνωστή μέση τιμή και πίνακα συνδιασποράς = Ε [ ] και = E [ ( - ) ] (6) Λαμβάνοντας υπόψη τις ανωτέρω υποθέσεις ο στόχος είναι να καθορίσει, λαμβάνοντας υπόψη ένα σύνολο παρατηρήσεων,.., το φίλτρο εκτίμησης που k+1 η παρουσία στο χρόνο παράγει μία βέλτιστη εκτίμηση της κατάστασης, το οποίο συμβολίζουμε με, που ελαχιστοποιεί την προσδοκία της συνάρτησης απώλειας τετράγωνο-λάθους, E [ ^2 ] = E [ ( - )^T ( )] (7) 1.4 Παραγωγή Εξετάστε την εκτίμηση του με βάση τις παρατηρήσεις μέχρι το χρόνο k,,,, δηλαδή. Αυτό ονομάζεται πρόβλεψη ενός σταδίου-μπροστά ή απλά μια πρόβλεψη. Τώρα η λύση για η ελαχιστοποίηση της εξίσωσης 7 είναι η προσδοκία του κράτους στο χρόνο k+1 ρυθμισμένος με παρατηρήσεις μέχρι το χρόνο k. Έτσι, = E [,., ] = E [ ] (8) Τότε η προβλεπόμενη κατάσταση δίνεται από = E [ ] = E [ + + ] = E[ ] + + E[ ] = + (9) όπου έχουμε χρησιμοποιήσει το γεγονός ότι ο θόρυβος διεργασία έχει μηδενική μέση τιμή και είναι γνωστή με ακρίβεια. Η διαφορά εκτίμησης είναι το μέσο τετραγωνικό σφάλμα στην εκτίμηση. Έτσι, χρησιμοποιώντας τα πραγματικά περιστατικά που είναι ασυσχέτιστες = E [ - )( )^T ]

6 6 = E[( - )( - )^T ] + E [ ] = + (10) Έχοντας λάβει μια προγνωστική εκτίμηση ας υποθέσουμε ότι έχουμε πλέον λάβει μια άλλη παρατήρηση. Πώς μπορούμε να χρησιμοποιήσουμε αυτές τις πληροφορίες για να ενημερώσουμε την πρόβλεψη, βρίσκω. Υποθέτουμε ότι η εκτίμηση είναι ένα γραμμικό σταθμισμένο άθροισμα της πρόβλεψης και της νέας παρατήρησης και μπορεί να περιγραφεί με την εξίσωση, = + (11) Όπου και μήτρες στάθμισης ή κέρδους (διαφορετικών μεγεθών). Το πρόβλημά μας τώρα είναι να μειώνεται στην εύρεση της και που ελαχιστοποιούν το μέσο τετραγωνικό όρους σφάλμα εκτίμησης όπου βέβαια το σφάλμα εκτίμησης δίνεται από : = - (12) 1.5 Ο αμερόληπτος όρος Για το φίλτρο μας που είναι αμεροληπτές, απαιτούμε E[ ] = E[ ]. Ας υποθέσουμε ότι είναι μια αμερόληπτη εκτίμηση. Στη συνέχεια συνδυάζοντας τις εξισώσεις (11) και (2) και λαμβάνοντας προσδοκίες των αποδόσεων E [ ] = E [ + + ] = E ] + E[ ] + E [ ] (13) Σημειώστε ότι η τελευταία περίοδος στη δεξιά πλευρά της εξίσωσης είναι μηδέν, και περαιτέρω σημειώστε ότι η πρόβλεψη είναι αμερόληπτη: E [ ] = E[ + ] = E ] + = E [ ] (14) Ως εκ τούτου, δια συνδυασμού των εξισώσεων (13) και (14))

7 7 E [ ] = ( + )E[ και η προϋπόθεση της είναι αμερόληπτη και μειώνει την απαίτηση + = I ή = I - (15) Έχουμε τώρα ότι για να είναι αμερόληπτες για τον εκτιμητή μας πρέπει να πληρούν = (I - ) + = + [ - ] (16) Όπου K είναι γνωστό ως το κέρδος Kalman. Σημειώστε ότι εφόσον μπορεί να ερμηνευθεί ως μία προβλεπόμενη παρατήρηση, η εξίσωση 16 μπορεί ερμηνεύεται ως ποσό μιας πρόβλεψης και ενός μέρους της διαφοράς μεταξύ της προβλεπόμενης και της πραγματικής παρατήρησης. 1.6 Eύρεση της συνδιακύμανσης λάθους Καθορίσαμε τη συνδιακύμανση λάθους πρόβλεψης στην εξίσωση (10). Γυρίζουμε τώρα στο ενημερωμένο λάθος συνδιακύμανση = E[ ( )^T =E[( - )( - )^T] = (I - ) E [( ] (I - )^T + E [ ] + 2(I - ) E [ ] και με E [ ] = E [ ] =

8 8 E [ ] = 0 παίρνουμε = ( I - ) ( I - )^T + (17) Κατά συνέπεια η συνδιακύμανση της ενημερωμένης εκτίμησης εκφράζεται από την άποψη της συνδιακύμανσης πρόβλεψης, ο θόρυβος παρατήρησης και η μήτρα κέρδους Kalman. 1.7 Επιλογή του κέρδους Kalman Στόχος μας τώρα είναι να ελαχιστοποιηθεί η υπό όρους μέσο τετραγωνικό σφάλμα εκτίμησης σε σχέση με το κέρδος Kalman, K. L = E [ ] = trace ( E [ ] = trace ( ) (18) Για οποιαδήποτε μήτρα A και μια συμμετρική μήτρα B (trace( )) = 2AB (για να δει αυτό, θεωρήστε το ίχνος όπως B όπου είναι οι στήλες, και έπειτα διαφοροποιώντας το ). Συνδυάζοντας τις εξισώσεις (17) και (18) και τη διαφοροποίηση σε σχέση με τη μήτρα απολαβής (χρησιμοποιώντας τη σχέση ανωτέρω) και τον καθορισμό ισούται με μηδέν αποδόσεις = -2(( I - ) + 2 = 0 Η εκ νέου ρύθμιση δίνει μια εξίσωση για τη μήτρα κέρδους [ + ]^-1 (19)

9 9 Μαζί με την Εξίσωση 16 αυτό καθορίζει το βέλτιστο γραμμικό μέσο τετραγωνικό σφάλμα εκτιμητή. 1.8 Περίληψη των βασικών εξισώσεων Σε αυτό το σημείο αξίζει να συνοψίζει τις βασικές εξισώσεις που βρίσκονται πίσω από τον αλγόριθμο του φίλτρου Kalman. Ο αλγόριθμος αποτελείται από δύο βήματα ένα βήμα πρόβλεψης και ένα βήμα ενημέρωσης. Πρόβλεψη: επίσης γνωστό ως χρόνος ενημέρωσης. Αυτό προβλέπει το κράτος και η διακύμανση στο χρόνο k+1 από τις πληροφορίες κατά το χρόνο k. = + (20) = + (21) Ενημέρωση: επίσης γνωστή ως η ενημερωμένη μέτρησης. Αυτό ενημερώνει το κράτος και τη διακύμανση χρησιμοποιώντας συνδυασμό της προβλεπόμενης κράτους και της παρατήρησης. = + [ - ] (22) = ( I - ) + (23)

10 10 όπου η μήτρα της απολαβής δίνεται από = [ + ]^-1 (24) Μαζί με τις αρχικές συνθήκες για την εκτίμηση και τη μήτρα συνδιασποράς το σφάλμα της (εξίσωση 6). Αυτό καθορίζει του διακριτού χρόνου διαδοχικού, αναδρομικού αλγόριθμου για τον προσδιορισμό της γραμμικής ελάχιστης διακύμανσης γνωστό ως φίλτρο Kalman. 1.9 Ερμηνεία του φίλτρου Kalman Ρίχνουμε τώρα μια ματιά στο γενικό αλγόριθμο φίλτρων Kalman με περισσότερες λεπτομέρειες. Το σχήμα 2 συνοψίζει στάδια στον αλγόριθμο με μορφή διαγραμμάτος μπλοκ. Η καινοτομία,, ορίζεται ως η διαφορά μεταξύ της παρατήρησης (μέτρηση) και της πρόβλεψής του γίνονται με τη χρήση των διαθέσιμων πληροφοριών κατά το χρόνο k. Είναι ένα μέτρο της νέας πληροφορίας που παρέχετε με την προσθήκη μιας άλλης μέτρησης στη διαδικασία εκτίμησης. Δεδομένου ότι = Ε[ ]

11 11 = E [ + ] = (25) η καινοτομία μπορεί να εκφραστεί από = - (26) Η καινοτομία ή το υπόλοιπο είναι ένα σημαντικό μέτρο πόσο καλά ένας εκτιμητής εκτελεί. Για παράδειγμα μπορεί να χρησιμοποιηθεί για την επικύρωση μιας μέτρησης πριν να περιλαμβάνεται ως ένα μέλος της ακολουθία παρατήρησης (περισσότερα για αυτό αργότερα). Η διαδικασία του μετασχηματισμού σε μερικές φορές λέγεται ότι πρέπει να επιτευχθεί μέσω του φίλτρου λεύκανσης Kalman. Αυτό είναι επειδή οι καινοτομίες διαμορφώνουν μια ασύνδετη ορθογώνια διαδικασία άσπρου-θορύβου ακολουθία η οποία είναι στατιστικά ισοδύναμη με τις παρατηρήσεις. Αυτό είναι σημαντικό επειδή όπου όπως σε γενικές γραμμές να σχετίζεται στατιστικά σημαντικά, η καινοτομία είναι ασυσχέτιστες έτσι αποτελεσματικά παρέχει νέες πληροφορίες ή "καινοτομία". Η καινοτομία έχει μηδενική μέση τιμή, δεδομένου ότι, E [ ] = E [ - ] = E [ ] - = 0 (27) και η διακύμανση της καινοτομίας δίνεται από = E [ ] = E [ ( - )( - )^T = + (28) Χρησιμοποιώντας την εξίσωση 26 και 28 μπορούμε να ξαναγράψουμε τις αναπροσαρμογές Kalman από την άποψη της καινοτομίας και της διαφορά ως εξής.

12 12 = + (29) = E [ - - ) - - )^T = E [ ( - )( - )^T ] - E [ ] = - (30) όπου, από την εξίσωση 19 = (31) και = + (32) Αυτό είναι μια κατάλληλη μορφή του φίλτρου Kalman που χρησιμοποιείται συχνά στην ανάλυση. Αν και χρησιμοποιείται πρώτιστα ως κρατικός εκτιμητής ο αλγόριθμος φίλτρων Kalman, μπορεί να χρησιμοποιηθεί στην εκτίμηση παράμετρων εκτός από το κρατικό διάνυσμα. Αυτοί είναι διευκρινισμένοι στο σχήμα Εάν εφαρμοστεί για την εκτίμηση αυτό ονομάζεται φίλτρο μέτρησης. 2. Εάν εφαρμοστεί για την εκτίμηση αυτό ονομάζεται φίλτρο πρόβλεψης. 3. Εάν εφαρμοστεί για την εκτίμηση αυτό ονομάζεται φίλτρο λεύκανσης 4. Εάν εφαρμοστεί για την εκτίμηση αυτό ονομάζεται φίλτρο Kalman.

13 Ο αλγόριθμος Kalman διακριτού φίλτρου Θα ξεκινήσουμε αυτό το τμήμα με μια γενική επισκόπηση, που καλύπτει την "υψηλού επιπέδου" λειτουργία μιας μορφής του διακριτού φίλτρου Kalman. Μετά την παρουσίαση αυτή την άποψη υψηλού επιπέδου, που θα περιορίσετε την εστίαση στις συγκεκριμένες εξισώσεις και τη χρήση τους σε αυτήν την έκδοση του φίλτρου. Το φίλτρο Kalman υπολογίζει μια διαδικασία με τη χρησιμοποίηση μιας μορφής ελέγχου ανατροφοδότησης: το φίλτρο υπολογίζει το κρατική διαδικασία σε κάποιο χρονικό διάστημα και στη συνέχεια λαμβάνει την ανατροφοδότηση υπό μορφή (θορυβώδη) μετρήσεων. Ως τέτοια, οι εξισώσεις για το φίλτρο Kalman χωρίζονται σε δύο ομάδες: 1)ενημέρωση ώρας εξισώσεων και 2) μέτρηση ενημέρωση εξισώσεων. Οι εξισώσεις χρονικών αναπροσαρμογών είναι αρμόδιες για να προβάλουν προς τα εμπρός (στο χρόνο) το τρέχουσα κατάσταση και συνδιακύμανσης σφάλματος εκτιμήσεις για την απόκτηση των προτέρων εκτιμήσεις για το επόμενο χρονικό βήμα. Οι επικαιροποιημένες εξισώσεις μέτρησης είναι αρμόδιες για την ανατροφοδότηση, δηλαδή για την ενσωμάτωση μιας νέας μέτρησης, για να αποκτήσει βελτιωμένη εκ των υστέρων εκτίμηση. Οι εξισώσεις χρονικών αναπροσαρμογών μπορούν επίσης να θεωρηθούν ως εξισώσεις προαγγέλων, ενώ οι μετρήσεις των εξισώσεων αναπροσαρμογών μπορούν να θεωρηθούν ως εξισώσεις διορθωτών. Πράγματι, ο τελικός αλγόριθμος εκτίμησης μοιάζει με εκείνη ενός αλγορίθμου πρόβλεψης-διόρθωσης για την επίλυση αριθμητικών προβλημάτων, όπως φαίνεται παρακάτω: Σχήμα 3: Ο τρέχων ιδιαίτερος κύκλος φίλτρων Kalman. Η ενημέρωση ώρας προβάλλει την τρέχουσα κατάσταση εκτίμηση μπροστά στο χρόνο. Η ενημέρωση μέτρησης ρυθμίζει την προβλεπόμενη εκτίμηση από πραγματική μέτρηση εκείνη τη στιγμή.

14 14 Οι συγκεκριμένες εξισώσεις για τις αναπροσαρμογές χρόνου και μέτρησης παρουσιάζονται κατωτέρω στον Πίνακα 1 και Πίνακα 2. Πίνακας 1.Φίλτρο Kalman διακριτού χρόνου εξισώσεις ενημέρωσης. = A + B (33) = AP + Q (34) Παρατηρήστε πώς οι χρονικές εξισώσεις ενημέρωσης στο έργο Πίνακας 1 το κράτος και η συνδιακύμανση εκτίμησης διαβιβάζονται από το βήμα του χρόνου k-1 στο βήμα k. Πίνακας2. Φίλτρο Kalman διακριτής μέτρησης ενημέρωσης εξισώσεων. = (35) = + ( - H ) (36) = ( I - H) (37) Ο πρώτος στόχος κατά την ενημέρωση της μέτρησης είναι να υπολογιστεί το κέρδος Kalman,. Παρατηρήστε ότι η εξίσωση δίνεται από (35). Το επόμενο βήμα είναι να μετρηθεί πραγματικά η διαδικασία για να ληφθεί το, και στη συνέχεια να δημιουργήσει μια κατάσταση εκ των υστέρων εκτίμηση, ενσωματώνοντας τη μέτρηση όπως στο (36). Πάλι από (36) είναι απλά επαναλαμβανόμενος για την πληρότητα. Το τελικό βήμα είναι να ληφθεί μια εκ των υστέρων εκτίμηση συνδιακύμανση σφάλματος μέσω της εξίσωσης (37). Μετά από κάθε φορά που και επαναλαμβάνεται το ζευγάρι αναπροσαρμογών μέτρησης, η διαδικασία με εκ των υστέρων εκτιμήσεις χρησιμοποιείται στο πρόγραμμα για την προβολή ή την πρόβλεψη νέων εκτιμήσεων. Αυτή η αναδρομική φύση είναι ένα από τα πολύ ελκυστικά χαρακτηριστικά του φίλτρο Kalman και καθιστά πρακτικές εφαρμογές πολύ πιο εφικτές από (για παράδειγμα) εφαρμογές ενός φίλτρου Wiener το οποίο έχει σχεδιαστεί για να λειτουργεί σε όλα τα δεδομένα άμεσα για κάθε εκτίμηση. Το φίλτρο Kalman αντ' αυτού κατ' επανάληψη ρυθμίζει την τρέχουσα εκτίμηση σε όλες τις προηγούμενες μετρήσεις. Η εικόνα παρακάτω προσφέρει μια πλήρες εικόνα της λειτουργίας του φίλτρου, συνδυάζοντας το διάγραμμα υψηλού επιπέδου του σχ. 3 με τις εξισώσεις από τον Πίνακα 1 και Πίνακα 2.

15 15 Μια πλήρης εικόνα της λειτουργίας του φίλτρου Kalman, συνδυάζοντας το διάγραμμα υψηλού επιπέδου του σχ. 3 με τις εξισώσεις από τον Πίνακας 1 και τον Πίνακα 2. Κλείνοντας σημειώνουμε ότι κάτω από συνθήκες όπου Q και R είναι στην πραγματικότητα σταθερές, τόσο στην εκτίμηση συνδιακύμανσης σφάλματος και το κέρδος Kalman θα σταθεροποιηθούν γρήγορα και στη συνέχεια παραμένουν σταθερές (βλέπε το φίλτρο ενημέρωσης εξισώσεων στο παραπάνω σχήμα). Εάν αυτό συμβαίνει, αυτές οι παράμετροι μπορούν να προ-υπολογιστούν είτε με τη λειτουργία του φίλτρου off-line είτε παραδείγματος χάριν με τον καθορισμό της αξίας κατάστασης από. Είναι συχνά η περίπτωση, ωστόσο, ότι το σφάλμα μέτρησης (ειδικότερα) δεν παραμένει σταθερό. Παραδείγματος χάριν, όταν διακρίνοντας αναγνωριστικά σήματα στις οπτικοηλεκτρονικές ανώτατες επιτροπές ιχνηλατών μας, ο θόρυβος στις μετρήσεις των κοντινών αναγνωριστικών σημάτων θα είναι μικρότερος από αυτός στα μακρινά αναγνωριστικά σήματα. Επίσης, ο θόρυβος διαδικασίας Q μερικές φορές αλλάζει δυναμικά κατά τη διάρκεια της λειτουργίας του φίλτρου σε προκειμένου να προσαρμοστεί στη διαφορετικές δυναμικές. Για παράδειγμα, στην περίπτωση του εντοπισμού της κεφαλής ενός χρήστη σε 3D εικονικό περιβάλλον, θα μπορούσε να μειώσει το μέγεθος του αν ο χρήστης φαίνεται να κινείται σιγά-σιγά, και να αυξήσει το μέγεθος αν η δυναμική αρχίσει να αλλάζει με ταχείς ρυθμούς. Σε τέτοιες περιπτώσεις το επιλέγεται για να αποτελέσει την αβεβαιότητα για τις προθέσεις του χρήστη και την αβεβαιότητα του μοντέλου.

16 16

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

, και. είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (Time Invariant Kalman Filter):

, και. είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (Time Invariant Kalman Filter): 1 ΧΡΟΝΙΚΑ ΑΜΕΤΑΒΛΗΤΟ ΦΙΛΤΡΟ KALMAN Για το χρονικά αμετάβλητο μοντέλο, όπου οι μήτρες F( k 1, k) F, H( k 1) H, Q( k) Q και R( k 1) R είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι:

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι: 1 2. ΦΙΛΤΡΟ KALMAN 2.1.ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟ ΦΙΛΤΡΟ KALMAN Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση (φιλτράρισμα) x( k / k ) της κατάστασης τη χρονική στιγμή δεδομένου του

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 11: Στοχαστικός βέλτιστος έλεγχος γραμμικών συστημάτων με χρήση τετραγωνικών κριτηρίων (LQG Problem) Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

Οι τύποι της εκτίμησης, οι οποίοι παρουσιάζονται στον Πίνακα 1.1, προσδιορίζονται από τη σχέση των χρονικών στιγμών και k :

Οι τύποι της εκτίμησης, οι οποίοι παρουσιάζονται στον Πίνακα 1.1, προσδιορίζονται από τη σχέση των χρονικών στιγμών και k : ΦΙΛΤΡΑ KALMAN ΚΑΙ ΛΑΪΝΙΩΤΗ 11 1. ΘΕΩΡΙΑ ΕΚΤΙΜΗΣΗΣ 1.1. ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΚΤΙΜΗΣΗΣ Η θεωρία εκτίμησης (estimation theory) έχει ως αντικείμενο τον υπολογισμό της βέλτιστης εκτίμησης μίας κατάστασης

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalma Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ακολουθιακή Επεξεργασία Τα δείγµατα

Διαβάστε περισσότερα

Αναλογικές και Ψηφιακές Επικοινωνίες

Αναλογικές και Ψηφιακές Επικοινωνίες Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές αποκατάστασης

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

Y Y ... y nx1. nx1

Y Y ... y nx1. nx1 6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5. ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Identifications)

ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5. ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Identifications) ΚΕΦΑΛΑΙΟ 5 ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Idetificatios) Στο κεφάλαιο αυτό γίνεται παρουσίαση μεθοδολογίας για την ανεύρεση ενός αξιόπιστου μοντέλου πριν ή κατά την λειτουργία της

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20 Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 6: Το γραμμικό τετραγωνικό πρόβλημα βέλτιστης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής MATLAB Εισαγωγή στο SIMULINK Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Εισαγωγή στο Simulink - Βιβλιοθήκες - Παραδείγματα Εκκίνηση BLOCKS click ή Βιβλιοθήκες Νέο αρχείο click ή Προσθήκη block σε αρχείο

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares) ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων RLS Rcrsiv Last Sqars 27 iclas sapatslis

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Εισαγωγή (1/2) Αναίρεση υποβάθμισης που μπορεί να οφείλεται: Στο οπτικό σύστημα (θόλωμα λόγω κακής εστίασης, γεωμετρικές παραμορφώσεις...)

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 3.1 Εισαγωγή ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ Στο κεφ. 2 είδαμε πώς θα μπορούσαμε να σχεδιάσουμε έναν βέλτιστο ταξινομητή εάν ξέραμε τις προγενέστερες(prior) πιθανότητες ( ) και τις κλάση-υπό όρους πυκνότητες

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 9

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 9 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 9 Πάτρα 2008 Ρύθμιση ελαχίστης διασποράς Η στρατηγική

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ... ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα

Διαβάστε περισσότερα

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ Ενότητα 3: Συστήματα Αυτόματου Ελέγχου Διδάσκων: Γεώργιος Στεφανίδης Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Σκοποί ενότητας Στην ενότητα αυτή θα ασχοληθούμε με τα Συστήματα

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 7 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Εκτίµηση Τυχαίων Σηµάτων FIR φίλτρα: Ορίζουµε

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)

Διαβάστε περισσότερα

Ομαδοποίηση ΙΙ (Clustering)

Ομαδοποίηση ΙΙ (Clustering) Ομαδοποίηση ΙΙ (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 5: Προσαρμοστική Επεξεργασία Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση των βασικών εννοιών

Διαβάστε περισσότερα

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Νιαβής Παναγιώτης Επιβλέπων: Καθ. Γ. Μουστακίδης Περιεχόμενα Εισαγωγή Μικροφωνισμός σε ακουστικά βαρηκοΐας Προσαρμοστική αναγνώριση συστήματος

Διαβάστε περισσότερα

Προχωρημένα Θέματα Συστημάτων Ελέγχου

Προχωρημένα Θέματα Συστημάτων Ελέγχου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού Τ.Ε. ΔΙΙΔΡΥΜΑΤΙΚΟ Π.Μ.Σ. «Νέες Τεχνολογίες στη Ναυτιλία και τις Μεταφορές» Προχωρημένα Θέματα

Διαβάστε περισσότερα

1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ

1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ 1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 «Μαθαίνω στη γάτα να σχεδιάζει» Δραστηριότητα 1 Παρατηρήστε τις εντολές στους παρακάτω πίνακες,

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 7

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 7 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 7 Πάτρα 2008 Τοποθέτηση Επιλογή πόλων Θεωρούμε ένα (Σ)

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.5) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/07 Διδάσκων: Ι. Λυχναρόπουλος Προσδιορίστε το c R ώστε το διάνυσμα (,, 6 ) να ανήκει στο

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης

Διαβάστε περισσότερα

Παραδείγματα (2) Διανυσματικοί Χώροι

Παραδείγματα (2) Διανυσματικοί Χώροι Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)

Διαβάστε περισσότερα

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (predicio, forecasig) Η πρόβλεψη των μελλοντικών

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

Stochastic Signals Class Estimation Theory. Andreas Polydoros University of Athens Dept. of Physics Electronics Laboratory

Stochastic Signals Class Estimation Theory. Andreas Polydoros University of Athens Dept. of Physics Electronics Laboratory Stochastic Signals Class Estimation Theory Andreas Polydoros University of Athens Dept. of Physics Electronics Laboratory 1 Τι ειναι «Εκτιμηση» (Estimation)? Γενικο Πλαισιο: Θεωρια και Πραξη Συμπερασματων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις Επιλογή τάξης μοντέλου και επικύρωση Επαναληπτική αναγνώριση Βέλτιστη μέθοδος συμβαλλουσών μεταβλητών (opimal IV mehod) P P P IV IV, op PEM z() = H ( q) φ () Γενική

Διαβάστε περισσότερα

y(k) + a 1 y(k 1) = b 1 u(k 1), (1) website:

y(k) + a 1 y(k 1) = b 1 u(k 1), (1) website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 7 Μαΐου 207 Αναγνώριση Παραμετρικών μοντέλών

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 11 Πάτρα 2008 Προσαρμοστικός LQ έλεγχος για μη ελαχίστης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 4: Πολυδιάστατες Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Συστήματα Markov Ένα σύστημα Markov διαγράμματος μετάβασης καταστάσεων

Συστήματα Markov Ένα σύστημα Markov διαγράμματος μετάβασης καταστάσεων Ένα σύστημα Markov (ή διαδικασία Markov ή αλυσίδα Markov) είναι: ένα σύστημα που μπορεί να αποτελείται από πολλές (αριθμημένες) καταστάσεις (states). Στο σύστημα αυτό υπάρχει δυνατότητα μετάβασης από την

Διαβάστε περισσότερα